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Prototypical many-body signatures in transport properties of semiconductors
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We devise a methodology for charge, heat, and entropy transport driven by carriers with finite lifetimes. Com-
bining numerical simulations with analytical expressions for low temperatures, we establish a comprehensive and
thermodynamically consistent phenomenology for transport properties in semiconductors. We demonstrate that
the scattering rate (inverse lifetime) is a relevant energy scale: It causes the emergence of several characteristic
features in each transport observable. The theory is capable to reproduce, with only a minimal input electronic
structure, the full temperature profiles measured in correlated narrow-gap semiconductors. In particular, we
account for the previously elusive low-T saturation of the resistivity and the Hall coefficient, as well as the
(linear) vanishing of the Seebeck and Nernst coefficients in systems such as FeSb2, FeAs2, RuSb2, and FeGa3.
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I. INTRODUCTION

Transport properties, such as resistivity (ρ), magnetore-
sistance (MR), thermal conductance (κ), and the coefficients
of Hall, Seebeck, and Nernst (RH , S, ν), are among the
most widely investigated quantities in materials science. They
provide essential information for characterizing new mate-
rials and for elucidating physical phenomena. To extract
microscopic information from measurements requires a fun-
damental understanding of how carriers transport charge, heat,
and entropy. When simulating transport properties, an ade-
quate inclusion of scattering processes is particularly crucial.
These limit the lifetime of carriers, lead to a decay of currents,
and can have various origins, such as electron-electron or
electron-phonon interactions as well as defects or impurities.

Here, we establish the prototypical signatures of finite
electronic lifetimes in transport properties of (narrow-gap)
semiconductors [1,2]. To this end, we build on the Kubo
methodology of Ref. [3], which captures (in)coherence
effects beyond the reach of semiclassical Boltzmann ap-
proaches [4–6], while incurring a comparable numerical cost.
Our theory reveals that the scattering is a relevant energy
scale: Through its interplay with the gap energy, a rich tem-
perature profile emerges in all observables. In this scenario,
extrinsic effects only enter indirectly, by limiting the lifetimes
of intrinsic carriers. Previous semiclassical techniques, where
scattering merely scales the amplitude of conduction, often
require explicit in-gap states to provide additional carriers so
as to mimic the experimental temperature dependence.

We highlight this insight in Fig. 1 for a simple two-band
modeling of the colossal-thermopower material FeSb2 [7–10].
The large magnitude of its S and ν originates from the
phonon-drag effect [11–16].1 Here, we focus on the char-
acteristic temperatures that mark features across various

1The phonon enhancement of the electron diffusion is expected to
be smooth in temperature, i.e., it does not introduce characteristic
features. Further, a suppression of the phonon drag in polycrystalline

observables [9]: for instance, inflection points in the resistiv-
ity ρ and the Seebeck coefficient S correlate with maxima
in the Hall and Nernst coefficients RH , ν. This intriguing,
but by no means uncommon [1,17,18], temperature profile,
was previously advocated to derive from extrinsic in-gap
states [14–16,19–21].

Here, instead, we reproduce all qualitative temperature
features in FeSb2 in the absence of explicit in-gap levels,
exclusively by endowing the intrinsic valence and conduction
carriers with a finite scattering rate �(T ) = �0 + γ T 2. Our
findings establish a phenomenology for transport properties
in semiconductors: Below a temperature T ∗

ρ , ρ saturates [3]
instead of growing exponentially [see the Boltzmann result
(dashed line) in Fig. 1]. RH also saturates (below T ∗

RH
< T ∗

ρ ),
indicating that residual scattering leads to a finite density of
states even at absolute zero. Finite lifetimes also mend the
violation of the third law of thermodynamics of Boltzmann’s
relaxation-time approximation: instead of diverging, the See-
beck coefficient S vanishes linearly for T → 0. Combined to
the power factor S2σ and the figure of merit zT , our find-
ings have practical relevance for thermoelectric applications.
In narrow-gap semiconductors, these quantities exhibit large
values at intermediate to low temperatures when scattering
processes are properly accounted for. Material surveys based
on Boltzmann approaches for coherent band structure instead
fail to even qualitatively describe S2σ and zT . Finally, in
congruence with experiment, a sharp low-T feature emerges
in the Nernst coefficient that, again, has no analog in the
Boltzmann treatment.

