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In polar semiconductors and insulators, the Fröhlich interaction between electrons and long-wavelength longi-
tudinal optical phonons induces a many-body renormalization of the carrier effective masses and the appearance
of characteristic phonon sidebands in the spectral function, commonly dubbed “polaron satellites.” The simplest
model that captures these effects is the Fröhlich model, whereby electrons in a parabolic band interact with a dis-
persionless longitudinal optical phonon. The Fröhlich model has been employed in a number of seminal papers,
from early perturbation-theory approaches to modern diagrammatic Monte Carlo calculations. One limitation of
this model is that it focuses on undoped systems, thus ignoring carrier screening and Pauli blocking effects that
are present in real experiments on doped samples. To overcome this limitation, we here extend the Fröhlich model
to the case of doped systems, and we provide exact solutions for the electron spectral function, mass enhance-
ment, and polaron satellites. We perform the analysis using two approaches, namely, Dyson’s equation with the
Fan-Migdal self-energy, and the second-order cumulant expansion. We find that these two approaches provide
qualitatively different results. In particular, Dyson’s approach yields better quasiparticle masses and worse
satellites, while the cumulant approach provides better satellite structures, at the price of worse quasiparticle
masses. Both approaches yield an anomalous enhancement of the electron effective mass at finite doping levels,
which in turn leads to a breakdown of the quasiparticle picture in a significant portion of the phase diagram.
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I. INTRODUCTION

The Fröhlich interaction, that is, the coupling between
electrons and long-wavelength longitudinal optical (LO)
phonons in polar semiconductors and insulators, constitutes
one of the earliest and most intensely studied manifestations
of electron-phonon physics [1–3]. On the theory side, Fröhlich
couplings have received considerable attention during the past
few years, as efficient ab initio techniques to describe these
processes have become available [4–7]. Meanwhile, a recent
report has demonstrated the remarkable effectiveness of a
generalized Fröhlich model in the prediction of zero-point
band-gap renormalization when compared to highly accurate
ab initio calculations [8]. On the experiment side, the Fröhlich
interaction has long been known to play an important role in
the carrier transport properties of doped semiconductors and
oxides [9,10] and in their superconducting phases [11–13].
More recently, Fröhlich couplings have been identified as
the origin of intriguing phonon sidebands in the photoelec-
tron spectra of many compounds, including SrTiO3 (STO)
[14–17], TiO2 [18], EuO [19], CaMnO3 [20], and ZnO [21].
In turn, these sidebands have been linked to the observation
of superconducting phases in bulk and interfacial systems
[13,22,23].

*fgiustino@oden.utexas.edu

The most direct route to investigate the effect of Fröhlich
couplings on electron band structures is via angle-resolved
photoelectron spectroscopy (ARPES). In ARPES experi-
ments, electrons are extracted from a sample via laser or
synchrotron light, and the energy and momentum of the
electron prior to exiting the sample can be reconstructed
by an analyzer. This setup provides a direct image of the
momentum-resolved electron spectral function, i.e., the many-
body electron band structure. Since only occupied electronic
states can be probed by ARPES, it is necessary to dope elec-
trons into the sample in order to image the band edges. These
electrons interact with all phonons in the sample; however,
in polar semiconductors and oxides the dominant coupling
mechanism is the Fröhlich interaction with long-wavelength
LO phonons, because the associated coupling matrix element
diverges at long wavelength [24]. This coupling enhances the
carrier effective mass and leads to the appearance of phonon
sidebands below the conduction band edge, usually called
“polaron satellites” [17,18,22,23]. A schematic illustration of
these effects is shown in Fig. 1.

The description of these low-energy structures using ab
initio many-body methods is challenging [25]. In the case of
standard metals, where the Fermi energy EF is much larger
than the characteristic phonon energy h̄ωph, h̄ωph/EF � 1,
Migdal’s theorem guarantees that the interaction is well de-
scribed by noncrossing electron-phonon self-energy diagrams
[24,26,27]. However, degenerate semiconductors including
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FIG. 1. Schematic illustration of the many-body renormalization
of the conduction band bottom of a polar semiconductor or insulator
by the Fröhlich interaction. The illustration refers to a parabolic
conduction band minimum, doped with electrons up to the Fermi
level. The dashed line indicates the noninteracting band structure,
and the solid lines show the renormalized band minimum as well
as the phonon sidebands (two sidebands, for example). The energy
separation between the quasiparticle band and the sidebands is an
integer multiple of the LO phonon energy.

doped oxides typically possess a Fermi energy comparable
to the characteristic phonon energy, h̄ωph/EF ∼ 1 [28]. This
scenario falls outside of the validity limit of the Migdal ap-
proximation. As a result, calculations on these systems based
on the Migdal approximation suffer from well-documented
shortcomings, for example, incorrect energetics of the satellite
structures shown in Fig. 1 [25,29–31].

One promising strategy to overcome this limitation is pro-
vided by the cumulant expansion method [32–34]. In its
original formulation, this approach was introduced to study
the coupling of core holes to plasma excitations in metals
[32]. The generalization of this approach to valence electrons
[33] enabled the first ab initio calculations of plasmon satel-
lites in elemental metals [34]. More recently, the cumulant
approach has been employed to improve the description of
spectral satellites arising from electron-plasmon interactions
in GW calculations [35–43]. In the context of electron-phonon
physics, the cumulant expansion has successfully been em-
ployed to calculate phonon sidebands in systems exhibiting
Fröhlich coupling [19,25,29–31,44–46].

Despite much progress on the front of ab initio calcula-
tions, we still lack a simple analytical model that captures
the essential features of Fröhlich interactions in doped sys-
tems, and that can be used as a reference benchmark for
validating ab initio implementations. This gap is particularly
critical as ab initio calculations of Fröhlich couplings require
extremely dense Brillouin zone grids, and are therefore com-
putationally very demanding. As a result, it is difficult to
systematically explore the parameter space and extract general
trends.

The most popular model employed to investigate electronic
couplings to polar LO phonons is the Fröhlich model [1].
This model consists of an electron in a parabolic electron

band coupled to a dispersionless LO phonon [1,47–51]. It
forms the basis for a number of seminal papers on electron-
phonon interactions and polarons [2,3,27], and is routinely
used for testing advanced many-body techniques such as the
diagrammatic Monte Carlo method [52,53]. However, this
model describes a single electron coupled to a phonon bath;
therefore, it does not include the effects of band filling (shown
schematically in Fig. 1), and the associated screening of the
polar interaction by free carriers. Without including free carri-
ers, the Fröhlich model cannot reproduce the correct energetic
ordering of bands and satellites as shown in Fig. 1 and ob-
served in experiments; instead, the Fröhlich model incorrectly
yields satellites above the conduction band bottom [30,53].

In this work, we go beyond the original Fröhlich model
by deriving analytic expressions for the electron self-energy
and spectral function for electron-LO phonon interactions
in the presence of free carriers. This model constitutes an
idealization of Fröhlich interactions in many degenerate semi-
conductors and doped oxides that have been investigated via
photoelectron spectroscopy [13,16–23]. We refer to this ex-
tended model as the “doped Fröhlich solid.” For this model,
we derive the Fan-Migdal self-energy, and use it to obtain the
electron spectral function within both Dyson’s equation and
the second-order cumulant expansion method. For each ap-
proach, we analyze the quasiparticle (QP) band structure, the
phonon satellites, and the mass enhancement, and we identify
advantages and shortcomings. In particular, we show that both
approaches yield anomalous electron mass enhancements at
finite Fermi levels. This enhancement is so strong that the
band curvature is inverted in a large region of the phase di-
agram, leading to a breakdown of the QP picture. This failure
is more pronounced in the cumulant approach.

This paper is organized as follows: In Sec. II, we for-
mally introduce the doped Fröhlich solid, the Fan-Migdal
self-energy, and how to obtain the spectral function within
either Dyson’s method or the second-order cumulant expan-
sion. In Sec. III A, we review the classic Fröhlich polaron
problem as the empty-band limit of the doped Fröhlich solid.
We show that the empty-band model fails to reproduce the cor-
rect energetic ordering of bands and satellites that is observed
in experiments. This shortcoming is remedied in Sec. III B,
where we introduce free carriers and a finite Fermi level in
the model. In this case we only consider band-filling effects,
without taking into account the screening of the Fröhlich
interaction by the free carriers. This scenario is relevant for
experiments in the antiadiabatic regime (h̄ωph/EF � 1). In
Sec. III C, we include both the effect of band filling and
free-carrier screening, and derive semianalytical self-energy
and spectral functions. This more accurate model is found to
capture most of the features observed in ARPES experiments
in doped oxides. For easier orientation within this paper, we
reference all equations for the QP energy and effective mass
for the three considered scenarios in Table I. Section IV con-
nects our Dyson and cumulant spectra to experimental data
by comparing calculated and measured quasiparticle weights.
In Sec. V we summarize our results and discuss the impli-
cations of our findings for ab initio calculations of Fröhlich
couplings. Lastly, we report details of the derivations in the
Appendixes.
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TABLE I. Overview of equations for all quantities derived in this work: k-dependent QP energy Ek , QP energy at the zone center, E0/h̄ω0,
and renormalized effective mass m∗/m0 for the cases of a single electron (Fröhlich polaron problem), finite doping, and finite doping including
free-carrier screening.

Dyson Dyson O(α) Cumulant

Ek E0/h̄ω0 m∗/m0 E0/h̄ω0 m∗/m0 Ek E0/h̄ω0 m∗/m0

Single electron (29) (30) (31) (32) (33) (34) (35) (36)
Finite doping (44) (45) (46) (D1) (D2) (47) (48) (49)
Doping and screening (E1) (E2) (E3) (E4) (E5) (E6) (E7) (E8)

II. MODEL SETUP AND GENERAL EXPRESSIONS FOR
THE SELF-ENERGY AND THE SPECTRAL FUNCTION

A. The doped Fröhlich solid

The Fröhlich Hamiltonian for electrons coupled to disper-
sionless LO phonons is given by [24]

Ĥ =
∑

k

εk ĉ†
kĉk + h̄ω0

∑
q

(
â†

qâq + 1

2

)

+ N−1/2
p

∑
k,q

g(q) ĉ†
k+qĉk (â†

q + â−q), (1)

where k, q, ĉk, and âq are electron wavevectors, phonon
wavevectors, fermion annihilation operators, and boson an-
nihilation operators, respectively. The single-particle energies
of the electrons are indicated by εk, h̄ω0 is the LO phonon
energy, g(q) with q = |q| is the Fröhlich matrix element,
and Np is the number of unit cells in the Born–von Kármán
supercell.

In this model, the electron-electron interaction is assumed
to be already taken into account by the effective mass m0, and
the electron band structure is simply given by εk = h̄2k2/2m0,
with k = |k|. Throughout this paper we consider the system
at zero temperature, so that the electron occupations are de-
scribed by the Heaviside function fk = θ (kF − k), where kF is
the Fermi wavevector.

