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We study thermal correlation functions of the one-dimensional impenetrable lattice anyons. These correlation
functions can be presented as a difference of two Fredholm determinants. To describe the large-time and
long-distance behavior of these objects, we use the effective form-factor approach. The asymptotic behavior is
different in the spacelike and timelike regions. In particular, in the timelike region we observe the additional
power factor on top of the exponential decay. We argue that this result is universal as it is related to the
discontinuous behavior of the phase shift function of the effective fermions. At particular values of the anyonic
parameter, we recover the asymptotics of the spin-spin correlation functions in the XX quantum chain.
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I. INTRODUCTION

Quantum one-dimensional models have always attracted a
lot of attention due to the rich structures of their correlation
functions and the possibility to address nonperturbative phe-
nomena [1–3]. For low temperatures, the culmination of these
developments resulted in the formulation of effective field
theories (the Luttinger model) [3,4]. With the advancement of
experimental techniques in cold-atom experiments [5–8], the
interest in the nonequilibrium dynamics or dynamics of highly
excited states motivated a lot of theoretical research resulting
in new concepts such as generalized Gibbs ensembles, quench
action [9,10], generalized hydrodynamics [11–13] (GHD),
and others. The main approach to the correlation function in
integrable models is a direct summation of the form factors
in the spectral expansion. The computation of the correlation
functions on the finite entropy states is very different from the
vacuum case due to the different decay rate of the form factors
with the system size (exponential versus power-law). There-
fore, different approaches were developed to tackle these
kinds of problems, including the quantum transfer-matrix ap-
proach [14–20], nonlinear differential equations [21,22], the
axiomatic definition of the thermal form factors in the in-
tegrable quantum field theories [23–31], adaptation of the
GHD methods [32–35], as well as partial summations of the
few particle-hole excitations [36–40] and extracting the most
singular parts of the form factors [41,42].

Recently, we developed a method to deal with correlation
functions in finite entropy states [43]. This method allows one
to derive the behavior of the correlation functions in free-
fermionic models for the observables that can be expressed
as Fredholm determinants of integrable kernels. In Ref. [43]
we focused mostly on static correlation functions, and applied
the method to the XY quantum chain.

*Corresponding author: oleksandr.gamayun@fuw.edu.pl

In this work, we continue the development of the method of
effective form factors for dynamical correlation functions. As
a model of interest, we choose one-dimensional impenetrable
anyons on a lattice [44]. This model describes quantum par-
ticles with unusual statistics [44–49], which can be realized
experimentally in ultracold quantum gases confined in optical
traps [50–58]. Furthermore, this type of model appears after
the spin-charge separation in interacting systems of spinful
fermions and spin chains (at certain values of the anyonic
parameter) [59–67]. Similar determinants can also be obtained
as the correlation functions of Wigner strings [68]. Also, they
appear in the description of the mobile impurity propagating
in the gas of free fermions [69–72]. In the latter case, the
anyonic parameter can be identified with the total momentum
of the system (at the infinite coupling).

The main idea of the effective form-factor approach is
to replace computation of the correlation functions averaged
over some ensemble to zero-temperature correlators with the
appropriately modified phase shift. The correlation functions
for one-dimensional impenetrable anyons can be presented
as a linear combination of the Fredholm determinants [44].
Therefore, we may identify the phase shift comparing these
determinants to the one that emerges from the summation of
the effective form factors. For the spacelike region, we can
simplify the corresponding kernels for large time and space
separation and find the effective phase shift for all values of
the quasimomenta. The timelike region is characterized by
the critical points that separate different types of asymptotic
behavior. So we can robustly find the effective phase shift
only away from these points. Even though the vicinity of
critical points where we do not know the solutions vanishes
in the large-time limit, we cannot simply combine solutions
in the different asymptotic regions into a single phase shift
as the latter will be discontinuous. To tackle this problem,
we have assumed the existence of the gluing regulariza-
tion functions. While we have not been able to find them
explicitly, we have demonstrated that they only affect the
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overall constant in the asymptotic expression of the Fredholm
determinants.

The structure of the paper is as follows. In Sec. II A, we
define the anyonic model and recall its spectrum and the pre-
sentation of some correlation functions in terms of Fredholm
determinants. In Sec. II B, for the reader’s convenience, we
collect the main results obtained in this paper. In Sec. III,
we recall the effective form-factor approach and give two
expressions for the τ function in the thermodynamic limit.
In Sec. IV, the effective form-factor approach is applied to
the derivation of the large-time and long-distance asymptotics
of the dynamical correlation functions. We discuss separately
spacelike and timelike regimes. In Sec. V, we summarize the
main results of the paper, compare with the known results
in the literature, and discuss different possibilities for fur-
ther research. The Appendix contains technical details of the
asymptotic analysis of the form factors with the regularized
effective phase shift.