Looking at the available experimental literature, we
find a number of narrow-gap semiconductors [1] that
exhibit qualitatively similar temperature profiles as the
ones displayed in Fig. 1. For instance, other marcasite

samples yields Seebeck coefficients [12,13,105,106] comparable to
our modeling.
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FIG. 1. Prototypical transport in semiconductors. Comparing a
two-band model ε0

kn = −∑
i=x,y,z 2tn cos(ki ) + (−1)n(6tn + 	0/2),

with t1 = 250 meV, t2 = −265 meV, band gap 	0 = 60 meV;
effective mass Z−1 = 2, scattering rate �(T ) = (5 × 10−5 +
10−7/K2 T 2) eV to experiments on FeSb2 (Insets) from Ref. [9].
(a) Resistivity, coefficients of (b) Seebeck, (c) Hall, and (d) Nernst
without impurity in-gap states. Vertical lines mark characteristic
temperatures (from left to right): saturation onset of the Hall coef-
ficient T ∗

RH
and the resistivity T ∗

ρ , the maximal Seebeck coefficient
T max

S , onset of second activated regime T μ

	 , and the high-temperature
Nernst peak T μ

ν . Dashed black (gray) lines show Boltzmann results
using a chemical potential μψ (μFD), that accounts for lifetime and
thermal (only thermal) broadening.

compounds (FeAs2, RuSb2 [17,22–24], CrSb2 [25]), sili-
cides (FeSi [26–28], RuSi [29–31]), Heusler systems (e.g.,
Fe2VAl [32–36]), other intermetallic compounds [37] (e.g.,
FeGa3, RuGa3 [18,38,39]), as well as Kondo insulators
(e.g., Ce3Bi4Pt3 [3,40–45]), strongly suggesting that our sce-
nario based on carriers with finite lifetimes is prototypical for
a wide array of different systems.

The paper is organized as follows: After introducing the
formal background in Sec. II, we present the methodological
advances of our approach in Sec. III. Then, in Sec. IV, we

set out to establish a phenomenology of transport properties
of (narrow-gap) semiconductors. In Sec. IV A we provide
analytical results for the low-temperature asymptotic behavior
of all considered transport functions. In Sec. IV B we survey
how the size of the charge gap 	, the particle-hole asymmetry
α, and the scattering rate � control the temperature profile
of observables. Crucially, we elucidate how finite lifetimes
conspire with 	 and α to cause the emergence of several
characteristic energy scales that appear in all transport ob-
servables. In Sec. V, we discuss implications for materials
simulations on the basis of a simple modeling of selected
intermetallic narrow-gap semiconductors [1]. Finally, we end
with a summary in Sec. VI.

II. METHODOLOGICAL CONTEXT

In this section, we lay out the setting in which we con-
sider transport properties. The purpose is mainly to introduce
the considered transport quantities and some necessary nota-
tion. For more detailed derivations, the reader is referred to
specialized literature [46–48], as well as Refs. [49,50]. The
conceptual advances beyond this setting will be presented in
Sec. III, with more details in Appendix A.

A. Linear response

In linear response, transport quantities are based on cor-
relation functions that specify measurable observables of a
system in the presence of external perturbations (electric field,
magnetic field, temperature gradient, etc.). In our case these
processes are described, on the imaginary-time (τ ) axis, by

χ
αβ

jajb (q, τ ) = 1

V

〈
Tτ ja

α (q, τ ) jb
β (−q, 0)

〉
(1)

with the time-ordering operator Tτ , the charge (a, b = 1) and
heat (a, b = 2) current operator ja

α in the Cartesian direction
α, β ∈ {x, y, z}, and V indicating the unit-cell volume. From
them, the usual (retarded) Onsager coefficients L for dipolar
transitions (q = 0) are obtained by first Fourier transforming
Eq. (1) into bosonic Matsubara frequencies

χ
αβ

jajb (q, iωn) =
∫ β

0
dτ eiωnτ χ

αβ

jajb (q, τ ), (2)

analytical continuation to real frequencies iωn → ω + iδ and
then taking the dynamic limit

Lαβ

ab = lim
ω→0+

1

ω
Im

[
χ

αβ

jajb (q = 0, ω)
]
. (3)

In the presence of an external magnetic field B in direction γ ∈
{x, y, z}, one needs to instead evaluate the expectation value

χ
B,αβγ

jajb (q, τ ) = 1

V

〈
Tτ ja

α (q, τ ) jb
β (0, 0)