The matrix element of the Fröhlich interaction is given by
[4,5]

g(q) = i

q

[
4π α h̄(h̄ω0)3/2

�
√

2m0

]1/2

, (2)

where � = Np �UC is the volume of the crystal cell consisting
of Np unit cells with volume �UC, and the strength of the in-
teraction is quantified by the dimensionless Fröhlich coupling
constant:

α = e2

4πε0 h̄

√
m0

2h̄ω0

(
1

ε∞
− 1

ε0

)
. (3)

In this expression, ε0 is the vacuum permittivity, and ε0 and
ε∞ are the static and high-frequency dielectric constants of the
undoped crystal. The matrix element provided by Eq. (2) de-
scribes the probability amplitude for an electron in the initial
electronic state with wavevector k to be scattered into the final
state with wavevector k + q by an LO phonon of wavevector
q. The characteristic singularity at q = 0 corresponds to the
onset of a macroscopic polarization in the crystal, accompa-
nied by a uniform electric field. In the polaron literature it is
common to distinguish weak coupling, intermediate coupling,

and strong coupling depending on the value of α [3]. Although
this separation is somewhat arbitrary, the onset of strong cou-
pling is usually placed at α = 6 for reasons that will become
clear in Sec. III A.

In the presence of free carriers, the Fröhlich interaction
described by Eq. (2) is weakened by the electronic screening
[29]. To be consistent with the parabolic electron bands em-
ployed in the Fröhlich model, we describe this screening using
the Lindhard dielectric function ε(q, ω), i.e., the dielectric
function of the electron gas in the random-phase approxima-
tion [54].

The dielectric function in the random-phase approximation
is given by [54]

ε(q, ω) = 1 + rs

(
4

9π

)1/3 1

π

1

(q/kF)3

×
[

2q/kF + f

(
q/kF + (ω + iη)/EF

q/kF

)

+ f

(
q/kF − (ω + iη)/EF

q/kF

)]
, (4)

where EF is the Fermi energy measured from the band bot-
tom, η is a positive infinitesimal, and the function f is given
by f (z) = (1 − z2/4) log[(z + 2)/(z − 2)]. The quantity rs in
Eq. (4) is the Wigner-Seitz radius of the electron gas, i.e., the
radius of a sphere that contains one electron on average. It is
given by [27]

rs = m0

a0 ε∞

(
3

4π n

)1/3

, (5)

where n is the density of free carriers, a0 the Bohr radius,
and ε∞ is again the high-frequency dielectric constant of the
semiconductor in the absence of free carriers. This scaling is
needed so that the Lindhard function describes free carriers
within the dielectric environment of the semiconductor, as
opposed to the standard electron gas in a metal. The screened
Fröhlich matrix element is then obtained via [27,29]

gscr (q) = g(q)

ε(q, ω0)
. (6)

This equation states that the bare electron-phonon interaction
is screened by both the dielectric constant of the semiconduc-
tor without free carriers (this effect is included in g), and the
metallic screening provided by the free carriers, embedded in
the dielectric continuum of the semiconductors (this effect is
included in ε). A detailed derivation of Eq. (6) can be found
in Sec. 6.3 of Ref. [27].
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We note that, in Eq. (6), we evaluate the Lindhard function
at the phonon frequency ω0. This is a reasonable approx-
imation that is necessary to keep the problem tractable. A
complete calculation including the frequency dependence of
ε(q, ω) would introduce additional poles in the self-energy,
and would require us to take into account phonon-plasmon
polaritons. We have not explored these avenues given the
complexity of the formalism.

B. Dyson’s equation approach

We describe the many-body band structure of the doped
Fröhlich solid by calculating the electron spectral function:

Ak (ω) = 1

π
|Im Gk (ω)|. (7)

This function represents the momentum-resolved density of
states and it is accessible via ARPES experiments [55,56].
To obtain Ak (ω), we evaluate the interacting electron Green’s
function Gk (ω) of the system. Both the spectral function and
the Green’s function depend only on the absolute value of the
electron wavevector as the system is isotropic.

In the Dyson equation approach, the Green’s function is
evaluated as G = G0 + G0
G, where G0 is the noninteracting
Green’s function, and 
 is the self-energy. This equation leads
to the standard expression

Gk (ω) = [h̄ω − εk − 
k (ω)]−1. (8)

Here, the Green’s function and the self-energy are both
retarded. The same results would be obtained using the time-
ordered version of both quantities. By combining Eqs. (7) and
(8) the spectral function can be expressed directly in terms of
the self-energy:

Ak (ω) = −1

π

Im 
k (ω)

[h̄ω − εk − Re 
k (ω)]2 + [Im 
k (ω)]2
. (9)

The electron addition and removal energies correspond to the
poles of the Green’s function, and are usually determined
by setting to zero the denominator of Eq. (9) under the as-
sumption that the imaginary part of the self-energy and its
frequency dependence can be neglected near the poles. By
calling these poles Ek , we have

Ek = εk + Re 
k (Ek ), (10)

or, linearized around εk ,

Ek = εk + Zk Re 
k (εk ), (11)

where the QP renormalization factor Zk is given by

Zk =
[

1 − 1

h̄

∂ Re 
(ω)

∂ω

]−1

ω=Ek/h̄

. (12)

This quantity represents the spectral weight of the QP peak,
and 1 − Zk is the spectral weight transferred to the incoherent
satellite structure, i.e., the phonon sidebands schematically
illustrated in Fig. 1.

The evaluation of the self-energy requires the summation
over all possible connected electron-phonon Feynman dia-
grams. This summation can be performed numerically using
the diagrammatic Monte Carlo method [52], as it has been
demonstrated for the original (undoped) Fröhlich model [53].

Here, we are interested in developing analytic and semian-
alytic solutions; therefore, we truncate the expansion to the
first-order diagram, consisting of a single electron line and a
single phonon line connected by the electron-phonon matrix
elements at the two ends. This choice leads to the Fan-Migdal
self-energy [24,26]:


k (ω) = Np

h̄

∫
BZ

dq
�BZ

[
|g(q)|2 fk+q

ω − εk+q/h̄ + ω0+iη

+ |g(q)|2 (1 − fk+q)

ω − εk+q/h̄ − ω0+iη

]
. (13)

This self-energy describes the electron-phonon interaction to
second order in the atomic displacement, as can be seen from
the fact that the Fröhlich matrix element appears as g2. To
the same order in perturbation theory, there exists an addi-
tional contribution to the self-energy, the Debye-Waller term
[57,58]. The Debye-Waller self-energy plays an important
role in the calculation of phonon-induced band-gap renor-
malization in semiconductors and insulators [59–61]. In the
case of the Fröhlich model considered here, the Debye-Waller
self-energy vanishes identically, as we show in Appendix A.

C. Cumulant expansion approach

A promising strategy to include higher-order electron-
phonon diagrams beyond the Fan-Migdal self-energy is
provided by the cumulant expansion formalism [19,25,29–
46]. Owing to its roots in the description of deep-lying core
states, the cumulant is a priori defined in terms of the lesser
and greater self-energy, clearly separating electron and hole
states. Later adaptations to states near the Fermi level include
the introduction of the retarded cumulant [36]. In this paper,
we follow the original definition of the cumulant expansion,
treating electrons and holes separately [41]. The interacting
Green’s function in the time domain is obtained as the product
of the noninteracting Green’s function and the time-evolution
operator [32],

G≷
k (t, t ′) = G≷

0,k (t, t ′) eC≷
k (t−t ′ ), (14)

where t, t ′ are time variables, and hole or electron QPs are
described separately via the lesser (<) or greater (>) Green’s
function. The exponential represents the time-evolution oper-
ator, and C≷

k is the cumulant function.
We expand the exponential in Eq. (14) and compare the

term linear in C≷
k (t − t ′) to the expansion of the Dyson equa-

tion [34]:

G≷
0,k (t, t ′)C≷

k (t − t ′)

= 1

2π

∫ ∞

−∞
dω G≷

0,k (ω)
≷
k (ω)G≷

0,k (ω) e−iωt . (15)

Using the definition of the lesser (greater) noninteracting
Green’s function,

G≷
k (t, t ′) = ∓ i

h̄
θ (±t ∓ t ′)e− i

h̄ (εk∓iη)(t−t ′ ), (16)

inside Eq. (15), the cumulant function can be expressed
in terms of the same self-energy employed in Dyson’s
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equation approach:

C≷
k (t, t ′) = ∓1

π h̄

∫
dω Im


≷
k (εk ± ω)

1 ∓ iωt − e∓iωt

ω2
. (17)

If we use the Fan-Migdal self-energy, the cumulant function
will also contain electron-phonon interactions to second order
in the atomic displacements. The advantage of the cumulant
method is that, when the approximate cumulant function given
by Eq. (17) is used inside Eq. (14), the exponentiation or
“cumulant resummation” [27] generates an infinite series of
terms. This series contains both noncrossing and crossing
electron-phonon Feynman diagrams [33].

The lesser and greater self-energies appearing in Eq. (17)
are given by


<
k (ω) = Np

h̄

∫
BZ

dq
�BZ

|g(q)|2 fk+q

ω − εk+q/h̄ + ω0 − iη
, (18)


>
k (ω) = Np

h̄

∫
BZ

dq
�BZ

|g(q)|2 (1 − fk+q)

ω − εk+q/h̄ − ω0 + iη
. (19)

These self-energies are simply related to the retarded self-
energy of Eq. (13) by 
k = (
<

k )∗ + 
>
k .

In order to gain insight into the structure of the spectral
function obtained from the cumulant expansion, it is conve-
nient to express Eqs. (14) and (17) in the frequency domain.
The result is

A≷
k = A≷

QP,k + A≷
QP,k ∗ A≷

S,k + 1

2
A≷

QP,k ∗ A≷
S,k ∗ A≷

S,k + · · · ,

(20)

where ∗ denotes a convolution in frequency space. A detailed
derivation of this result can be found in Ref. [62]. The func-
tions A≷

QP,k (ω) and A≷
S,k (ω) are given by

A≷
QP,k (ω) = Z≷

k

π

(
1 − fk

fk

)

× Im 

≷
k (εk ) cos α

≷
k − [ω − εk − Re 


≷
k (εk )] sin α

≷
k

[ω − εk − Re 

≷
k (εk )]2 + [Im 


≷
k (εk )]2

, (21)

A≷
S,k (ω) = ∓Im 


≷
k (εk + ω) − (∓Im 


≷
k (εk ) ∓ ω α

≷
k )

π h̄2ω2
,

(22)

where the quantities α
≷
k and Z≷

k are defined as

α
≷
k = ∂ Im 


≷
k (ω)

∂ω

∣∣∣∣∣
ω=εk/h̄

, (23)

Z≷
k = exp

(
∂ Re 


≷
k (ω)

∂ω

)
ω=εk/h̄

. (24)

The first term on the right-hand side of Eq. (20) represents the
QP peak, and corresponds to a Fano line shape. The QP peak
is found at the energy

E≷
k = εk + Re 


≷
k (εk ). (25)

Successive terms of the series expansion in Eq. (20) represent
a sequence of satellites, one per convolution. Higher-order
convolutions correspond to weaker satellites located farther

away from the QP peak. In practice, the first two to three satel-
lites carry the majority of the spectral weight of the incoherent
part and are the features usually resolved in experiments.