II. MODEL

A. Definition

The one-dimensional impenetrable lattice anyons on L
sites can be described by the following Hamiltonian [44]:

H = −
L∑

j=1

1

2
(a†

j a j+1 + a†
j+1a j ) + h

L∑
j=1

a†
j a j, (1)

aL+1 = a1, a†
L+1 = a†

1. (2)

The operator algebra is specified by the anyonic parameter
0 � κ � 1 and reads

a ja
†
k = δ jk − e−iπκε( j−k)a†

ka j, (3a)

a jak = −eiπκε( j−k)aka j, (3b)

a†
j a

†
k = −eiπκε( j−k)a†

ka†
j , (3c)

where ε( j) = sgn( j), and we prescribe that ε(0) = 0.
The κ = 0 case corresponds to fermions, and κ = 1 de-

scribes operators in the Hilbert space of the impenetrable
bosons. Note also that in the latter case, the Hamiltonian (1)
can be identified with the Hamiltonian of the quantum XX
spin chain after the mapping aj = σ+

j , a†
j = σ−

j .
The spectrum of the Hamiltonian H can be found by means

of the Bethe ansatz. The N-particle states are labeled by N
momenta {p1, p2, . . . , pN } from the set of L inequivalent so-
lutions of the equation

eipL = e−iπκ (N−1). (4)

The energies of such states are

E ({p1, p2, . . . , pN }) =
N∑

j=1

ε(p j ), (5)

ε(p) = h − cos p. (6)

An interesting and nontrivial problem in the considered
model is to analyze two-point correlation functions

G−(x, t ) = Tr[e−βH a†
x+1(t )a1(0)]

Tr[e−βH ]
, (7)

G+(x, t ) = Tr[e−βH ax+1(t )a†
1(0)]

Tr[e−βH ]
. (8)

It is easy to check the symmetry relations

G±(−x,−t ) = G±(x, t )∗, (9)

and also for t = 0

G−(x, 0) + e−iπκ sgn(x)G+(−x, 0) = δx,0, (10)

which allow us to consider only t � 0. In what follows,
we will restrict ourselves to the analysis of the correlator
G−(x, t ). An analogous analysis can be done for G+(x, t ). It
was shown that these correlators in the thermodynamic limit
L → ∞ can be written in terms of Fredholm determinants
[44]. We will use the following equivalent representation for
G−(x, t ):

G−(x, t ) = det(1 + Ŵ + δŴ ) − det(1 + Ŵ ), (11)

where Ŵ and δŴ are integral operators on [−π, π ] with the
kernels

W (p, q) = 1

2π
e−(p)e−(q)e

i(p−q)
2

e(p) − e(q)

sin p−q
2

, (12)

δW (p, q) = 1

2π
e−(p)e−(q), (13)

nF (p) = 1

eβε(p) + 1
, (14)

e−(p) =
√

nF (p)e−ixp/2+itε(p)/2, (15)

e(p) = sin2 πκ

2

 π

−π

dq

2π
eixq−itε(q) cot

q − p

2

+ 1

2
sin(πκ )eixp−itε(p). (16)

Equation (11) allows us to compute the correlation function
G−(x, t ) numerically. However, large-time and long-distance
asymptotics of the correlation functions are hard to extract by
numerical means due to the oscillatory behavior of integral
kernels. In the present paper, we analyze these asymptotics
analytically by means of the effective form-factor approach
[43].

B. Results

Before presenting an application of the effective form-
factor method to the problem, for the reader’s convenience we
collect the main results obtained in this paper: the asymptotic
formulas for the correlation function G−(x, t ) for large x and t
with a fixed ratio v = x/t . To present the answer, we will need
the effective phase-shift functions ν±(q) defined as

ν±(q) = ± 1

2π i
ln(1 + nF (q)(e±iπκ − 1)). (17)

The asymptotic behavior of G−(x, t ) depends essentially on v.
The spacelike region is specified by the condition v > 1, and
the asymptotics there reduces to the analysis of a single inte-
gral (60). Depending on the velocity, there are two additional
regimes within the spacelike region: the so-called saddle-
point-dominated regime 1 < v < vc, and the pole-dominated
regime v > vc. The critical velocity vc separating these two
regimes can be read off from Eq. (69).

The asymptotics for 1 < v < vc reads

G−(x, t ) ≈ C1K (x, t )t−1/2e−x ln zsp+t
√

v2−1+ith, (18)
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where

zsp = iv + i
√

v2 − 1, (19)

K (x, t ) = Z2[ν+]eix
´ π

−π
ν+(q)dq. (20)

For v � vc a pole gives the leading contribution

G−(x, t ) ≈ C2K (x, t )e−x ln z0+ tπ
β

(1−κ )
, (21)

where z0 is given by

z0 = h0 +
√

h2
0 − 1, h0 = h + iπ

β
(1 − κ ). (22)

The prefactors Z2[ν+], C1, and C2 are constants on the rays of
fixed v. Their explicit expressions are given by Eqs. (44), (71),
and (73). Note, in the case of the saddle-point contribution
there is an additional power factor t−1/2 correcting the expo-
nential decay of the correlation function. For v < −1 there are
similar regions, and the asymptotics can be obtained from the
above upon the replacement ν+ → ν−.