〉
Bγ

(4)

for the Hamiltonian that includes the field [49,51,52], and the
resulting Onsager coefficients will be denoted

LB,αβγ

ab = lim
ω→0+

1

ω
Im

[
χ

B,αβγ

jajb (q = 0, ω)
]
. (5)
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From the above, the observable transport tensors can be
derived. Namely, the conductivity σ , the resistivity ρ, the
thermopower (Seebeck coefficient) S, the electronic thermal
conductivity κ , the Hall conductivity σ B, the Hall coefficient
RH , and the Nernst coefficient ν:

σαβ = Lαβ

11 , (6)

ραβ = (
L−1

11

)αβ
, (7)

Sαβ = − 1

T

(
L−1

11

)αiLiβ
12, (8)

καβ = 1

T

[
Lαβ

22 − Lαi
12

(
L−1

11

)i jL jβ
12

]
, (9)

σ B
αβγ = LB,αβγ

11 , (10)

RH,αβγ = (
L−1

11

)αiLB,i jγ
11

(
L−1

11

) jβ
, (11)

ναβγ = − 1

T

(
L−1

11

)αi[LB,i jγ
11 L jk

12 − LB,i jγ
12 L jk

11

](
L−1

11

)kβ
. (12)

For models and materials whose unit cell’s axes are or-
thogonal, as we are considering here, the Einstein summations
over Cartesian directions simplify to a single expression, e.g.,
for an electric current in the x direction and a magnetic field in
the z direction, the resulting Hall coefficient in the y direction
is RH,xyz = (L−1

11 )xxLB,xyz
11 (L−1

11 )yy. Later, we will also address
the (empirical) Wiedemann-Franz law

L = κ

σT
(13)

as well as the thermoelectric power factor

PF = S2σ (14)

and figure of merit

zT = S2σT

κ
. (15)

B. Integral equations

1. One vs multiparticle correlations

The transport observables, even when featuring one-
particle currents ja

α ,2 in Eqs. (1) and (4) probe multiparticle
excitations. Diagrammatically, Eq. (1) can be described as
the sum of all possible two-particle processes, with the lead-
ing term corresponding to the independent propagation of a
particle-hole pair (bubble diagram). Magnetotransport quan-
tities on the other hand stemming from Eq. (4) can be
shown [49–52] to involve all possible three-particle processes.
Diagrams that (unlike the bubble) contain interconnected
propagation lines are commonly referred to as vertex correc-
tions [53–56]. These can lead to collective phenomena such as
excitons, π -tons [57–59], and other polaritons. In this work,
following the spirit of the dynamical mean-field theory [60],
we are neglecting vertex corrections. In this approximation,

2The heat-current j2 is only of one-particle nature when, as we
assume here, interactions are local [62].

which amounts to the infinite-dimensional limit, vertex cor-
rections vanish for all considered observables [60–63].3

Assuming that the one-particle Green’s function Gk(ω) is
diagonal in the chosen band or orbital basis, the Onsager
coefficients (3)–(5), can be written as

Lαβ

ab = π h̄e(4−a−b)

V

∑
n,m
k,σ

Kab(k, n, m)Mαβ (k, n, m), (16)

LB,αβγ

ab = 4π2h̄e(5−a−b)

3V

∑
n,m
k,σ

KB
ab(k, n, m)MB,αβγ (k, n, m)

(17)

with the electron charge e, and the sums running over band
indices n, m, Brillouin zone momentum k, and spin σ . Here,
the M (B) collect the dipolar transition matrix elements that
depend on the Cartesian directions α, β (and γ ) and are given
in the next paragraph. The kernel functions K(B), instead,
contain the two- (three-) particle expectation value of the
fermionic operators that make up the currents ja. Neglecting
vertex corrections (see above), they can be expressed as

Kab(k, n, m) =
∫ ∞

−∞
dω ω(a+b−2)

(
− ∂ f

∂ω

)
Akn(ω)Akm(ω),

(18)

KB
ab(k, n, m) =

∫ ∞

−∞
dω ω(a+b−2)

(
− ∂ f

∂ω

)
A2

kn(ω)Akm(ω),

(19)

where Akn(ω) = −1/π ImGkn(ω) is the spectral function
associated with the retarded one-particle Green’s function.
Energies ω are measured with respect to the Fermi level
μ. Thus, within our approximations, many-body (scattering)
effects enter the transport properties only through the renor-
malization of the one-particle propagators.