One question that often arises in the cumulant expansion
literature is whether one should use the lesser and greater
self-energy, whereby electrons and holes are described sepa-
rately [41,62], or else one should use the retarded self-energy,
whereby electrons and holes are described at the same time
[36]. If the cumulant is used to describe electron or hole
states away from the Fermi level, the lesser (greater) Green’s
function only depends on the lesser (greater) self-energy. It
has been shown that this picture can be extended to states near
the Fermi surface [34,35]. The retarded cumulant introduced
in Ref. [36] is designed to describe emission and absorption
processes simultaneously. The main difference between the
retarded cumulant and the lesser or greater self-energy ap-
proach used in the present work lies in the description of the
satellites. The satellite function depends exclusively on the
imaginary part of the self-energy, which is a quantity that can
easily be separated into contributions arising from absorption
and emission. In particular, we have

Im[
<(ω)] 
= 0 only if ω < −ω0, (26)

which implies that the lesser self-energy can only give rise to
hole satellites at ω < −ω0, i.e., below the quasiparticle peak.
Conversely, for the greater self-energy, we have

Im[
>(ω)] 
= 0 only if ω > ω0, (27)

causing electron satellites above the quasiparticle peak. Cru-
cially, the shape and magnitude of the lesser and greater
satellite functions are completely independent. Given this
premise, the difference between different cumulant ap-
proaches can be understood as follows: The retarded cumulant
employs both the lesser and greater self-energy at all k points,
causing satellites to appear above and below the quasiparti-
cle peaks throughout the band structure. Conversely, in the
lesser or greater self-energy approach, hole satellites are con-
fined to states k < kF, and electron satellites to states k > kF.
To the best of the authors’ knowledge, in ARPES measure-
ments [14,15,17,19] phonon satellites are only observed for
wavevectors smaller than the Fermi wavevector. Since in the
retarded cumulant, the satellites are found to disperse beyond
the Fermi wavevector, the present approach appears more
suitable to model existing ARPES data.

To conclude this section, we briefly note the main dif-
ferences between Dyson’s approach and the second-order
cumulant: (i) Dyson’s approach using the Fan-Migdal self-
energy leads to one QP peak and one satellite, while the
cumulant approach leads to one QP peak and a series of
satellites of decreasing intensity; (ii) in Dyson’s approach,
the self-energy is evaluated at the QP energy Ek , while in the
cumulant approach the self-energy is evaluated at the nonin-
teracting energy εk (“on the mass shell”). This latter difference
leads to different QP energies: Dyson’s method contains the
renormalization factor Zk [see Eq. (11)], but the cumulant ap-
proach does not [see Eq. (25)]. This inconsistency is reflected
in the QP effective masses, as we discuss in Sec. III A.
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FIG. 2. Self-energy and spectral function for the undoped, empty-band Fröhlich model with α = 1. (a) Real part of the greater self-
energy (black lines) relative to the dispersion of the noninteracting electron in units of the phonon energy h̄ω0 (dashed orange line). The
blue area indicates the energy range [ε0 − h̄ω0, ε0 + h̄ω0]. (b) Imaginary part of the greater self-energy. (c) Color plot of the Dyson spectral
function of the undoped system. The dashed orange line indicates the dispersion of the noninteracting electron in units of the phonon energy
h̄ω0. (d) Logarithmic line plot of the Dyson spectral function at the � point. (e) Color plot of the second-order cumulant spectral function.
(f) Logarithmic line plot of the cumulant spectral function at the � point.

III. RESULTS

A. Single electron in the conduction band

We start by considering the case of a single electron added
to an otherwise empty conduction band, which corresponds to
the well-known Fröhlich polaron problem [1]. The self-energy
for this case is obtained by setting fk = 0 for all electron
wavevectors k. As a result, the lesser self-energy in Eq. (18)
vanishes identically, and the retarded self-energy in Eq. (13) is
equal to the greater self-energy in Eq. (19). After performing
a change of integration variables to spherical coordinates,
Eq. (19) can be integrated analytically to yield


>
k (ω) = −i

α (h̄ω0)3/2

2π
√

εk
log

√
h̄ω − �0 + √

εk√
h̄ω − �0 − √

εk
, (28)

where �0 = h̄(ω0 − iη). This result was also derived, among
others, in Refs. [27,63]. Some key steps of the derivation are
reported in Appendix B.

The real and imaginary parts of the self-energy are shown
in Figs. 2(a) and 2(b), respectively. As the real part of the
self-energy is negative everywhere [see Fig. 2(a)], the QP
energy near the bottom of the conduction band lies below
the noninteracting energy. The physical interpretation of this
result is that the phonon cloud tends to stabilize the electron,
precisely as it happens when a polaron is formed [64]. This
qualitative trend holds for both the Dyson approach and the
cumulant approach, as it can be seen in the spectral functions
reported in Figs. 2(c)–2(f), respectively.

The imaginary part of the self-energy vanishes identically
for frequencies ω below the threshold εk + h̄ω0, as it can be
seen in Fig. 2(b). The interpretation of this behavior is that
the electron does not have sufficient energy to emit a phonon;
therefore, its lifetime is infinite and Im 
 = 0. This effect
is also seen in the spectral functions, Figs. 2(c)–2(f), which
exhibit sharp QP peaks for energies within h̄ω0 from the band
bottom.
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Despite sharing the same self-energy, the Dyson and cu-
mulant approaches differ considerably in the QP energies and
effective masses. In the Dyson approach, the QP energy is
defined by

Ek = εk + α (h̄ω0)3/2

2π
√

εk
arg

√
Ek − �∗

0 + √
εk√

Ek − �∗
0 − √

εk
. (29)

This expression does not lead to a general analytic expression
for Ek , but the QP energy and mass at the band bottom (k = 0)
have simple expressions (see, e.g., Section 7.1.1 of Ref. [27]):

E0

h̄ω0
= − α√

1 − E0/h̄ω0
, (30)

and

m∗

m0
= 1 + α/2

1 + α/3
. (31)

The weak-coupling (α � 1) expansion of Eq. (30) can be
obtained by writing the solution E0 as a continued fraction
and then taking the limit of small α:

E0

h̄ω0
= −α + α2

2
− 5

8
α3 + O(α4). (32)

Similarly, the weak-coupling expansion of Eq. (31) is

m∗

m0
= 1 + α

6
− α2

18
+ O(α3). (33)

The effective mass renormalization in the Dyson approach is
the same as that obtained within Brillouin-Wigner perturba-
tion theory applied to the Fröhlich polaron problem [27].

In the case of the cumulant approach, the QP energy is
given by

E>
k = εk + α (h̄ω0)3/2

2π
√

εk
arg

√
εk − �0 + √

εk√
εk − �0 − √

εk
. (34)

By taking the limit of small k, we obtain the standard result
for the QP energy at the band bottom,

E>
0

h̄ω0
= −α, (35)

which is valid at all α. The corresponding effective mass is

m∗,>

m0
= 1

1 − α/6
= 1 + α

6
+ α2

36
+ O(α3). (36)

These last two results coincide with what one obtains by
performing Rayleigh-Schrödinger perturbation theory on the
Fröhlich polaron problem [65].

It is instructive to compare Eqs. (30), (33), (35), and (36)
with calculations based on Feynman’s path-integral approach
to the Fröhlich polaron problem [51]. Feynman’s approach is
considered to be the most accurate in describing the undoped
Fröhlich model, and agrees closely with advanced diagram-
matic Monte Carlo calculations [53]. In this approach, the QP
energy and mass at weak coupling are found to be

E0

h̄ω0
= −α − 1

81
α2 + O(α3), (37)

m∗

m0
= 1 + α

6
+ 0.025α2 + O(α3). (38)

FIG. 3. (a) Electron energy renormalization in the undoped Fröh-
lich model as a function of the coupling strength α. Shown in blue
are the weak- and strong-coupling limits of the Feynman model.
(b) Electron mass renormalization in the undoped Fröhlich model
as a function of the coupling strength α.

These two results show that, at weak coupling (α � 1), both
the Dyson approach and the cumulant approach yield QP
energies and effective masses that agree with Feynman’s path-
integral calculation to first order in the coupling strength α.
A detailed comparison between these three approaches to the
undoped Fröhlich model is shown in Fig. 3. This comparison
shows that, while the three approaches agree at weak cou-
pling, there exist significant differences for larger values of
α. In particular, the cumulant method yields a QP energy that
remains closer to the Feynman result up to intermediate cou-
pling strengths (α = 6), while the Dyson approach deviates
from Feynman’s already at moderate coupling. On the other
hand, the cumulant approach yields an unphysical divergence
of the effective mass at intermediate coupling (singularity at
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α = 6 and change of sign beyond this point), while the mass
in Dyson’s method remains finite.

Based on the comparison between QP energies, recently
it has been argued that the cumulant method provides a better
description of polarons than Dyson’s approach [30]. However,
Fig. 3 clearly shows that the effective mass (and by extension
the band structure) in the cumulant approach is not reliable
at intermediate coupling. This point is further corroborated
by a close inspection of the spectral functions in Fig. 2(e):
As a result of a logarithmic singularity in the self-energy
[Eq. (28)], the QP energy diverges when εk = h̄ω0, and the
spectral function exhibits unphysical vertical streaks.

Moving to the polaron satellites, we see from Figs. 2(c) and
2(e) that both the Dyson approach and the cumulant approach
exhibit satellites states. As already discussed in numerous
reports [25,29–31,34–38,40–43,45,46,66–71], Dyson’s ap-
proach yields only one satellite, to leading order located
at a binding energy of (1 + α)h̄ω0 from the QP peak [see
Fig. 2(c)]. On the other hand, the cumulant method correctly
yields multiple satellites which are separated from the QP
peak by integer multiples of the boson energy h̄ω0. Thus,
the cumulant method is superior in the description of satellite
features, as anticipated.

One last issue that deserves attention is the location of
the satellites with respect to the QP band. Both Dyson’s
method and the cumulant approach yield satellites located
at higher energy than the QP band [see Figs. 2(c) and 2(e)]
when applied to the empty-band system. However, in ARPES
experiments satellites are observed below the QP band, as
schematically illustrated in Fig. 1. This discrepancy has to do
with the fact that ARPES probes occupied electronic states,
while the empty-band Fröhlich model describes unoccupied
states. It is clear that a correct description of polaron physics
as probed in ARPES experiments necessitates the study of a
doped Fröhlich solid. The following sections are devoted to
the doped model.

B. Finite Fermi level in the conduction band

Now we consider the case of a partially occupied conduc-
tion band with a Fermi energy EF > 0. The self-energy for
this case is obtained by setting fk = θ (kF − k) in Eqs. (18)
and (19). In this section, we ignore free-carrier screening,
which will be included in Sec. III C. This approximation is
meaningful to describe the antiadiabatic regime, where the
Fermi level is much smaller than the characteristic phonon
energy, EF � h̄ω0.