For the timelike region, 0 < v < 1, the asymptotics of the
correlation function is given by

G−(x, t ) ≈ R∞t−δ2
1−δ2

2 ei
´ π

−π
[x−tε′(q)]ν(q)dq

×
(

a1e−ixq1+itε(q1 )

t
1
2 +δ1

+ a2e−ixq2+itε(q2 )

t
1
2 +δ2

)
. (23)

For a fixed v, constants a1 and a2 are given by Eq. (91), while
the constant R∞ still remains unknown. The critical momenta
q1 and q2 are defined by

q1 = arcsin v, q2 = π − arcsin v, (24)

the effective phase shift ν(q) is a piecewise function

ν(q) =
{
ν+(q) if − π < q < q1 or q2 < q � π,

ν−(q) if q1 < q < q2,
(25)

and δ1 and δ2 are the magnitudes of jumps of ν(q) at critical
momenta

δ1 = ν−(q1) − ν+(q1), δ2 = ν+(q2) − ν−(q2). (26)

In addition to the expected exponential decay of the correla-
tion function G−(x, t ), we observe an additional power factor
t−δ2

1−δ2
2 depending on the parameters of the model.

III. EFFECTIVE FORM-FACTOR APPROACH

A. Effective form factors and tau function

In this section, we recall the effective form-factor approach
initiated in [43]. To specify the effective form factor, we
require two smooth periodic functions ν(k), g(k). The first one
is called the effective phase shift and defines the shifted set of
momenta as solutions of

eikL = e−2π iν(k). (27)

Here L is regarded as a system size. Since ν(k) is periodic, i.e.,
it has a zero winding number in terms of [43], the largest or-
dered set of the shifted momenta has L terms k = {k1, . . . , kL}.
Each ki is a solution of (27). The unshifted momenta are
solutions of

eiqL = 1. (28)

All momenta are considered up to the equivalence
k ∼ k + 2π , and it is convenient to choose them to have
real parts in the Brillouin zone [−π, π ].

The effective form factors are defined for the subsets
of momenta q of the size L − 1. Such subsets can be
parametrized by the position of the “hole,”

q(a) = {q1, . . . , qa−1, qa+1, . . . , qL}, a = 1, . . . , L. (29)

The effective form factor then reads

|〈k|q(a)〉|2 = L1−2L
L∏

j=1

eg(k j )−g(q j ) sin2 πν(k j )

1 + 2π
L ν ′(k j )

× eg(qa )det2Da,

(30)
where detDa is defined for q(a) and is merely a trigonometric
variation of the Cauchy determinant, in which the row corre-
sponding to qa is omitted and replaced with the line of 1,

detDa =

∣∣∣∣∣∣∣∣∣

cot k1−q1

2 · · · cot kL−q1

2
...

. . .
...

cot k1−qL

2 · · · cot kL−qL

2
1 · · · 1

∣∣∣∣∣∣∣∣∣
. (31)

As we deal only with the square of the determinant, we can
set this line as the last one.

The tau (correlation) function is defined as a series over
these form factors,

τ (x, t ) =
∑

qa

|〈k|qa〉|2e−ix[P(k)−P(qa )]+it[E (k)−E (qa )]. (32)

Here we use notations for the momentum and energy of many-
particle state |q〉,

P(q) =
∑
q∈q

q, E (q) =
∑
q∈q

ε(q). (33)

In Ref. [43] we have demonstrated that in the thermodynamic
limit L → ∞, the tau function can be presented as a difference
of two Fredholm determinants,

τ (x, t ) = det(1 + V̂ + δV̂ ) − det(1 + V̂ ), (34)

where V̂ and δV̂ are integral operators on [−π, π ] with ker-
nels

V (p, q) = 1

2π
c−(p)c−(q)e

i(p−q)
2

c(p) − c(q)

sin p−q
2

, (35)

δV (p, q) = 1

2π
c−(p)c−(q), (36)

c−(p) = sin πν(p)e−ixp/2+itε(p)/2+g(p)/2, (37)

c(p) =
 π

−π

dq

2π
eixq−itε(q)−g(q) cot

q − p

2

+ cot πν(p)eixp−itε(p)−g(p). (38)

This form allows us to relate the correlation function of
anyons with the tau function for a special choice of ν(k) and
g(k). This relation will be described in the next section.

B. Finite-size scaling

In this subsection, we give an alternative formula for the
tau function based on first taking the thermodynamic limit
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of the form factors and then performing the summation. The
obtained expressions will have a simple form convenient for
asymptotic analysis [43].

We start by representing det Da in a factorized form,

L∏
i=1

sin2 πν(ki )

L2
det2D(a) = Z2Za, (39)

Z =
L∏

i=1

i−1∏
j=1

sin ki−k j

2

sin qi−q j

2

, (40)

Za = sin2 πν(ka)

L

L∏
j �=a

sin2 k j−qa

2

sin2 q j−qa

2

. (41)

Extracting the hole-dependent factors, the tau function (32)
can be rewritten as

τ (x, t ) = LK (x, t )
L∑

a=1

eg(qa )Zae−ixqa+itε(qa ), (42)

where K (x, t ) is an a-independent part given by

K (x, t ) = Z2e−ix[P(k)−P(q)]+it[E (k)−E (q)]
L∏

j=1

eg(k j )−g(q j )

1 + 2π
L ν ′(k j )

.