2. Transition-matrix elements

Concerning the transition-matrix elements, we make use of
the Peierls approximation [62,64–66]. Therein, Fermi veloci-
ties are the derivative of the bare dispersion4 vα

kn = 1/h̄∂kα
ε0

kn,
and the matrix elements M (B) in Eqs. (16) and (17) can be
expressed as [49]

Mαβ (k, n, n) = vα
knv

β

kn, (20)

MB,αβγ (k, n, n) = εγ i jv
α
kncβi

knv
j
kn, (21)

where εγ i j is the Levi-Civita symbol and the curvature of the
bare dispersion is encoded in cαβ

kn = 1/h̄∂kα
∂kβ

ε0
kn. Standard

Fermi velocities obtained in the band basis only account for
intraband transitions. In a more general framework [51,62],

3at least in the absence of multi-band effects [66]. For the vanishing
of vertex corrections in infinite dimensions for massless fermions,
see Ref. [109].

4When the Hamiltonian of the system is expressed by (continuum)
field operators, the charge density commutes with the interaction
terms.
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also interband transitions can be included in a Peierls-type
fashion.

III. METHODOLOGICAL ADVANCEMENT

A. Approximation: Linearized self-energy

As seen in Eqs. (18) and (19), the derivative of the Fermi
function ensures that transport properties are dominated by
energies close to the Fermi level.5 Then, also in the quantity
that encodes many-body renormalizations, the electron self-
energy �, only the low-energy behavior is relevant. Hence,
for the purpose of transport properties and in the absence of
polelike structures within several kBT of the Fermi level, the
self-energy can be linearized:

�kn(ω) ≈ Re�kn(0) + (
1 − Z−1

kn

)
ω − i�0

kn. (22)

In other words, the central assumption is that for transport
properties the temperature dependence of renormalizations
is more important than that on frequency. An implicit
higher-frequency dependence can, however, be included by
linearizing the self-energy around the band energies ε0

kn.
For the scattering rate, for instance, instead of evaluating
�0

kn = −Im�kn(ω = 0) at the Fermi level, one can use �0
kn =

−Im�kn(ω = ε0
kn).

With Eq. (22), the coherent part of the spectrum (of weight
Z) is of Lorentzian form

Akn(ω) = Zkn

π

�kn

(ω + μ − εkn)2 + �2
kn

(23)

with � = Z�0 and ε = Z[ε0 + Re�(0)] the renormalized
scattering rate and dispersion, respectively.

B. Linear response transport quantities for finite scattering

The central innovation of this paper is the observation that,
in the current setting, the integrals in Eqs. (18) and (19) can
be performed analytically, circumventing costly and (for small
�) unstable numerical integrations. Indeed, also the evaluation
of the particle number simplifies, one finds [11]

N =
∑
k,n,σ

∫ ∞

−∞
dω f (ω)Akn(ω) =

∑
k,n,σ

(
1

2
− 1

π
Imψ (zkn)

)
(24)

with the digamma function ψ evaluated at zkn = 1
2 +

β

2π
[�kn + i(εkn − μ)], where β = 1/(kBT ) is the inverse tem-

perature.6 Finite lifetimes (inverse scattering rate) explicitly
enter through the digamma function, describing the thermal
and lifetime smearing of excitations on an equal footing.
Consequently, the energy states now obey a �-modified

5This is contrary to thermodynamic properties, such as the specific
heat, where all energy scales contribute and self-energy sum rules
have to be enforced.

6In this expression, the quasiparticle weight Z has been set to
one, as, e.g., customary in slave-boson approaches. This procedure
implicitly assumes the transfer of spectral weights 1 − Z to be sym-
metrical in the sense that it does not alter the chemical potential
μ. If a many-body electronic structure and, thus, μ is provided, the
self-energy is only linearized in the transport kernels.

FIG. 2. Lifetime enhanced broadening. Comparison between
purely thermal broadening [dashed black line, Fermi function f (ω)]
and lifetime-enhanced broadening described by Eq. (24) for various
scattering rates (solid colored lines).

Fermi-Dirac statistic, displayed in Fig. 2. Crucially, even for
T = 0 this distribution is not steplike, provided that � > 0.
In Sec. IV B, we explore the impact of the carrier density
behavior on the chemical potential and all derived transport
properties.