After carrying out the integrals in Eqs. (18) and (19) explic-
itly, we obtain the following self-energies. For completeness,
key steps of the derivation are provided in Appendix B. The
lesser self-energy, which describes the electron removal pro-
cesses, is given by


<
k (ω) = −α (h̄ω0)3/2

2π
√

εk

[
L(

√
EF/εk,

√
(h̄ω + �0)/εk )

+ log
h̄ω + �0 − EF

h̄ω + �0 − εk
log

∣∣∣∣
√

EF + √
εk√

EF − √
εk

∣∣∣∣
]

− Re 
<
kF

(EF), (39)

with


<
kF

(EF) = −α (h̄ω0)3/2

2π
√

EF

[
Li2

2
√

EF√
EF + √

EF + �0

+ Li2
2

√
EF√

EF − √
EF + �0

]
. (40)

In these expressions, the auxiliary function L is defined as

L(z1, z2) = Li2
1 + z1

1 + z2
+ Li2

1 − z1

1 + z2

− Li2
1 + z1

1 − z2
− Li2

1 − z1

1 − z2
, (41)

where Li2 denotes the dilogarithm function, and z1, z2 are
complex-valued parameters. The greater self-energy, which
describes electron addition processes, is found to be


>
k (ω) = α (h̄ω0)3/2

2π
√

εk

[
L(

√
EF/εk,

√
(h̄ω − �0)/εk )

+ log
h̄ω − �0 − EF

h̄ω − �0 + εk
log

∣∣∣∣
√

EF + √
εk√

EF − √
εk

∣∣∣∣
− iπ log

√
h̄ω − �0 + √

εk√
h̄ω − �0 − √

εk

]
− Re 
>

kF
(EF), (42)

with


>
kF

(EF) = −α (h̄ω0)3/2

2π
√

EF

[
iπ log

√
EF − �0 + √

EF√
EF − �0 − √

EF

− Li2
2

√
EF√

EF + √
EF − �0

− Li2
2

√
EF√

EF − √
EF − �0

]
. (43)

For metallic systems, Luttinger’s theorem states that the vol-
ume of the Fermi surface does not change when adiabatically
turning on many-body interactions in a noninteracting system
[72]. In the present model, the volume of the Fermi surface is
determined by the Fermi wavevector kF; therefore, Luttinger’s
theorem implies that kF and hence the Fermi energy EF should
not be affected by the self-energy 
. In order to enforce this
condition, we subtracted the constants defined in Eqs. (40)
and (43) from the lesser and greater self-energies in Eqs. (39)
and (42), respectively, so that Re 
kF (EF/h̄) = 0. One can
verify that this choice leaves the QP energy at the Fermi level
identical to the noninteracting energy, for both the Dyson and
cumulant approaches.

Using Eqs. (39) and (42), the retarded self-energy is ob-
tained as 
 = (
<)∗ + 
>. We note that Eq. (42) correctly
reduces to the corresponding equation for the undoped model,
Eq. (28), upon taking the limit EF → 0. The real and imag-
inary parts of the doped self-energy are shown in Figs. 4(a)
and 4(b). The real self-energy is now positive in the range
of occupied states, passes through zero at (k = kF, h̄ω = EF)
to ensure particle number conservation, and becomes nega-
tive for unoccupied states. The resulting QP peak shown in
Figs. 4(c) and 4(e) thus exhibits a higher effective mass than
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FIG. 4. Self-energy and spectral function for the Fröhlich model with α = 1 and a Fermi energy of EF/h̄ω0 = 0.4. Free-carrier screening
is not included. (a) Real part of the lesser and greater self-energies in the extreme antiadiabatic limit (black lines) relative to the dispersion of
the noninteracting particle (dashed orange line). The solid and dashed red lines indicate the Fermi energy and Fermi momentum, respectively;
the blue area indicates the energy range [EF − h̄ω0, EF + h̄ω0]. (b) Imaginary part of the self-energy. (c) Color plot of the Dyson spectral
function in the extreme antiadiabatic limit relative to the noninteracting electron energy (dashed orange line) and the Fermi energy (red
line). (d) Logarithmic line plot of the Dyson spectral function at the � point. (e) Color plot of the second-order cumulant spectral function.
(f) Logarithmic line plot of the cumulant spectrum at k = 0.

the bare electron. In fact, we find that the mass renormaliza-
tion in the presence of doping is even more pronounced than
in the empty-band model, as we discuss below. Turning to
the imaginary self-energy shown in Fig. 4(b), we note that
the main peak structure in Im
<

k for occupied states, k < kF,
is now found at lower energies than the independent particle,
causing the satellites in Figs. 4(c) and 4(d) to appear below

the QP peak. For empty states, the situation is similar to the
discussion of the empty-band model in Sec. III A; i.e., we find
satellite features above the QP dispersions.

In both Dyson’s and cumulant approaches we find that
QP energy and effective mass are strongly doping dependent.
Starting with the Dyson approach, the dressed electron energy
is found to be

Ek = εk − α (h̄ω0)3/2

2π
√

εk
Re

[
L(

√
EF/εk,

√
(Ek + �∗

0 )/εk ) − L(
√

EF/εk,
√

(Ek − �0)/εk ) + log
Ek + �∗

0 − EF

Ek + �∗
0 − εk

log

∣∣∣∣
√

EF + √
εk√

EF − √
εk

∣∣∣∣
− log

Ek − �0 − EF

Ek − �0 + εk
log

∣∣∣∣
√

EF + √
εk√

EF − √
εk

∣∣∣∣ + iπ log

√
Ek − �0 + √

εk√
Ek − �0 − √

εk

]
− Re 
kF (EF). (44)
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At the bottom of the conduction band (k = 0), this result yields the following expressions for the QP energy and the effective
mass:

E0

h̄ω0
= α

π
Re

[ √
h̄ω0√

E0+�∗
0

log

√
E0+�∗

0+
√

EF√
E0+�∗

0−
√

EF
−

√
h̄ω0√

E0−�0

(
log

√
E0−�0+

√
EF√

E0−�0−
√

EF
+iπ

)
+1

2

√
h̄ω0

EF

(
iπ log

√
EF−�0+

√
EF√

EF−�0−
√

EF

+ Li2
2

√
EF√

EF + √
EF + �∗

0

+ Li2
2

√
EF√

EF − √
EF + �∗

0

− Li2
2

√
EF√

EF + √
EF − �0

− Li2
2

√
EF√

EF − √
EF − �0

)]
(45)

and

m∗

m0
=

[
1 + α(h̄ω0)3/2

2π (E0 + �∗
0 )3/2

(
log

√
E0 + �∗

0 + √
EF√

E0 + �∗
0 − √

EF
+ 2

√
EF (E0 + �∗

0 )

E0 − EF + �∗
0

)

− α(h̄ω0)3/2

2π (E0 − �0)3/2

(
log

√
E0 − �0 + √

EF√
E0 − �0 − √

EF
+ 2

√
EF(E0 − �0)

E0 − EF − �0
− iπ

)]

×
[

1 + 2α (h̄ω0)3/2

3π

(
E0 + �∗

0

EF(E0 − EF + �∗
0 )2 − E0 − �0

EF(E0 − EF − �0)2

+
tanh−1

√
EF√

E0+�∗
0

(E0 + �∗
0 )3/2 −

tanh−1
√

EF√
E0−�0

− π/2

(E0 − �0)3/2 −
√

EF(EF − 2E0 − 2�∗
0 )

(E0+�∗
0 )(EF−E0−�∗

0 )2 +
√

EF(EF − 2E0 + 2�0)

(E0−�0)(EF−E0+�0)2

)]−1

. (46)

As in the undoped case, all quantities in the Dyson approach are defined self-consistently. In the cumulant approach, the QP
energy and effective mass are again evaluated at the independent particle energy, and the self-energy is always linear in α. The
k-dependent QP energy in the cumulant approach is given by

E<
k = εk + Re

[
α (h̄ω0)3/2

π
√

εk + �0
log

√
εk + �0 + √

EF√
εk + �0 − √

EF
− 
<

kF
(EF)

]
. (47)

At the � point, this becomes

E<
0

h̄ω0
= α

π
Re

[
log

√
�0 + √

EF√
�0 − √

EF
+ 1

2

√
h̄ω0

EF

(
Li2

2
√

EF√
EF + √

EF + �0
+ Li2

2
√

EF√
EF − √

EF + �0

)]
. (48)

The cumulant effective mass is given by

m∗

m0
=

[
1 − α

2π

(
log

√
�0 + √

EF√
�0 − √

EF
+ 2

√
EF �0

�0 − EF

)
− 2α

3π
√

EF

(√
h̄ω0 − √

EF tanh−1

√
EF√
�0

)]−1

. (49)

These expressions are illustrated in Fig. 5. The dependence of
the QP renormalization on the coupling strength α and doping
level EF for the Dyson and cumulant approaches are shown in
Figs. 5(a) and 5(c), respectively. Figures 5(b) and 5(d) show
the corresponding effective masses.

The darker the shade of green in Figs. 5(a) and 5(c), the
lower the QP energy lies below the Fermi level. This situation
corresponds to a stable dressed electron, precisely as in the
case of the undoped Fröhlich model. Conversely, the red areas
in Figs. 5(a) and 5(c) indicate that the QP peak would lie
above EF, causing a breakdown of the Fermi surface. This
latter scenario is unphysical, and underscores the limitations
of using a second-order electron-phonon self-energy.

Moreover, moving to the effective masses shown in
Figs. 5(b) and 5(d), we find areas in the phase space where
overshooting mass renormalization leads to an inversion of the
curvature in the QP spectrum, and a negative effective mass
(shown in red). We refer to this effect as “anomalous mass
enhancement.”

We emphasize that the data presented in Fig. 5 do not
take into account free-carrier screening of the electron-phonon
matrix elements. As we show in Sec. III C and Fig. 10, the
inclusion of free-carrier screening extends the validity range
of both the Dyson and cumulant approaches, but unphysical
solutions still exist in the region EF < h̄ω0, i.e., in the antia-
diabatic regime. The insets in Figs. 5(b) and 5(d) show an
enlarged view of the low-doping limit for small α. Note that
the color bar has been extended with respect to the full image.

In fact, this situation is reminiscent of Fröhlich’s theory of
superconductivity [73], which incorrectly predicts an inver-
sion of the band curvature at strong coupling [74]. This artifact
was later resolved within the Bardeen-Cooper-Schrieffer the-
ory, where the self-energy is evaluated self-consistently as
opposed to perturbatively [75], and the resulting band struc-
ture features an energy gap, instead of inverted bands.

The anomalous mass renormalization in the presence of
doping, and the emergence of critical values for α and EF, is a
consequence of an intricate dependence of 
 on the Fermi
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FIG. 5. (a) Renormalized Dyson QP energy E0/h̄ω0 relative to the Fermi level. Negative QP energies E0 (shown in green) indicate a higher
binding energy of the interacting system, whereas positive energies (shown in red) imply that the renormalized QP energy lies above the Fermi
level, and indicate a breakdown of the Fermi surface. (b) Renormalized Dyson effective mass at the � point. Positive values of m∗ (shown in
green) indicate the renormalization of the QP mass; negative values of m∗ (shown in red) indicate that the curvature of the QP spectrum at
k = 0 has become negative, and signal a breakdown of the second-order expansion of the self-energy. The inset shows an enlarged view for
α < 1 and EF < 0.2h̄ω0; note that the color scale in the inset has been extended to m∗/m0 = 10. (c) Renormalized second-order cumulant QP
energy E0/h̄ω0 relative to the Fermi level. (d) Renormalized second-order cumulant effective mass.

energy: In Appendix C, we show that the curvature of the
(lesser) self-energy exhibits a singularity near EF = 0. The
effective mass is defined as

m∗ =
[

1

m0
+ 1

h̄2

d2 Re
k (Ek )

dk2

]−1

k=0

, (50)

and d2
/dk2 < 0 for EF � 0. At large doping levels, the
(negative) curvature of 
 is small, and so is the mass en-
hancement due to Eq. (50). With decreasing EF, the curvature
d2
/dk2 approaches −1/m0 from above, and the effective

mass can reach arbitrarily large values. Beyond the critical
value of EF, as the magnitude of d2
/dk2 keeps increasing,
Eq. (50) becomes negative and the quasiparticle picture breaks
down. This behavior occurs in both the Dyson and cumulant
approaches, and is also independent of the specific implemen-
tation of the cumulant method: In Appendix C, we show that
the small-EF behavior of the retarded cumulant [36] is very
similar.