(43)
The expressions Z2 and K (x, t ) have a finite thermodynamic
limit [43],

ln Z = −
ˆ π

−π

dq
ˆ π

−π

dk

[
ν(q) − ν(k)

4 sin q−k
2

]2

, (44)

ln K (x, t ) = 2 ln Z −
ˆ π

−π

ν(q)g′(q)dq

+ i
ˆ π

−π

[x − ε′(q)t]ν(q)dq. (45)

The hole-dependent factors are suppressed in the thermody-
namic limit,

Za ≈ L−2 sin2 πν(qa) exp

(
−
 π

−π

dq ν(q) cot
q − qa

2

)
,

(46)
but the whole tau function (42) has a finite thermodynamic
limit and can be presented as an integral,

τ (x, t ) = K (x, t )
ˆ π

−π

dk

2π
eg(k) sin2 πν(k)e−ixk+itε(k)

× exp

(
−
 π

−π

dq ν(q) cot
q − k

2

)
. (47)

Thus we have two alternative presentations of the tau func-
tion in the thermodynamic limit: Eq. (34) as a difference of
Fredholm determinants, and Eq. (47) in terms of integrals.
The first form is convenient for the identification with other
models, and the second form is convenient for large x and t
analysis.

IV. ASYMPTOTIC BEHAVIOR OF ANYONIC
CORRELATION FUNCTION

A. Anyons and effective fermions

To apply the method of effective form factors for the large
x and t asymptotics of the correlation function G−(x, t ) given
by (11), we have to find suitable functions ν(k) and g(k). This
can be done after the identification of the kernels in (11) and
in (34). In this section, we focus on the case of h > 0; the
case h < 0 can be considered similarly. Also, we restrict
the value of the parameter of anyonic statistics to 0 � κ < 1.
The peculiarities with the limiting case κ = 1 corresponding
to the quantum XX spin chain are briefly discussed in Sec. V.

Equating G−(x, t ) = τ (x, t ), we see that their integral ker-
nels coincide if we choose ν(p) and g(p) to satisfy the
equations

c−(p) = e−(p), c(p) = e(p). (48)

The first equation gives a relation between g(p) and ν(p),

e−g(p) = sin2 πν(p)

nF (p)
. (49)

The second equation allows us to obtain an integral equa-
tion for ν(p),

ˆ π

−π

dq

2π

(
λ+(q)

tan q−p−i0
2

+ λ−(q)

tan q−p+i0
2

)
eixq−itε(q) = 0, (50)

where we have denoted

λ±(q) = e±2π iν±(q) − e±2π iν(q)

nF (q)
, (51)

e±2π iν±(q) = 1 + nF (q)(e±iπκ − 1). (52)

We can solve Eq. (50) asymptotically for large x and t . The
solution has different forms for two different values of v ≡
x/t . We call |v| > 1 the spacelike region and |v| < 1 the
timelike region. These names should not be confused with
similar terms in the relativistic theory—there the spectrum is
linear for all momenta. In our case, the names come from the
condition in which the function

�(q) ≡ vq + cos q (53)

has (timelike) or does not have (spacelike) a critical point for
q ∈ [−π, π ]. This function is merely the phase xq − ε(q)t up
to rescaling by time and shift by the constant h.

B. Asymptotic behavior of the correlation function in the
spacelike region

To treat Eq. (50), we first have to look at each of the
integrals separately. It is useful to present them asˆ π

−π

dq

2π

λ±(q)eit�(q)

tan q−p∓i0
2

= λ±(p)
ˆ π

−π

dq

2π

eit�(q)

tan q−p∓i0
2

+
ˆ π

−π

dq

2π

[λ±(q) − λ±(p)]eit�(q)

tan q−p
2

.

(54)

If we assume that ν(q) does not become singular even in the
asymptotic region, then in the spacelike region the second
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term on the right-hand side of Eq. (54) becomes exponentially
small for large x and t . The remaining integral in (54) can be
rewritten as

ˆ π

−π

dq

2π i

eit�(q)

tan q−p∓i0
2

= eit�(p)[F (p) ± 1], (55)

where

F (p) = e−it�(p)
 π

−π

dq

2π i

eit�(q)

tan q−p
2

. (56)

For large t > 0, the function F (p) can be approximated up to
exponentially small terms as

F (p) ≈ sgn(�′(p)). (57)

As the spacelike region is characterized by the absence
of critical points of �(p) for p ∈ [−π, π ), we can set
sgn(�′(p)) = sgn v. This way, one of the two integrals in
Eq. (50) is exponentially small due to (54) and (55), while
the other allows us to find the effective phase shift for large
t > 0,

ν(p) ≈ νsgn v (p), (58)

where ν±(p) are defined by Eqs. (52). We use this asymptotic
solution and the relation (49) in (47) to obtain

τ (x, t ) = K (x, t )T (x, t )eith, (59)

where K (x, t ) is given by Eq. (45) and T (x, t ) corresponds
to the integral in (47), which, after the change of variables
z = eik , takes the following form:

T (x, t ) = 1

2π i

˛
C>

dz

z

etθ (z)S(z)

J (z) + eiπκ
. (60)

Here C> is a counterclockwise circle with a radius slightly
larger than 1, and

θ (z) = −v ln z − i

2
(z + z−1), (61)

S(z) = exp

(
i
ˆ π

−π

dq ν(q)
z + eiq

z − eiq

)
, (62)

J (z) = exp
(

β

(
h − z + z−1

2

))
. (63)

In what follows, we consider v > 1; the other case, v < −1,
can be considered in the same manner. To find large x and
t asymptotics of T (x, t ), we deform the contour C> to the
steepest-descent curve C1 defined by

Im θ (z) = Im θ (zsp) = −πv/2 (64)

going through the saddle point zsp,

zsp = iv + i
√

v2 − 1. (65)

Deforming the contour, we might cross the poles of the in-
tegrand, which can only appear from the denominator, since

FIG. 1. The integration contours. The dashed circle corresponds
to the initial contour of integration C>. The black solid line represents
the steepest-descent contour C1. The cross marks the position of the
saddle point. Red and blue dots correspond to the poles zn defined
by Eq. (67) for non-negative and negative indices, respectively. The
shaded areas show the regions of positive (pink) and negative (light
blue) values of Re θ (z); see Eq. (61).