Treating the smearing of excitations due to thermal (β) and
lifetime (�) effects on an equal footing also affects the trans-
port kernels. For the intraband transport kernels K(B)

ab (k, n) ≡
K(B)

ab (k, n, n) of Eqs. (18) and (19) we derive the LINRETRACE

expressions (see Appendix A)

K11(k, n) = Z2β

4π3�

[
Reψ1(z) − β�

2π
Reψ2(z)

]
,

(25)

K12(k, n) = Z2β

4π3�

[
a Reψ1(z) − a�β

2π
Reψ2(z)

−�2β

2π
Imψ2(z)

]
, (26)

K22(k, n) = Z2β

4π3�

[
(a2 + �2)Reψ1(z)

+ β

2π
�(�2 − a2)Reψ2(z) − β

π
a�2Imψ2(z)

]
,

(27)

KB
11(k, n) = Z3β

16π4�2

[
3 Reψ1(z) − 3�β

2π
Reψ2(z)

+ �2β2

4π2
Reψ3(z)

]
, (28)

KB
12(k, n) = Z3β

16π4�2

[
3a Reψ1(z) − 3a�β

2π
Reψ2(z)

− �2β

2π
Imψ2(z) + a�2β2

4π2
Reψ3(z)

+ �3β2

4π2
Imψ3(z)

]
, (29)
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KB
22(k, n)

= Z3β

16π4�2

[
(�2 + 3a2)Reψ1(z) − β�(�2 + 3a2)

2π
Reψ2(z)

− βa�2

π
Imψ2(z) − β2�2(�2 − a2)

4π2
Reψ3(z)

+ β2a�3

2π2
Imψ3(z)

]
, (30)

where ψi is the ith derivative of the digamma function ψ eval-
uated at z = 1

2 + β

2π
(� + ia), with a = ε − μ. Momentum k

and band n indices of Z , �, and a have been omitted for
“brevity.”

The above equations allow for a simple symmetry analysis.
For instance, we see that K12 is odd with respect to a. As a
consequence, electron and hole contributions to the Seebeck
coefficient (8) have opposite signs. KB

11, instead, is even in a.
Therefore, the Hall coefficient RH [Eq. (11)] actually does not
distinguish electron and hole contributions through their ener-
gies (the sign of a), but thanks to the sign of the dispersion’s
curvature entering the matrix element MB in Eq. (20).

Manifestly, the above kernel functions are far more com-
plicated than the familiar expressions of the semiclassical
Boltzmann approach in the constant relaxation-time approx-
imation (cf., e.g., Refs. [2,4–6,67]). However, the latter are
recovered from the above formulas as the leading terms in
the limit of infinite lifetimes, i.e., � → 0+. This is most
readily seen for the kernel underlying the conductivity: Not-
ing that β/(2π2)Reψ1[1/2 + iβa/(2π )] = − f ′(a), one finds
(see Appendix C), to leading order in the scattering rate, the
familiar expression

σαβ = e2Z2

V

∑
kσ

τvα
k v

β

k (−∂ f /∂ω)ω=εk−μ, (31)

with the lifetime τ = h̄/(2�), and a renormalization factor Z2

commonly not included. From this point of view, the inclusion
of finite lifetimes in Eqs. (25)–(30) leads to the following:

(1) An effectively different statistic: the Fermi function is
replaced with a digamma function in which thermal broaden-
ing is supplemented by an energy smearing � corresponding
to finite lifetimes (cf. Fig. 2).

(2) All transport kernels have, beyond the explicitly
leading terms (e.g., 1/� Re�1 in K11), contributions from
higher-order polygamma functions �i (i > 1).

We will discuss the effects of both, later on.
Computational results in this paper have been obtained

using the transport properties code LINRETRACE [68]. While
the Eqs. (25)–(30) are quite involved, they are, in fact, on
par with Boltzmann approaches employing the relaxation-
time approximation in terms of numerical complexity and
evaluation speed. In fact, many Boltzmann codes [4–6,69–
72] could readily upgrade their electronic transport capabil-
ities by switching to the kernels presented here. Conversely,
LINRETRACE [68] could benefit from being interfaced with
code packages [69,70,72,73] that provide electronic lifetimes
from electron-phonon scattering.