It is instructive to consider the QP energy and mass renor-
malization near this singularity in 
. For small coupling
strengths α � 1, we find the following expressions as we
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take the extreme antiadiabatic limit EF � h̄ω0 in the Dyson
approach:

E0

h̄ω0
= 2α

π

√
EF

h̄ω0
+ α

6

EF

h̄ω0
+ O(EF/h̄ω0)3/2, (51)

m∗

m0
= − 4α

3π

√
h̄ω0

EF
+

(
1 + 5α

6

)

− 8α

3π

√
EF

h̄ω0
+ O(EF/h̄ω0)3/2, (52)

while for the cumulant expansion we obtain

E<
0

h̄ω0
= α

π

√
EF

h̄ω0
+ O(EF/h̄ω0)3/2, (53)

m∗

m0
= 2α

3π

√
h̄ω0

EF
+ 1 + 4α

3π

√
EF

h̄ω0
+ O(EF/h̄ω0)3/2. (54)

Note that to obtain Eqs. (51)–(54), we have first taken the limit
for small α followed by the limit for small EF; i.e., we remain
within the green area in Figs. 5(b) and 5(d).

Within the range of physical values for (α, EF), we find that
the Dyson approach tends to provide more stable solutions
in the phase space (cf. Fig. 5). Nevertheless, given that for
the doped Fröhlich solid there exists no solution equivalent
to Feynman’s treatment of the Fröhlich polaron, it is difficult
to judge whether the Dyson or cumulant approach yields the
more accurate QP and mass renormalization.

For both approaches, we observe that combinations of
intermediate-to-high coupling strengths and low doping levels
quickly become problematic, while high doping levels and
low coupling strengths lead to meaningful results. Probably,
this was to be expected, since the Migdal theorem (which
underpins the Fan-Migdal self-energy) is only valid within the
adiabatic approximation, h̄ω0 � EF [26].

This result is significant for the interpretation of experi-
mental data. Commonly, the curvature of the QP band ob-
tained from from ARPES measurements is used to determine
the dressed mass and hence the coupling strength α. In the lit-
erature, the coupling strength is often determined by using the
formula for the undoped Fröhlich model, as given by Eqs. (31)
and (36). However, the experimental setup for ARPES always
requires a small but finite Fermi sea from which electrons can
be excited. As discussed above, the physics of such a system
are likely better captured by Eqs. (51)–(54).

Moving to the polaron satellites, we see from Figs. 4(c)
and 4(d) that the Dyson approach again produces a single
satellite starting with a broad area of low but nonzero spectral
weight at one phonon energy below the Fermi edge. Note that
this area extends beyond the Fermi momentum kF, suggesting
that unoccupied electronic states could also emit a phonon

upon excitation. This does not conform to experiment, and
is an artifact of formulating the Fan-Migdal self-energy as a
retarded quantity, i.e., treating occupied and unoccupied states
within the same self-energy. At the lower end of the satellite
structure, we recover a sharp peak whose intensity is almost
of the order of the main QP peak.

On the other hand, the cumulant approach, shown in
Figs. 4(e) and 4(f), produces several satellites at exactly in-
teger multiples of the boson energy, with peak intensities
following a Poisson distribution.

Moreover, our analytical approach indicates that the satel-
lites consist of doublets: Consider Fig. 6, in which we jux-
tapose the imaginary self-energy at εk = 0.1h̄ω0, also shown
in Fig. 4(b), with the corresponding satellite function which
yields the double-peaked satellite of Fig. 4(e). At finite dop-
ing, phonon emission and absorption processes can occur at
all energies between εk=0 and EF, which causes the finite im-
aginary self-energy in the energy range [−h̄ω0,−h̄ω0 + EF].
This is shown as the “phonon” line in blue in Fig. 6. Mathe-
matically, this is due to the negative argument of the logarithm
in Eq. (39) at the given values, which is independent of the
electronic lifetime broadening iη. The energy of the lower
edge of the satellite, h̄ω = εk − h̄ω0, is equal to the singularity
of the noninteracting electron Green’s function shifted by the
phonon energy. This is indicated by the green line “electron”
in Fig. 6. In numerical calculations, the peak height of this
singularity is determined by the parameter iη, and it enters the
self-energy through L(

√
EF/εk,

√
(h̄ω + �∗

0 )/εk ).
In some of the early work on the cumulant spectra of

polarons, it was suspected that the satellite peak would simply
follow the dispersion of the QP band [44]. By deriving all
involved quantities analytically, we are able to uncover an
even more nuanced picture of the cumulant satellites.

Conversely, our analytical solutions exhibit a secondary
peak whose dispersion is inverted with respect to the main
satellite peak, leading to a near-elliptical feature. The energy
separation of the two structures that constitute the satellite
peak equals the Fermi energy. This nontrivial satellite struc-
ture may be related to the finite spectral weight between
satellites observed in experiment, and it could provide an
explanation for some of the broadening of spectral features
seen in ARPES but not yet reproduced in previous ab initio
calculations (cf., e.g., Refs. [17,19]).

C. Finite Fermi level including free-carrier screening

In this last section we consider the most complex scenario:
a Fröhlich model with doping as well as screening of the
electron-phonon interaction by free carriers. Due to the intri-
cate dependence of the screened matrix element on the wave
vector q [see Eq. (6)], we express the screened self-energy in
terms of a one-dimensional integral in q. The screened lesser
self-energy is given by


<
k (ω) = −α (h̄ω0)3/2

2π
√

εk

[ ∫ kF−k

0

dq

|εRPA(q)|2 q
log

h̄ω − h̄2(k+q)2

2m0
+ �0

h̄ω − h̄2(k−q)2

2m0
+ �0

+
∫ kF+k

kF−k

dq

|εRPA(q)|2 q
log

h̄ω − EF + �0

h̄ω − h̄2(k−q)2

2m0
+ �0

]
− Re
<

kF
(EF), (55)
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FIG. 6. (a) Imaginary lesser self-energy at εk = 0.1h̄ω0 at a Fermi energy of EF = 0.4h̄ω0 and α = 1 (black line). Contributions to Eq. (39)
arising from the singularity in the noninteracting electron Green’s function are shown in green; those due to phonon emission and absorption
processes across the entire Fermi sea appear in blue. (b) Corresponding satellite function AS(ω) (before convolution with the QP function,
shown in red). Contributions to the satellite function due to the electron Green’s function and phonon emission and absorption processes are
shown in green and blue, respectively.

with


<
kF

(EF) = α h̄ω0

2π

√
h̄ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q
log

(
1 − h̄2(q2 − 2kFq)

2m0 �0

)
.

(56)

The screened greater self-energy is found to be


>
k (ω) = −α (h̄ω0)3/2

2π
√

εk

[ ∫ kF+k

kF−k

dq

|εRPA(q)|2 q
log

h̄ω − h̄2(k+q)2

2m0
− �0

h̄ω − EF − �0

+
∫ ∞

kF+k

dq

|εRPA(q)|2 q
log

h̄ω − h̄2(k+q)2

2m0
− �0

h̄ω − h̄2(k−q)2

2m0
− �0

]
− Re
>

kF
(EF), (57)

with


>
kF

(EF) = −α h̄ω0

2π

√
h̄ω0

EF

[ ∫ 2kF

0

dq

|εRPA(q)|2 q
log

(
1 + h̄2(q2 − 2kFq)

2m0 �0

)

+
∫ ∞

2kF

dq

|εRPA(q)|2 q
log

1 + h̄2(q2+2kFq)
2m0 �0

1 + h̄2(q2−2kFq)
2m0 +�0

]
. (58)

Expressions for the QP energy and effective mass for the
screened case are provided in Appendix E.

The magnitude of electronic screening effects depends
both on the given Fermi level EF, as well as material-specific
parameters. In the Lindhard function in Eq. (4), system prop-
erties enter through the Wigner-Seitz radius rs, which depends
on the bare mass of the conduction electrons m0 and the di-
electric constant ε of the undoped solid in the high-frequency
limit.

In Fig. 7, we show the screening function |εRPA(q, ω0)|−2

as a function of doping level n0 for two types of systems.

This function quantifies the suppression of the electron-
phonon matrix element g by free-carrier screening, because
the Fröhlich matrix elements appear to the second power in
the self-energy, and the angular integration over the phonon
wavevector introduces a phase-space factor 4πq2. Therefore,
the impact of the screening is to modify a function that scales
as q2|g|2 ∼ 1 to a function that scales as |εRPA|−2q2|g|2 ∼
|εRPA|−2. If |εRPA|−2 = 1, there is no screening by free
carriers; for |εRPA|−2 = 0, all electron-phonon coupling is
completely suppressed. The dielectric function in Fig. 7(a)
corresponds to a dilute electron gas with a high electron mass
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FIG. 7. Effect of free-carrier screening on the electron-phonon
coupling matrix element g for a range of typical doping values for
semiconductors. (a) Screening function |εRPA|−2 vs wavenumber q,
evaluated at the phonon frequency ω0 for a dilute electron gas. The
parameters ε0 and m0 given in the legend correspond to SrTiO3.
The dashed line at |εRPA|−2 = 1 indicates the limit of no free-carrier
screening. (b) Same as (a), but for a dense electron gas. The parame-
ters ε∞ and m0 given in the legend correspond to GaAs.

and intermediate dielectric constant, as realized, e.g., in cubic
SrTiO3. We observe that the ability of the free carriers to
screen long-range (small-q) electron-phonon coupling grad-
ually increases over a typical doping range for conducting
oxides (1018–1021 cm−3). At the highest doping level shown,
polar interactions are almost completely suppressed, indicat-
ing that we have reached the metallic limit.

By contrast, the screening function in Fig. 7(b) is that of
a dense electron gas, as realized, e.g., in GaAs. In the latter
case, a very low electron mass means that the free carriers can

screen long-range electron-phonon interactions very effec-
tively already at relatively low doping levels. In these systems,
Fröhlich coupling only plays a secondary role; therefore, in
the remainder of this paper we focus on dilute electron gases
such as the one in Fig. 7(a).