S(z) is a holomorphic function for |z| > 1. This way, we get

T (x, t ) = 1

2π i

˛
C1

dz

z

etθ (z)S(z)

J (z) + eiπκ

−
n0∑

n=−∞
resz=zn

etθ (z)S(z)

z[J (z) + eiπκ ]
, (66)

where the points zn are defined as

zn = hn +
√

h2
n − 1, hn = h + iπ

β
(2n + 1 − κ ), (67)

and n0 is the maximal number of a pole, which was crossed in
the deformation process. This number depends on the velocity
v and can be found from the inequality

arg zn0 <
π

2
− h

v
< arg zn0+1. (68)

Schematically, the contours C>, C1, and the positions of poles
zn are shown in Fig. 1.

The formula (66) allows one immediately to read off the
asymptotic behavior. The residues produce exponentially de-
caying terms; the leading contribution is given by the smallest
real part Re θ (zn). For a wide range of the parameters of the
model, we observed that this was achieved for the pole at z0.
Another type of contribution to the asymptotics comes from
the saddle-point evaluation of the integral in (66). To find the
overall leading contribution, we need to compare Re θ (z0) and
Re θ (zsp). This leads to the equation for the critical velocity vc
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separating two regimes,

vc ln
(
vc +

√
v2

c − 1
) −

√
v2

c − 1 = vc ln |z0| − π

β
(1 − κ ).

(69)
For v < vc, the saddle point is dominating and T (x, t ) is

given by

T (x, t ) ≈ C1t−1/2e−x ln zsp− it
2 (zsp+z−1

sp ), (70)

C1 = S(zsp)

J (zsp) + eiπκ

1√
2π

√
v2 − 1

. (71)

For v � vc, the pole gives the leading contribution

T (x, t ) ≈ C2e−x ln z0− it
2 (z0+z−1

0 ), (72)

C2 = − 2

β

e−iπκ

z0 − z−1
0

S(z0). (73)

We also provide the simplified expression for K (x, t ),

ln K (x, t ) ≈ 2 ln Z[ν] + ix
ˆ π

−π

ν(q)dq, (74)

where ν(q) is given by Eqs. (58) and (52), and Z[ν] is defined
by Eq. (44).

Using the identification G−(x, t ) = τ (x, t ), the asymptotic
behavior of the correlation function G−(x, t ) in the spacelike
region can be found from Eq. (59),

G−(x, t ) ≈ K (x, t )T (x, t )eith, (75)

where K (x, t ) is given by Eq. (74), and T (x, t ) is given by one
of Eqs. (70) and (72) depending on the value of v. We com-
pare these asymptotic expressions for the correlation functions
with numerical evaluation of Fredholm determinants (11) in
Fig. 2. We see that the asymptotics given by the integral (the
red solid line), i.e., by the tau function, is hardly distinguish-
able from the true correlation function even for small x.

C. Asymptotic behavior of correlation function
in the timelike region

Now let us try to apply the same reasoning for the timelike
region, |v| < 1. In this case, there are two critical points q1

and q2,

�′(qi ) = 0, qi ∈ [−π, π ), (76)

therefore the approximation (57) naively gives rise to the
solution

ν(p) ≈ νsgn �′(p)(p), (77)

where ν±(p) are defined by Eqs. (52). This is valid for all p
lying far enough from the critical points. Indeed, the approxi-
mation (57) holds everywhere outside small vicinities of width
∼t−1/2 around critical points q1 and q2.

It is very tempting to ignore these domains and approx-
imate ν(p) as a truly discontinuous function, since we are
interested in the large-t behavior. This procedure, however,
is not consistent with the approximations made in Eq. (54)
where we have discarded critical point contributions (the last
integral). But even bigger problems appear when one tries to

(a) (b)

(c) (d)

FIG. 2. Asymptotic behavior of G−(x, t ) for κ = 0.6, h = 0.7,
and β = 2.3. These parameters correspond to critical velocity vc ≈
1.676. Black dots present G−(x, t ) computed numerically from (11).
Red lines present the effective τ function (59) computed with (58).
Blue lines present asymptotics of integrals in (59) given by Eqs. (70)
and (72). Panels (a) and (b) correspond to the overcritical region v =
2.5. Panels (c) and (d) show the real part and the absolute value of
G−(x, t ) in the subcritical region v = 1.3, respectively.

use discontinuous ν(p) for the asymptotic expression. For in-
stance, the double integral (44) is divergent for such a choice.