IV. A PHENOMENOLOGY OF TRANSPORT
IN SEMICONDUCTORS

A. Low-temperature expansion

Signatures of finite electronic lifetimes are largest at low
temperatures, where qualitative deviations from Boltzmann
behavior are most pronounced. Our first goal therefore is
to provide simple phenomenological formulas for transport
observables at low temperatures. To this end, we first ex-
pand the polygamma functions ψi(1/2 + z) in the kernel
equations (25)–(30) around z = ∞, i.e., T = 0 (the resulting
expressions can be found in Appendix B). Second, we assume
a simplistic electronic structure; indeed, we note that in metals
and semimetals only states in the direct vicinity of the Fermi
level contribute sizably to conduction of charge and heat. In
gapped systems, instead, transport will be dominated by the
conduction (valence) band minimum (maximum). Both con-
straints effectively limit the parts of the Brillouin zone relevant
to transport. To gain a qualitative insight, we therefore radi-
cally forgo the momentum integration in Eqs. (16) and (17):
We consider a single nondispersive level at an energy ε and
constant transition matrix elements M (B). Assuming further a
scattering rate � independent of temperature, we obtain the
following prototypical dependencies:

σ ∝ e2 Z2

π2

�2

(a2 + �2)2

[
1+2π2

3

5a2 − �2

(a2+�2)2
(kBT )2 + O(T 4)

]
,

(32)

σ B ∝ e3 4Z3

3π3

�3

(a2+ �2)3

[
1+ π2 7a2 − �2

(a2+ �2)2
(kBT )2+ O(T 4)

]
,

(33)

S ∝ −kB

e

4π2

3

a

a2 + �2

×
[

kBT + π2

15

55a2 − 53�2

(a2 + �2)2
(kBT )3 + O(T 5)

]
, (34)

RH ∝ 4π

3e

1

Z�

[
a2 + �2 + π2

3
(kBT )2 + O(T 4)

]
, (35)

κ ∝ Z2

3

�2

(a2 + �2)2

[
kBT − 16π2a2

3(a2 + �2)2
(kBT )3 + O(T 5)

]
,

(36)

ν ∝ −8π2

9
kB

aZ�

(a2 + �2)2

×
[

kBT − 4π2

3

8a2 − �2

(a2 + �2)2 (kBT )3 + O(T 5)

]
, (37)

where a = ε − μ indicates the position of the renormalized
level ε = Zε0 with respect to the chemical potential μ. We
now discuss the above asymptotic behavior and compare to
Boltzmann approaches in the relaxation-time approximation
(see Table I for a summary of the T → 0 limit). Note that
the above equations describe the low-T response for a single
level. If several states are contributing, terms can be simply
added up for the conductivities. For composite quantities, such
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TABLE I. Zero-temperature limits of transport properties in
stoichiometric gapped systems for a finite scattering rate �. Equa-
tions (32) and (35) lead to saturation in the resistivity and the Hall
coefficient, while the Boltzmann signal diverges. Entropy transport
complies with the laws of thermodynamics (Seebeck S → 0 for
T → 0), while S unphysically diverges in the relaxation-time approx-
imation. ν1/2 denote the two contributions to the Nernst coefficient,
Eq. (12). All limiting behaviors of LINRETRACE are congruent with
experiments (see Figs. 1 and 11).

lim T → 0 LINRETRACE Boltzmann

ρ ρsat ∞
S 0 ∞
κ 0 0
RH RH,sat ∞
ν = ν1 − ν2 0 0
ν1/2 0 ∞

as the Seebeck or the Hall coefficient, however, contributions
to the Onsager coefficients [Eq. (3)] have to be summed before
they are combined into the observable quantities.

a. Charge transport. One of the main observations is that
in the zero-temperature limit T → 0 the electrical (σ ) [3] and
Hall conductivity (σ B) remain finite in the presence of residual
scattering (� > 0). In Eqs. (18) and (19) the derivative of the
Fermi function becomes increasingly narrow with decreas-
ing temperature. Alone, this temperature-dependent energy
cutoff would lead to the typical activated behavior and is
well described in Boltzmann theory. However, for � > 0, the
Lorentzian shape of the spectral function (23) allows states
away from the Fermi level to still contribute to conduction
even at T = 0, as incoherent spectral weight spills into the
gap [see Fig. 3(b) and cf. the effective particle distribution
function in Fig. 2]. This residual conductivity is at the heart of
the resistivity saturation in (nontopological) Kondo insulators
and has been discussed in detail in Ref. [3]. Similarly, the Hall
conductivity in Eq. (10) and, hence, the Hall coefficient in
Eq. (11) saturate for � > 0. The Boltzmann approximation
[see Eq. (31)], on the other hand, relies solely on the Fermi
function to select states with sharply defined energies ε. Then,
conductivities must strictly approach zero in gapped systems