Figure 8 illustrates the effect of this screening function on
the real and imaginary parts of the self-energy at a doping
level of EF/h̄ω0 = 0.8. The corresponding unscreened and
screened Dyson spectral functions are shown in Figs. 9(a)–
9(d), while the second-order cumulant spectral functions are
shown in Figs. 9(e)–9(h). In particular, note that the Fermi
surface in the unscreened second-order cumulant spectrum in
Fig. 9(e) is breaking down due to (unphysically) strong renor-
malization effects at the given values of α and EF. We expect
the effective electron-phonon interaction in a real system to be
closer to the situation shown in Fig. 9(g), in which the polar
coupling is partially suppressed.

Given the q dependence of the dielectric function, the ef-
fect of electron screening is not uniform, but rather stronger
up to a scattering wave vector q = kF, and then weaker for
states k and k′ which are farther apart.

The significant effect of free-carrier screening on the to-
tal Fröhlich coupling strength in the system is also seen in
Fig. 10, where we show the QP energy and effective mass
renormalization in the doped Fröhlich solid using the screened
matrix element. The comparison to the corresponding Fig. 5
is telling: We find that the region showing the effective mass
anomaly is reduced, and in general we observe weaker renor-
malization for a wide range of coupling strengths α and
doping levels. For EF/h̄ω0 > 1.5, the effective mass in the
second-order cumulant expansion returns to values close to
the noninteracting system.

Turning to the satellites in Figs. 9(a) and 9(c), we ob-
serve that the energy difference between QP and satellite
in the screened system is reduced by approximately 50%.
This result underscores the pathological dependence of the
satellite energy on the coupling strength in Dyson’s approach.
As the energy of the phonon is the same with or without
screening (barring frequency renormalization effects that we
did not consider in this work), there is no reason to ex-
pect the satellite energy to change as a result of free-carrier
screening.

By contrast, the lower peak in the satellite structure in
the screened cumulant spectrum [Fig. 9(g)] remains separated
from the QP peak by one phonon energy. As discussed above,
the energy span of the satellite in the cumulant approach
matches the size of the Fermi energy in the system. At a Fermi
level of EF/h̄ω0 = 0.8, we find substantial spectral weight
in the region in between the quasiparticle and the satellite.
This finding is in remarkable agreement with the raw ARPES
data reported in Refs. [17,19] for n-doped SrTiO3 and EuO,
respectively.

IV. EXPERIMENTAL QP WEIGHT

Wang et al. [17] present a very careful analysis of po-
laron satellites in the two-dimensional electron gas in doped
SrTiO3. The lowest doping level considered in this study is
n2D = 2.9 × 1013 cm−2. We can assume that the conduction
band near � is well described by three degenerate parabolic
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FIG. 8. Self-energy for the Fröhlich model with α = 1 and a Fermi energy of EF/h̄ω0 = 0.8 without free-carrier screening [
(ω)] and
with free-carrier screening effects [
(ω) + ε], respectively. (a) Real part of the lesser and greater self-energies without free-carrier screening
(black lines) relative to the dispersion of the noninteracting particle (dashed orange line). The solid and dashed red lines indicate the Fermi
energy and Fermi momentum, respectively. The blue area indicates the energy range [EF − h̄ω0, EF + h̄ω0]. (b) Real part of the lesser and
greater self-energies including free-carrier screening, assuming a dilute electron gas like in the conduction band of SrTiO3. (c) Imaginary part
of the self-energy without free-carrier screening. (d) Imaginary part of the self-energy including free-carrier screening.

bands with an average band mass of m0 = 0.9 [76]. The con-
sidered doping level then corresponds to a Fermi wavevector
of kF = 0.041a−1

0 and a Fermi energy of EF = 25 meV. With
a phonon energy of h̄ω0 = 100 meV and a reported Fröh-
lich coupling strength of α ≈ 2–3, they observe intermediate
quasiparticle renormalization with Z ≈ 0.2.

Equations (12) and (24) give the expressions for the Dyson
and cumulant quasiparticle weights, respectively. To be able
to evaluate them analytically, we have derived expressions for
the frequency derivative of the self-energy for finite Fermi en-
ergy. For the Dyson equation approach, we need the derivative
of the full retarded self-energy:

1

h̄

∂
k=0(ω)

∂ω

= − α (h̄ω0)3/2

2π (h̄ω + �∗
0 )3/2

×
(

log

√
h̄ω + �∗

0 + √
EF√

h̄ω + �∗
0 − √

EF
+ 2

√
EF (h̄ω + �∗

0 )

h̄ω + �0 − EF

)

+ α (h̄ω0)3/2

2π (h̄ω − �0)3/2

×
(

log

√
h̄ω − �0 + √

EF√
h̄ω − �0 − √

EF
+ 2

√
EF (h̄ω − �0)

h̄ω − �0 − EF
+ iπ

)
.

(59)

To obtain the Dyson quasiparticle weight at k = 0, we evalu-
ate this expression at h̄ω = εk=0 + Zk=0εk=0.
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FIG. 9. (a) Unscreened Dyson spectral function at α = 1 and EF/h̄ω0 = 0.8. The noninteracting electron energy is indicated by the dashed
gray line, the Fermi level by the solid red line. (b) Unscreened second-order cumulant spectral function. (c) Logarithmic line plot of the Dyson
spectral weight function at k = 0. (d) Logarithmic line plot of the cumulant spectral function at k = 0. (e) Screened Dyson spectral function
assuming a dilute electron gas like in the conduction band of SrTiO3. (f) Screened cumulant spectral function. (g) Logarithmic line plot of the
screened Dyson spectral function. (h) Logarithmic line plot of the screened cumulant spectral function.

For the cumulant expansion, we find for the derivative

1

h̄

∂
<
k=0(ω = 0)

∂ω

= − α

2π

(
log

√
�0 + √

EF√
�0 − √

EF
+ 2

√
EF �0

�0 − EF

)
. (60)

We insert Eqs. (59) and (60) into Eqs. (12) and (24), and
evaluate the quasiparticle weight using the parameters

α = 3, h̄ω0 = 100 meV m0 = 0.9me EF = 25 meV.

The resulting quasiparticle weight is reported in Table II.
We find that the calculated Dyson and cumulant QP weights
overestimate the measured weight by factors of 2 and 1.5,
respectively. For the case of the cumulant expansion, this
inconsistency between theoretical and experimental spectra
has been studied in great detail in the literature (see, e.g.,
Ref. [46]). In this study, the authors are able to show how

additional satellite intensity arises from inelastic scattering of
the outgoing photoelectron in experiment.

V. CONCLUSIONS

We have presented the doped Fröhlich solid as a gen-
eralization of the Fröhlich polaron problem to study the
single-particle excitation spectra of doped polar oxides, as
measured by ARPES experiments. To reach reliable con-
clusions that are not affected by numerical sampling of the

TABLE II. Comparison of calculated and experimental quasipar-
ticle weights.

Experiment [17] Dyson Cumulant

QP weight Zk=0 0.2 0.38 0.31
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FIG. 10. (a) Renormalized Dyson quasiparticle energy E0/h̄ω0 relative to the Fermi level, including screening by free carriers. Negative
QP energies (shown in green) indicate a higher binding energy of the interacting system, whereas positive energies (in red) imply that the
renormalized QP energy lies above the Fermi level, and indicate a breakdown of the Fermi surface. (b) Renormalized second-order cumulant
quasiparticle energy relative to the Fermi surface. (c) Renormalized Dyson effective mass at the � point. Positive values of m∗ (shown in green)
indicate the renormalization of the QP mass; negative values of m∗ (shown in red) indicate that the curvature of the QP spectrum at k = 0 has
become negative, and signal a breakdown of the second-order expansion of the self-energy. (d) Renormalized second-order cumulant effective
mass.

electron-phonon scattering, we derived exact analytical ex-
pressions for the electron self-energy in the presence of free
carriers. These expressions allow to analyze in detail the role
of Pauli blocking and free-carrier screening in the electron
spectral functions.

Our analytical approach has provided insight into the Fröh-
lich polaron problem, and allows us to draw the following
conclusions: To capture the low-energy many-body physics
of doped polar semiconductors, especially in the presence
of doping (as needed in ARPES measurements), it is cru-
cial to explicitly account for the small but nonzero electron
occupations in the conduction band. We have demonstrated
that neglecting finite occupations leads to incorrect satellite
energetics and excessive electron-phonon renormalization.

In the case of high doping levels, further many-body effects
in the form of free-carrier screening of the electron-phonon
matrix element must also be included to achieve a meaningful
description of QP shifts and effective mass renormalization.

We have derived analytical expressions for the renormal-
ized band energy and effective mass of the doped Fröhlich
model, and investigated the dependence of these quantities on
the coupling strength and the doping level. We have found that
a significant portion of the coupling-doping phase diagram ex-
hibits regions with anomalously strong mass enhancement, as
well as regions where the band curvature is inverted, leading
to a breakdown of the QP picture. These findings indicate that
caution must be used when studying electron-phonon cou-
pling in doped polar materials, as the standard second-order
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Fan-Migdal self-energy might not provide a physically accu-
rate picture in the anomalous regions of the phase diagram
identified in this work.

We also found that, in the presence of doping, the mass
renormalization depends both on the electron-phonon cou-
pling strength and the Fermi level. This finding implies that
the use of the standard relation m∗/m0 = 1 + α/6 for extract-
ing the Fröhlich coupling from experiments is not justified,
and should be replaced by the generalized expression obtained
in this work, Eq. (51).

In line with previous literature, we found that the second-
order cumulant spectral function improves the description
of polaron satellites compared to the conventional first-order
Dyson approach. The intensity and binding energy of the side-
bands provided by the cumulant method are in line with the
equidistant satellites observed in experiments. On the other
hand, the cumulant method appears to provide a worse de-
scription of the QP band, as compared to the Dyson approach.
Indeed, we have shown that the cumulant approach leads to an
inversion of the band curvature over a much wider region of
the phase diagram as compared to the Dyson method, and that
the cumulant spectral function exhibits unphysical vertical
streaks that are intrinsic to the theoretical framework (rather
than being numerical artifacts). Our comparative analysis of
the cumulant and Dyson approaches leads to suggest that a
complete description of the Fröhlich problem in the presence
of doping might require the inclusion of self-energy diagrams
beyond the second order. In the meantime, we recommend that
both approaches be tested in future calculations, keeping in
mind that the cumulant method appears more suited to de-
scribing satellites, and the Dyson method appears to describe
QP bands better.

We hope that this work will stimulate further discussion
on the role of doping in the electron-phonon interaction in
polar insulators and semiconductors, and inspire additional
investigations of the reliability and scope of the cumulant
method and the Dyson approach in the study of electron-
phonon effects in these materials.
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APPENDIX A: DEBYE-WALLER SELF-ENERGY

In this Appendix, we show that the QP shift arising from
the Debye-Waller self-energy [24] vanishes in the Fröhlich
model. We start from the compact expression for the Debye-
Waller matrix element in the rigid-ion approximation derived

in Ref. [77]:

Dκαα′
(k) = i〈uk|[∂�καV̂ L, p̂α′ ]|uk〉, (A1)

where α, α′ are Cartesian coordinates, κ is the atomic in-
dex, uk are the Bloch-periodic components of the electron
wavefunctions, V̂ L is the long-range part of the interaction
potential, and

p̂α =
∑
κα′

Zκαα′�τκα′ (A2)

is the dipole moment in direction α arising from the displace-
ment of atom κ with Born effective charge Zκαα′ along the
direction �τκα′ . The potential derivative in Eq. (A1) is defined
as [24]

∂qκαV̂ =
∑

p

e−iq·(r−Rp) ∂V

∂τκα

∣∣∣∣∣
r−Rp

, (A3)

where Rp is the lattice vector of the pth unit cell in the
supercell, and τκα is the coordinate of atom κ in Cartesian
direction α.