Therefore, we expect that the solution of Eq. (50) will have
the following “regularized” form:

ν(p) = A(p) + B(p)s(p), (78)

where

A(p) = ν+(p) + ν−(p)

2
, B(k) = ν+(p) − ν−(p)

2
, (79)

and the function s(p) is a regularization of the sgn function,

s(p) = f (
√

t�′(p)), (80)

with f being a smooth function satisfying

f (±∞) = ±1. (81)

So away from the critical points on a distance bigger than
O(1/

√
t ), we recover the solution (77). We demonstrate this

schematically in Fig. 3. Notice that the regularization is
needed only for the imaginary parts, and the real parts of
ν+(p) and ν−(p) coincide. Now for the smooth ν(p) we can
use all the results from the previous sections. In particular, we
can integrate Eq. (44) by parts to obtain

ln Z = 1

2

ˆ π

−π

dq
ˆ π

−π

dk ν ′(q)ν ′(k) ln

∣∣∣∣sin
q − k

2

∣∣∣∣. (82)

We can perform asymptotic analysis of this expression for
large t and obtain

Z ≈ t− 1
2 (δ2

1+δ2
2 ) Zreg, (83)

where Zreg is a t-independent factor depending on s(p), and

δ1 = ν−(q1) − ν+(q1), δ2 = ν+(q2) − ν−(q2). (84)
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FIG. 3. The schematic dependence of the effective phase shift
ν(p). The black and blue dotted lines represent ν+(q) and ν−(q),
respectively. The red lines shows the regularized expression for ν(p).
The shaded rectangles show the regions where the transition between
ν+ and ν− happens and the regularization is required to approximate
ν(p). These regions are located near critical points q1, q2 and their
widths are O(t−1/2). We show only the imaginary part, as the real
part is continuous and does not require regularization.

Therefore, the only regularization dependence remains in the
overall constant prefactor. It is remarkable that the exponent
of the power-law t-dependence of Z is universal [it does not
depend on the regularization s(p) for any f satisfying (81)].
These computations and the exact form for Zreg are given in
the Appendix.

Let us also discuss the asymptotic behavior of the remain-
ing part of the tau function. In there we substitute already
discontinuous ν(q). Namely, we analyze the integral

T (x, t ) =
ˆ π

−π

dk

2π
nF (k)e−it�(k)e−Y (k), (85)

where

Y (k) =
 π

−π

dq ν(q) cot
q − k

2
. (86)

The function Y (k) is logarithmically divergent at q1 and q2

because of the discontinuity of ν(q). It leads to powerlike
singularities in the integrand of (85) which are integrable if
Re δ j > − 1

2 . In our case, ν+(k) and ν−(k) are conjugate to
each other, rendering the real part of the effective phase shift
continuous, Re δ j = 0.

We separate a regular part Ỹ (k) of Y (k) as

Y (k) = Ỹ (k) + [ν−(k) − ν+(k)] ln

(
sin q1−k

2

sin q2−k
2

)2

, (87)

Ỹ (k) =
ˆ q1

−π

dq[ν+(q) − ν+(k)] cot
q − k

2

+
ˆ q2

q1

dq[ν−(q) − ν−(k)] cot
q − k

2

+
ˆ π

q2

dq[ν+(q) − ν+(k)] cot
q − k

2
. (88)

Now all is prepared to find the asymptotic behavior of T (x, t )
for large x and t coming from the contributions of two critical

FIG. 4. Real and imaginary part of R(x, t ) with v = x/t = 0.5,
κ = 0.6, h = 0.7, and β = 2.3. The red line presents R(x, t ) for
which the integral T (x, t ) in Eq. (85) is computed exactly. Black dots
present R(x, t ) for which we use asymptotics of integral T (x, t ) given
by Eq. (89),

points q1 and q2,

T (x, t ) ≈ T1 + T2, (89)

where

Tj = a je
−it�(q j ), (90)

a j = nF (q j )

2π
e−Ỹ (q j )

(
2 sin

q2 − q1

2

)−2δ j

×
(

it�′′(q j )

2

)− 1
2 −δ j

�

(
1

2
+ δ j

)
. (91)

The final formula for the asymptotics of the correlation
function G−(x, t ) is

G−(x, t ) ≈ R∞T (x, t )t−δ2
1−δ2

2 eiht

× exp

(
i
ˆ π

−π

(x − t sin q)ν(q)dq

)
, (92)

where R∞ is a constant different on each ray v = x/t that
additionally depends on the parameters κ , h, and inverse tem-
perature β. To check this asymptotics, we plot in Fig. 4 the
ratio R(x, t ) of G−(x, t ) calculated numerically from (11) to
the asymptotics from the right-hand side of Eq. (92) without
R∞. We observe that it approaches a constant value. The possi-
ble deviations are of order O(1/

√
t ), which is consistent with

our approximations made for the ν(k). It would be interesting
to see if these corrections can be interpreted in terms of the
nonlinear Luttinger liquid paradigm [73,74].