for T → 0. Since the electrical and the Hall conductivity have
the identical temperature scaling, Eq. (11) implies a diverging
Hall coefficient in Boltzmann’s relaxation-time approxima-
tion [see Fig. 1(c)].7

b. Thermoelectric transport. In essence, the Seebeck and
Nernst effects can be understood as entropy carried by charged
currents [47,48,74]. The third law of thermodynamics states
that at zero temperature the entropy S0 of the system must
be minimal. In a perfect crystal lattice without ground-state
degeneracy this minimal value must be 0 since there is only
one possible microstate [S0 = kB ln(�); � = 1], requiring the
Seebeck as well as the Nernst coefficient to vanish for T → 0.
This is respected in our framework: Similar to the case of
metals [75], we find S ∼ T (T → 0) in a semiconductor with
finite lifetimes. As discussed in more detail in Sec. IV B 3 b,
it is residual conduction from incoherent states that leads to
a weakly metal-like Seebeck coefficient. In the Boltzmann
limit, instead, S unphysically diverges in a semiconductor:
S(T ) ∝ 1

T .
The Nernst coefficient vanishes in both formalisms. In the

Boltzmann case, this is hidden in the two terms making up
Eq. (12) (ν = ν1 − ν2): while both νi (i = 1, 2) diverge, they
cancel exactly when combined. In the Kubo formalism, both
terms νi separately approach 0. Further, for finite �, ν ∝ T at
lowest temperatures, again akin to the behavior of metals [76]
and (see Sec. IV B 5 b) connected to conduction from intrinsic,
but incoherent, in-gap states.

In all, Eqs. (32)–(37) establish a low-temperature phe-
nomenology of transport in semiconductors. The derived
asymptotic behavior overcomes limitations of semiclassical
descriptions and is congruent with experimental observations
(see Fig. 1 above and Fig. 11 below).

B. Prototypical transport properties of narrow-gap systems

In this section we leave the low-temperature limit and study
the full temperature dependence of the transport observables

7The higher-order kernels K(B)
12 and K(B)

22 are accompanied by an
additional ω and ω2 factor in Eqs. (18) and (19), respectively. There-
fore, the active energy window is additionally suppressed, causing
these kernels to vanish for T → 0.

FIG. 3. Model electronic structure. (a) Broadened band structure ε0
kn = −∑

i=x,y,z 2tn cos(ki ) + (−1)n(6tn + 	0/2) with t1 = 0.25 eV, t2 =
−0.40 eV, and 	0 = 1.0 eV. The broadening � = 0.1 eV is exaggerated in order to illustrate the effects. (b) Spectral functions at k = R =
(π, π, π ) where the direct gap is exactly 	0 (we here set the quasiparticle weight to unity Z = 1). The Lorentzian form (23) of the spectral
functions causes weight to spill over into the band gap. As a consequence, for T → 0, transport properties exhibit metal-like signatures, such
as residual conduction (=resistivity saturation) and a linear-in-T Seebeck coefficient.
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from Eqs. (6)–(12). Motivated by experimental transport mea-
surements of intermetallic hybridization-gap semiconductors,
such as FeSb2, FeAs2, FeSi, and FeGa3, their Ru analogs and
others, we consider a simple, asymmetric two-band electronic
structure

ε0
kn = −

∑
i=x,y,z

2tn cos (ki ) + (−1)n(6tn + 	0/2) (38)

with n = 1, 2 for the valence and conduction band, respec-
tively, and fix the filling to N = 2 (half-filling). We use
a generic lattice constant alattice = 1 Å (cf. Appendix D)
and 60 × 60 × 60 (200 × 200 × 200) k points for the Kubo
(Boltzmann) calculations to achieve k-grid convergence.
Particle-hole asymmetry is introduced by hopping parameters
tn that are different for the valence band (VB, n = 1) and
the conduction band (CB, n = 2). We measure the degree of
asymmetry via

α =
∣∣∣∣ t2
t1

∣∣∣∣. (39)

The two bands of the narrow-gap semiconductor are then
additionally endowed with the same, finite and, for the time
being, temperature-independent scattering rate �, while we
set the quasiparticle weight to unity, Z = 1. This setup gen-
eralizes the symmetric (α = 1) two-band model for which
we studied the resistivity in Ref. [3]. An example electronic
structure is displayed in Fig. 3. Even though motivated by
said materials, we keep the electronic structure deliberately
simple, so as to isolate qualitative trends and the prototypical
temperature dependencies of transport properties. A more re-
alistic setup with a temperature-dependent scattering rate will
be introduced in Sec. IV C.