In the doped Fröhlich solid, the electronic states are plane
waves and the long-range part of the Fröhlich potential is [4]

V̂ L(r) = −i
4π

4πε0 N�UC

∑
q

G 
=−q

∑
καα′

Zκαα′�τκα′

× (q + G)α ei(q+G)·r

(q + G) · ε · (q + G)
. (A4)

Here, G is a reciprocal lattice vector, and ε is the static
dielectric tensor of the crystal. Using the isotropy of our
system to simplify the Born effective charge and dielectric
tensors, Zκαα′ = Zκδαα′ and εαα′ = ε∞δαα′ , we can calculate
the derivative

∂�κα = − i

ε0 ε∞ �UC

∑
G 
=0

∑
κ

Zκ

Gα eiG·r

|G|2 . (A5)

After calculating the commutator of this function with the
dipole p̂α , we obtain a lattice periodic expression, and as the
eigenstates of our system are plane waves, we find

〈uk|eiG·r|uk〉 = 0. (A6)

This result shows that the Debye-Waller correction vanishes
for the Fröhlich model.

APPENDIX B: DERIVATION OF THE FAN-MIGDAL
SELF-ENERGY

In this Appendix, we outline the derivation of the various
self-energy expressions used in this paper, starting from the
definition of the Fan-Migdal self-energy given in Eqs. (18)
and (19).

1. Single electron in the conduction band

In the case of a single electron added to the conduction
band, the occupation factor fk+q vanishes everywhere, can-
celing all contributions from the lesser self-energy.
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At the � point (k = 0), we integrate Eq. (19) by introduc-
ing spherical coordinates. We write


>
k=0(ω) = 4π

∫ ∞

0

dq q2

(2π )3

|g(q)|2
h̄ω − h̄2q2

2m0
− �0

, (B1)

and find


>
k=0(ω) = −i

α (h̄ω0)3/2

√
h̄ω − �0

, (B2)

where we used the definition of the Fröhlich matrix element,
Eq. (2). Equation (B1) leads directly to Eq. (30).

For general k, we write Eq. (19) as


>
k (ω) =

∫
dq

(2π )3

|g(q − k)|2
h̄ω − h̄2q2

2m0
− �0

. (B3)

After transforming to spherical coordinates, we use the
identity∫ π

0

dθ sin θ

k2 + q2 − 2kq cos θ
= 1

2kq
log

(k + q)2

(k − q)2
, (B4)

and the definition of the Fröhlich matrix element, Eq. (2), to
obtain


>
k (ω) = α h̄(h̄ω0)3/2

2π k
√

2m0

∫ ∞

0

dq q

h̄ω − h̄2q2

2m0
− �0

log
(k + q)2

(k − q)2
.

(B5)

The integrand in Eq. (B5) has the primitive

I (q) = −
[

log
h̄ω − h̄2q2

2m0
− �0

h̄ω − h̄2k2

2m0
− �0

log

∣∣∣∣∣q + k

q − k

∣∣∣∣∣
+ Li2

h̄(k+q)√
2m0

h̄k√
2m0

− √
h̄ω − �0

+ Li2

h̄(k+q)√
2m0

h̄k√
2m0

+ √
h̄ω − �0

− Li2

h̄(k−q)√
2m0

h̄k√
2m0

+ √
h̄ω − �0

− Li2

h̄(k−q)√
2m0

h̄k√
2m0

− √
h̄ω − �0

]
.

(B6)

We find I (q = 0) = 0; in the limit q → ∞, only the diloga-
rithms Li2 survive and converge to

lim
q→∞ I (q) = −iπ log

√
h̄ω − �0 + √

εk√
h̄ω − �0 − √

εk
. (B7)

Inserting Eq. (B7) into Eq. (B5), we find Eq. (28) from the
main text.

2. Finite Fermi level in the conduction band

We now consider the scenario where we have a finite
electron density in the conduction band. At k = 0, the lesser
self-energy is defined as


<
k=0(ω) = 4π

∫ kF

0

dq q2

(2π )3

|g(q)|2
h̄ω − h̄2q2

2m0
+ �0

, (B8)

which can be integrated to give


<
k=0(ω) = α (h̄ω0)3/2

π
√

h̄ω + �0
log

√
h̄ω + �0 + √

EF√
h̄ω + �0 − √

EF
. (B9)

For the greater self-energy, we have


>
k=0(ω) = 4π

∫ ∞

kF

dq q2

(2π )3

|g(q)|2
h̄ω − h̄2q2

2m0
− �0

, (B10)

and hence


>
k=0(ω) = − α (h̄ω0)3/2

π
√

h̄ω − �0

[
log

√
h̄ω − �0 + √

EF√
h̄ω − �0 − √

EF
+ iπ

]
.

(B11)

For general k, the lesser self-energy is obtained from an ex-
pression similar to that of Eq. (B6), but with the sign of �0

inverted, which then needs to be evaluated at q = 0 and at
q = kF, respectively, to give Eq. (39). The greater self-energy
at k 
= 0 is obtained from Eq. (B6) evaluated at q = kF and
q → ∞, which leads to Eq. (42).

3. Finite Fermi level including free-carrier screening

In this section we provide details on the calculation of the
self-energy in the presence of free-carrier screening. Inserting
the screened coupling matrix element given in Eq. (19) into
Eqs. (18) and (19), we obtain for the self-energy at k = 0


<
k=0(ω) =

∫ ∞

0

dq q2

2π2

|g(q)|2
|εRPA(q)|2

θ
(
k2

F − q2
)

h̄ω − h̄2q2

2m0
+ �0

, (B12)


>
k=0(ω) =

∫ ∞

0

dq q2

2π2

|g(q)|2
|εRPA(q)|2

θ
(
q2 − k2

F

)
h̄ω − h̄2q2

2m0
− �0

. (B13)

Using the Fröhlich matrix element in Eq. (2), we recover
Eqs. (55) and (57) from the main text.

For general k, we write


<
k (ω) =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0

dq q2

(2π )3

|g(q)|2
|εRPA(q)|2

× θ
(
k2

F − (k2 + q2 + 2kq cos θ )
)

h̄ω − h̄2(k2+q2+2kq cos θ )
2m0

+ �0

, (B14)


>
k (ω) =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0

dq q2

(2π )3

|g(q)|2
|εRPA(q)|2

× θ ((k2 + q2 + 2kq cos θ ) − kF )

h̄ω − h̄2(k2+q2+2kq cos θ )
2m0

− �0

, (B15)

where φ and θ are relative angles between vectors k and q.
For the integration over angle θ , we use the substitution x =
kF − k2 − q2 − 2kq cos θ to obtain


<
k (ω) = 2π

h̄

1

2k

∫ ∞

0

dq q

(2π )3

|g(q)|2
|εRPA(q)|2

×
∫ k2

F−(k−q)2

k2
F−(k+q)2

dx
θ (x)

h̄ω − h̄2(k2
F−x)

2m0
+ �0

,

(B16)
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>
k (ω) = 2π

h̄

1

2k

∫ ∞

0

dq q

(2π )3

|g(q)|2
|εRPA(q)|2

×
∫ k2

F−(k−q)2

k2
F−(k+q)2

dx
θ (−x)

h̄ω − h̄2(k2
F−x)

2m0
− �0

. (B17)

As we are using spherical coordinates, we have k � 0, q � 0,
and kF > 0, and hence

k2
F − (k − q)2 � k2

F − (k + q)2, (B18)

allowing us to identify three ranges for the integration
over q: For the lesser self-energy [Eq. (B16)] we have the
following:

(i) If k2
F � (k + q)2, then θ (x) = 1 and

∫ k2
F−(k−q)2

k2
F−(k+q)2

dx

h̄ω − h̄2(k2
F−x)

2m0
+ �0

= log
h̄ω − h̄2(k+q)2

2m0
+ �0

h̄ω − h̄2(k−q)2

2m0
+ �0

.

(B19)

(ii) If (k + q)2 � k2
F � (k − q)2, we have∫ k2

F−(k−q)2

0

dx

h̄ω − h̄2(k2
F−x)

2m0
+ �0

= log
h̄ω − EF + �0

h̄ω − h̄2(k−q)2

2m0
+ �0

.

(B20)

(iii) For (k − q)2 � kF, the Heaviside function in
Eq. (B16) vanishes everywhere. In particular, there is no
contribution for q � kF. Combining Eqs. (B16), (B19), and
(B20), we recover Eq. (55) from the main text.

For the greater self-energy [Eq. (B17)], we have the fol-
lowing:

(i) θ (−x) = 0 whenever k2
F � (k + q)2, cancelling all

contributions for q < kF.
(ii) If (k + q)2 � k2

F � (k − q)2, we have

∫ 0

k2
F−(k+q)2

dx

h̄ω − h̄2(k2
F−x)

2m0
− �0

= log
h̄ω − h̄2(k+q)2

2m0
− �0

h̄ω − h̄2(k−q)2

2m0
− �0

.

(B21)
(iii) For (k − q)2 � k2

F, we obtain

∫ k2
F−(k−q)2

k2
F−(k+q)2

dx

h̄ω − h̄2(k2
F−x)

2m0
− �0

= log
h̄ω − h̄2(k+q)2

2m0
− �0

h̄ω − h̄2(k−q)2

2m0
− �0

.

(B22)
Combining Eqs. (B17), (B21), and (B22), we recover

Eq. (57) from the main text.

APPENDIX C: DERIVATION OF THE EFFECTIVE MASS

1. Dyson effective mass

The effective mass m∗ corresponding to the QP energy in
Dyson’s approach,

Ek = εk + Re 
k (Ek ), (C1)

is given at k = 0 by

1

m∗ = 1

h̄2

d2Ek

dk2

∣∣∣∣∣
k=0

= 1

m0
+ 1

h̄2

d2 Re
k (Ek )

dk2

∣∣∣∣∣
k=0

. (C2)

We can express the momentum dependence of the self-energy
in terms of the associated bare electron energy εk , and write

d2
(εk, Ek )

dk2
= ∂
(εk, Ek )

∂εk

d2 εk

dk2
+ ∂
(εk, Ek )

∂Ek

d2Ek

dk2
, (C3)

and hence [63]

m∗

m0
= 1 − ∂Re
(εk, Ek )/∂Ek

1 + ∂Re
(εk, Ek )/∂εk

∣∣∣∣∣
k=0

. (C4)

2. Cumulant effective mass

As the QP energy in the cumulant expansion is simply
given by

E<
k = εk + Re 
<

k (εk ), (C5)

the corresponding effective mass is equal to

m∗

m0
=

[
1 + 1

h̄

∂ Re 
<
k (ω)

∂ω
+ ∂ Re 
<

k (ω)

∂εk

]−1

εk=0,ω=0

. (C6)

As the cumulant self-energy is linear in α, the small-α expan-
sion of the effective mass becomes

m∗

m0
= 1 − 1

h̄

∂ Re 
<
k (ω)

∂ω
− ∂ Re 
<

k (ω)

∂εk
+ O(α2). (C7)

3. Singularity in d2�/dk2

We can calculate the curvature of 
 at k = 0 for the un-
screened system by starting from Eq. (55) and setting εRPA ≡
1. After taking the derivative we are left with the integral in q:

∂ 
<
k (ω)

∂εk

∣∣∣∣∣
k=0

= −2α h̄ω0
√

EF h̄ω0

3π

×
∫ kF

0

dq

kF

h̄2q2

2m0
+ 3h̄ω + 3�0( h̄2q2

2m0
− h̄ω − �0

)3

− 2α h̄ω0

3π

√
h̄ω0

EF

h̄ω + �0

(h̄ω − EF + �0)2 .