V. SUMMARY AND OUTLOOK

In this paper, we found the asymptotics of dynamical corre-
lation functions of anyonic gas with the parameter of anyonic
statistics 0 � κ < 1 using a recently introduced [43] effective
form-factor approach. The main difficulty of this method is
to find the phase-shift function ν(q) for effective fermions
solving an integral equation. For large x and t we found
approximate solutions for this integral equation that depend
on the ratio v = x/t . For the spacelike region, v > 1, the
solution ν(q) can be approximated by the smooth function
ν+(q). In this case, the asymptotics of the correlation func-
tion is given by asymptotic analysis of integrals producing
the leading contribution either from a pole or from a saddle
point. In the case of a saddle-point contribution, there is an
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additional power factor correcting the exponential decay of
the correlation function.

For the timelike region, |v| < 1, we approximate the
solution ν(q) for a large finite t by a function having discon-
tinuities at critical points and corresponding to the solution of
the integral equation at t = ∞. Unfortunately, this approxi-
mate solution cannot be used directly to find the asymptotics
of the correlation function by the methods of [43], since the
latter requires a smooth ν(q). For large finite t we consider
a class of regularized ν(q) having the same limit at t = ∞ as
the genuine solution. It is remarkable that the regularized ν(q)
lead to the same asymptotics up to a prefactor independent
of t . This universal time dependence of asymptotics has an
additional powerlike factor to the exponential decay of the
correlation function. The exponent of this powerlike factor
is related directly to the jumps of ν(q) at critical points.
We hope that the use of a better approximation to ν(q) as
a solution of the integral equation for a large finite t will
fix the exact form of the constant prefactor. Further analysis
of the correlation functions in the timelike region by the
method of effective form factors will be presented in future
publications.

We believe that the appearance of the power-law correc-
tions is universal and takes place in all dynamical correlation
functions of quantum one-dimensional models at finite tem-
perature (entropy) in the timelike region. Recently, one of us
observed similar behavior for a continuum model [75]. Equiv-
alent phenomena are present in the XX spin chain [19,20,76].
Finally, quite unexpectedly, similar asymptotics appear also
while describing large x and t behavior of the classical inte-
grable systems [77–79]. Perhaps, it is related to the fact that
the tau functions in such systems can be presented as Fred-
holm determinants, and the role of momentum distribution
nF (q) is played by the reflection coefficient [80,81]. We plan
to investigate these models in the future.

The limiting case κ = 1 of the model corresponds to the
quantum XX spin chain model studied intensively in the
literature. Therefore, it is interesting to look at the limits
of our results as κ → 1 and compare with the known for-
mulas. For the paramagnetic phase, h > 1, in the timelike
region the results for the asymptotics were obtained in [82]
up to an overall constant depending on β and h. Our results
have the same structure as a function of t . The ferromag-
netic phase, h < 1, was studied in [19,20,76] in the spacelike
region and [76] in the timelike region. Unfortunately, the
direct application of our approach is not possible due to
the appearance of singularities of ν±(q) at q = ± arccos h,
where ε(q) = 0. We believe that these singularities can be
properly resolved. But one needs to develop a more delicate
limiting procedure, on which we hope to report in the near
future.

An important ingredient in the derivation of asymptotics in
[1,76,82] is the use of the fact that the correlation function sat-
isfies differential-difference equations of an Ablowitz-Ladik
integrable system. It would be interesting to generalize this
approach to the correlation functions with arbitrary anyonic
parameter κ and determine the precise v dependence of R∞ in
Eq. (92).

Another important application of our approach is to use it
to describe the scaling behavior of the correlation functions of

the anyonic gas. One has to be able to reproduce results for
the asymptotics obtained in [83–85]. Recently, using effective
form factors, the finite-temperature tau function for the con-
tinuum case was investigated in [75].

Finally, an important generalization would be to the inter-
acting case. Recently, the asymptotic behavior of the static
one-body correlation function at zero temperature was de-
rived for the interacting anyonic gas via the Luttinger liquid
approach [86]. To reproduce this result, at least in the Tonks-
Girardeau limit, we would have to take into account next
to leading asymptotics. Indeed, the only way to reproduce
zero-temperature power-law behavior is first to recover finite
T CFT predictions, which, roughly speaking, replace power
law as 1/x� → 1/[sinh(T x)/T ]� [87]. In the expansion of
this expression at large x one obtains not only the leading
exponential but also a bunch of the subleading ones. One
way to capture this could be in a more precise identification
between integral kernels. Right now, we do not know how
to generalize our methods to the fully interacting model, i.e.,
to the case when Fredholm presentation is not available. A
perspective direction could be to derive it directly from the
form-factor series [42].
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APPENDIX: REGULARIZATION OF THE PREFACTOR
AND POWERLIKE BEHAVIOR

In this Appendix, we describe a regularization of the diver-
gent integral

A = ln Z = 1

2

ˆ π

−π

dq
ˆ π

−π

d pν ′(q)ν ′(k) ln

∣∣∣∣sin
q − k

2

∣∣∣∣
(A1)

for the case of discontinuous ν(k). We use the regularization
described in Eqs. (78)–(81) and find the asymptotics of this
integral for large times.