(C8)

From the second term in Eq. (C8), its divergent behavior at
EF → 0 is apparent. After evaluation of the integral, we find

∂ 
<
k (ω)

∂εk

∣∣∣∣∣
k=0

= −2α h̄ω0
√

EF h̄ω0

3π

×
[

EF − 2h̄ω − 2�0

(h̄ω + �0)(EF − h̄ω − �0)2

− 1√
EF(h̄ω + �0)3/2 tanh−1

√
EF√

h̄ω + �0

]

− 2α h̄ω0

3π

√
h̄ω0

EF

h̄ω + �0

(h̄ω − EF + �0)2 . (C9)
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4. Effective mass of the retarded cumulant

In the framework of the retarded cumulant, the effective mass at k = 0 is defined as

m∗

m0
=

[
1 + 1

h̄

∂ Re 
k (ω)

∂ω
+ ∂ Re 
k (ω)

∂εk

]−1

εk=0,ω=0

, (C10)

where 
k (ω) is now the full retarded self-energy introduced in Eq. (13). Following the same steps as before, one finds for the
expansion to first order in α

m∗

m0
= 1 − α

6π

(
8h̄2ω2

0 + 4E2
F

E2
F − �2

0

√
h̄ω0

EF
− π + 2

(
tan−1

√
EF

h̄ω0
− tanh−1

√
EF

h̄ω0

))
+ O(α)2. (C11)

Taking the limit EF → 0, we reach

lim
EF→0

m∗

m0
= 4α

3π

√
h̄ω0

EF
+

(
1 + α

6

)
+ O(EF)3/2, (C12)

which has the same behavior for small EF as Eq. (54) in the main text.

APPENDIX D: SMALL-COUPLING LIMITS, DYSON APPROACH

To obtain the expansion of Eq. (45) to linear order in α, it suffices to set E0 = 0 on the left-hand side of the equation. We find

E0

h̄ω0
= α

π
Re

[
log

√
�∗

0 + √
EF√

�∗
0 − √

EF
+ i log

i
√

�0 + √
EF

i
√

�0 − √
EF

− π + 1

2

√
h̄ω0

EF

(
Li2

2
√

EF√
EF + √

EF + �0
∗ + Li2

2
√

EF√
EF − √

EF + �0
∗

− Li2
2

√
EF√

EF + √
EF − �0

+ Li2
2

√
EF√

EF − √
EF − �0

+ iπ log

√
EF − �0 + √

EF√
EF − �0 − √

EF

)]
+ O(α)2. (D1)

The Dyson effective mass for small α is given by

m∗

m0
= 1 + α(h̄ω0)3/2

2π �
3/2
0

(
log

√
�∗

0 + √
EF√

�∗
0 − √

EF
+ 2

√
EF �∗

0

�∗
0 − EF

− i log
i
√

�0 + √
EF√

i�0 − √
EF

− 2
√

EF�0

�∗
0 + EF

+ π

)
− 2α

3π

(
tanh−1

√
EF√
�0

− tanh−1

√
EF√−�∗

0

− π

2
−

√
EF h̄ω0(EF − 2�∗

0 )

(EF − �∗
0 )2 −

√
EF h̄ω0(EF − 2�0)

(EF + �0)2 + (h̄ω0)5/2

√
EF(EF − �∗

0 )2 + (h̄ω0)5/2

√
EF(EF + �0)2

)

+O(α)2. (D2)

When we take the limit of this expression for small EF, we recover Eq. (52).

APPENDIX E: RENORMALIZED QUANTITIES INCLUDING FREE-CARRIER SCREENING

Upon including free-carrier screening, the Dyson QP energy can be expressed in terms of the one-dimensional integral

Ek = εk − α (h̄ω0)3/2

2π
√

εk
Re

[ ∫ kF−k

0

dq

|εRPA(q)|2 q
log

Ek − h̄2(k+q)2

2m0
+ �∗

0

Ek − h̄2(k−q)2

2m0
+ �∗

0

+
∫ kF+k

kF−k

dq

|εRPA(q)|2 q
log

Ek − EF + �∗
0

Ek − h̄2(k−q)2

2m0
+ �∗

0

+
∫ kF+k

kF−k

dq

|εRPA(q)|2 q
log

Ek − h̄2(k+q)2

2m0
− �0

Ek − EF − �0
+

∫ ∞

kF+k

dq

|εRPA(q)|2 q
log

Ek − h̄2(k+q)2

2m0
− �0

Ek − h̄2(k−q)2

2m0
− �0

]
− Re
<

kF
(EF) − Re
>

kF
(EF).

(E1)

In particular, the occupied state at the band bottom becomes

E0

h̄ω0
= α

π
Re

[ ∫ kF

0

dq/kF

|εRPA(q)|2
2
√

EF h̄ω0

E0 − h̄2q2

2m0
+ �∗

0

+
∫ ∞

kF

dq/kF

|εRPA(q)|2
2
√

EF h̄ω0

E0 − h̄2q2

2m0
− �0

+ 1

2π

√
h̄ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q

×
(

log
�∗

0

EF − h̄2(kF−q)2

2m0
+ �∗

0

+ log
EF − h̄2(kF+q)2

2m0
− �0

−�0

)
+ 1

2π

√
h̄ω0

EF

∫ ∞

2kF

dq

|εRPA(q)|2 q
log

EF − h̄2(kF+q)2

2m0
− �0

EF − h̄2(kF−q)2

2m0
− �0

]
. (E2)
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The effective mass at the zone center is given by

m∗

m0
= Re

[
1 + 2 α (h̄ω0)3/2

π
√

EF

( ∫ kF

0

dq/kF

|εRPA(q)|2
EF(

E0 − h̄2q2

2m0
+ �∗

0

)2 +
∫ ∞

kF

dq/kF

|εRPA(q)|2
EF(

E0 − h̄2q2

2m0
− �0

)2

)]

×
[

1 + 2α (h̄ω0)3/2

3π
√

EF

( ∫ kF

0

dq/kF

|εRPA(q)|2
EF

(
3E0 + h̄2q2

2m0
+ 3�∗

0

)
(
E0 − h̄2q2

2m0
+ �∗

0

)3

+
∫ ∞

kF

dq/kF

|εRPA(q)|2
EF

(
3E0 + h̄2q2

2m0
− 3�0

)
(
E0 − h̄2q2

2m0
− �0

)3 − 1

|εRPA(kF)|2
(

�∗
0 + E0

(E0 − EF + �∗
0 )2 + �0 − E0

(E0 − EF − �0)2

))]−1

. (E3)

To linear order in α, the weak-coupling limit of Eq. (E2) is simply given by

E0

h̄ω0
= α

π
Re

[ ∫ kF

0

dq/kF

|εRPA(q)|2
2
√

EF h̄ω0

− h̄2q2

2m0
+ �∗

0

+
∫ ∞

kF

dq/kF

|εRPA(q)|2
2
√

EF h̄ω0

− h̄2q2

2m0
− �0

+ 1

2

√
h̄ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q

×
(

log
�∗

0

EF − h̄2(kF−q)2

2m0
+ �∗

0

+ log
EF − h̄2(kF+q)2

2m0
− �0

−�0

)
+ 1

2

√
h̄ω0

EF

∫ ∞

2kF

dq

|εRPA(q)|2 q
log

EF − h̄2(kF+q)2

2m0
− �0

EF + h̄2(kF−q)2

2m0
− �0

]

+O(α2). (E4)

For Eq. (E3), we find at small α

m∗

m0
= 1 + 2 α (h̄ω0)3/2

3π
√

EF

Re

[ ∫ kF

0

dq/kF

|εRPA(q)|2
3EF( h̄2q2

2m0
− �∗

0

)2 +
∫ ∞

kF

dq/kF

|εRPA(q)|2
3EF( h̄2q2

2m0
+ �0

)2 −
∫ kF

0

dq/kF

|εRPA(q)|2
EF

( h̄2q2

2m0
+ 3�∗

0

)
( h̄2q2

2m0
− �∗

0

)3

−
∫ ∞

kF

dq/kF

|εRPA(q)|2
EF

( h̄2q2

2m0
− 3�0

)
( h̄2q2

2m0
+ �0

)3 − 1

|εRPA(kF)|2
(

�∗
0

(EF − �∗
0 )2 + �0

(EF + �0)2

)]
+ O(α2). (E5)

In the case of the cumulant approach, the QP energy for k < kF is given by

Ek = εk − α (h̄ω0)3/2

2π
√

εk
Re

[ ∫ kF−k

0

dq

|εRPA(q)|2 q
log

�0 − h̄2(q2+2kq)
2m0

�0 − h̄2(q2−2kq)
2m0

+
∫ kF+k

kF−k

dq

|εRPA(q)|2 q
log

�0 + εk − EF

�0 − h̄2(q2−2kq)
2m0

]
− Re
<

kF
(EF).

(E6)

In the limit k → 0, we recover

E0

h̄ω0
= α

π
Re

[ ∫ kF

0

dq/kF

|εRPA(q)|2
2
√

EF h̄ω0

�0 − h̄2q2

2m0

+ 1

2

√
h̄ω0

EF

∫ 2kF

0

dq

|εRPA(q)|2 q
log

�0

EF − h̄2(kF−q)2

2m0
+ �0

]
, (E7)

which is already linear in α. Lastly, the cumulant effective mass at � is given by

m∗

m0
= Re

[
1−2α (h̄ω0)3/2

π kF/
√

EF

∫ kF

0

dq

|εRPA(q)|2
[

1(− h̄2q2

2m0
+ �0

)2 +
h̄2q2

2m0
+ 3�0

3
( h̄2q2

2m0
−�0

)3

]
−2α h̄ω0

3π

√
h̄ω0

EF

1

|εRPA(kF)|2
�0

(−EF + �0)2

]−1

,

(E8)

and its small-α expansion is equal to

m∗

m0
= Re

[
1 + 2α (h̄ω0)3/2

π kF/
√

EF

∫ kF

0

dq

|εRPA(q)|2
[

1( − h̄2q2

2m0
+ �0

)2 +
h̄2q2

2m0
+ 3�0

3
( h̄2q2

2m0
− �0

)3

]

+ 2α h̄ω0

3π

√
h̄ω0

EF

1

|εRPA(kF)|2
�0

(−EF + �0)2

]
+ O(α2). (E9)
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