It is natural to divide the derivative of ν into two parts,

ν ′(k) = ν ′
0(k) + ν ′

1(k), (A2)

where

ν ′
0(k) = A′(k) + B′(k)s(k), ν ′

1(k) = B(k)s′(k). (A3)

In the large-t limit, ν ′
0(k) is a bounded function while ν ′

1(k)
becomes proportional to a δ-function. The double integral A
can be presented as a sum of four parts,

A = A00 + A01 + A10 + A11, (A4)
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where

Ai j = 1

2

ˆ π

−π

dq
ˆ π

−π

d pν ′
i (q)ν ′

j (k) ln

∣∣∣∣sin
q − k

2

∣∣∣∣. (A5)

Note, only the A11 part is responsible for the divergence of A
at large t . The parts A00, A01, and A10 have nonsingular lim-
iting values at t → ∞ which do not depend on regularization
of ν(k). We have

A00 ≈ 1

2

ˆ π

−π

dq
ˆ π

−π

d p [ν ′](q)[ν ′](k) ln

∣∣∣∣sin
q − k

2

∣∣∣∣ (A6)

with

[ν ′](k) = A′(k) + B′(k) sgn �′(k). (A7)

Due to k ↔ q symmetry, we have A01 = A10. In the limit t →
∞, the function ν ′

1(k) becomes a sum of two δ functions, and
therefore

A01 = A10 ≈ B1r1

ˆ π

−π

dq [ν ′](q) ln
∣∣∣sin

q − q1

2

∣∣∣
+ B2r2

ˆ π

−π

dq [ν ′](q) ln
∣∣∣sin

q − q2

2

∣∣∣, (A8)

where

Bi = B(qi ), ri = sgn (�′′(qi )). (A9)

To evaluate A11, we divide the integration region [−π, π ]
into two pieces �1 = [−π, p] and �2 = (p, π ], where point p
lies between critical points q1 < p < q2. This way, the double
integral A11 is divided into four parts,

A11 = a11 + a12 + a21 + a22, (A10)

where

ai j = 1

2

ˆ
�i

dq
ˆ

� j

dk B(q)B(k)s′(q)s′(k) ln

∣∣∣∣sin
q − k

2

∣∣∣∣.
(A11)

The integrals a21 and a12 have finite limits at t → ∞,

a12 = a21 ≈ 2B1B2r1r2 ln sin
q2 − q1

2
. (A12)

The remaining parts of A11 contain singularities. Let us show
how they emerge in an example of a11. It is natural to present
a11 as a sum of two integrals (regular and singular),

a11 = a(r)
11 + a(s)

11 , (A13)

where

a(r)
11 = 1

2

ˆ
�1

dq
ˆ

�1

dk B(q)B(k)s′(q)s′(k)

× ln

∣∣∣∣∣ sin q−k
2

�′(q) − �′(k)

∣∣∣∣∣, (A14)

a(s)
11 = 1

2

ˆ
�1

dq
ˆ

�1

dk B(q)B(k)s′(q)s′(k)

× ln |�′(q) − �′(k)|. (A15)

The first integral can be found using L’Hôpital’s rule,

a(r)
11 = 2

ˆ
�1

dq
ˆ

�1

dk B(q)B(k)δ(q − q1)δ(k − q1)

× ln

∣∣∣∣∣ sin q−k
2

�′(q) − �′(k)

∣∣∣∣∣ = −2B2
1 ln |2�′′(q1)|, (A16)

where we used r2
1 = 1. The second integral can be presented

as

a(s)
11 = u1 + v1 ln

√
t, (A17)

where

u1 = 1

2

ˆ
�1

dq
ˆ

�1

dk B(q)B(k)

× s′(q)s′(k) ln |√t�′(q) − √
t�′(k)|, (A18)

v1 = −1

2

ˆ
�1

dq
ˆ

�1

dk B(q)B(k)s′(q)s′(k). (A19)

Performing rescaling of the integration variables, one can per-
suade oneself that under the last integrals B(q) can be replaced
to B1, which leads to

v1 = −B2
1

2

ˆ
�1

dq
ˆ

�1

dk s′(q)s′(k) = −2B2
1. (A20)

Here we have used (81), and all the traces of the regularization
have disappeared. With u1 this will not be the same. Indeed,
using s(k) = f (

√
t�′(k)) and changing the variables of inte-

gration q and k by λ = √
t�′(q) and μ = √

t�′(k), we get

u1 = 1

2

ˆ
�̃1

dλ

ˆ
�̃1

dμ b(λ)b(μ) f ′(λ) f ′(μ) ln |λ − μ|,
(A21)

where the function b(λ) is defined as

b(
√

t�′(q)) = B(q) (A22)

and region �̃1 is the segment [
√

t�′(−π ),
√

t�′(p)], which
becomes the real line when t goes to infinity. Also b(λ) goes
to B1 at t → ∞. Therefore, we get

u1 ≈ B2
1

2

ˆ ∞

−∞
dλ

ˆ ∞

−∞
dμ f ′(λ) f ′(μ) ln |λ − μ|. (A23)

Finally, using B1 = −δ1/2, B2 = δ2/2, r1 = −1, and r2 = 1,
we obtain the following large t asymptotics of A:

A ≈ d0 + d1 ln
√

t, (A24)

where the constant d1 is universal, i.e., it is independent of a
regularizing function f ,

d1 = −2
(
B2

1 + B2
2

) = − 1
2

(
δ2

1 + δ2
2

)
, (A25)

and d0 depends on a regularizing function f only in summands
u1 and u2,

d0 = A00 + 2A01 + 2a12 + a(r)
11 + a(r)

22 + u1 + u2. (A26)
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