The three parameters that describe the transport equa-
tions of our model are the band gap 	0, the band asymmetry
α, and the scattering rate �. As a first step we simply scan
through each parameter individually while keeping the other
two fixed. The results for these parameter sweeps are shown
in Fig. 4. The clear protagonist of transport properties beyond
Boltzmann results based on band structures is the scatter-
ing rate �. It influences transport in two ways: First, � > 0
leads, in a particle-hole asymmetric system, to a nontrivial
temperature dependence of the chemical potential, which,
in turn, influences charge and energy transport. Boltzmann
approaches that use band structures as input fully miss this
ingredient as only thermal (not lifetime) broadening is in-
cluded in the chemical potential search. Second, contributions
to the transport kernels (25)–(30) are, contrary to Boltzmann
approaches in the relaxation-time approximation, not simply
proportional to the carrier lifetime 1/�, but exhibit an intricate
� dependence that influences the temperature profile of trans-
port properties. In the following, we will disentangle these two
ingredients.

1. Chemical potential and activated carriers

For sharply defined valence and conduction states εk, i.e.,
� = 0, the position of the chemical potential μ is driven
through the thermal broadening of the Fermi function. In par-
ticular, one can show (see, e.g., Ref. [11]) that μ approaches
the middle of the gap for T → 0, with a temperature slope

that depends on the particle-hole asymmetry. If the lifetime
of valence and conduction states is finite, this description is
no longer valid. Indeed, determined via Eq. (24), the chemi-
cal potential is intrinsically dependent on the scattering rate.
Figure 3(b), that displays a spectral function at a selected k
point, illustrates why this is the case: the Lorentzian width
of the spectral function results in a small but finite weight
of incoherent in-gap states that the chemical potential has to
account for. As seen in the bottom panel of Fig. 4, μ follows
the result of the Fermi function at high temperatures, where
thermal broadening dominates over the Lorentzian in-gap
weight. Below a temperature T μ

ν , however, μ starts to strongly
deviate. In particular, it no longer extrapolates to the midgap
point (here set to zero), but to a finite value that increases with
growing particle-hole asymmetry α and band gap 	0, while
being only weakly dependent on the residual scattering �.
This behavior can be rationalized through the low-temperature
expansion of the occupation in Eq. (24), which, for a state at
a = ε − μ, yields

N = 1

2
− 1

π
Im ln(� + ia) + π

3

a�

(a2 + �2)2
(kBT )2 + O(T 4).

(40)

Given that, in a semiconductor, the scattering rate � is orders
of magnitude smaller than the band energies, changes in the
band structure (a = ε − μ) will dominate the chemical po-
tential at low temperatures. Noteworthy, the evolution of the
chemical potential μ shown in the lower panels of Fig. 4 [its
deviation from the intrinsic Fermi-Dirac result (gray dashed
in bottom right panel) at T μ

ν , its inflection point T μ
	 , and

the eventual saturation at a finite position] is reminiscent
of the exhaustion and extrinsic regime in semiconductors
with impurity-derived in-gap states [77]. There, changes in
the chemical potential are driven by donated electrons or
holes, i.e., a change in the total number of charge carriers.
In our scenario, instead, the total number of electrons stays
constant, but the finite lifetimes of intrinsic carriers causes
excitations to widen, spilling incoherent spectral weight into
the gap, so that the chemical potential has to adapt. Conse-
quently, even at lowest temperatures, the number of activated
carriers

ne =
∑

k,n�CB,σ

(
1

2
− 1

π
Imψ (zkn)

)
, (41)

nh =
∑

k,n�VB,σ

(
1

2
+ 1

π
Imψ (zkn)

)
(42)

must remain finite for � > 0, as shown in Fig. 4 (second
panel row from the bottom). In more detail, at any tem-
perature, the number of activated electrons ne and holes
nh (per unit cell) necessarily balance each other, ne = nh,
in the stoichiometric (half-filled) case considered here. At
high temperatures ne follows the result for the coherent
(� = 0) band structure (indicated in dashed gray). In this
regime, dominated by thermal activation across the gap 	0,
ne is exponentially suppressed upon cooling; for kBT � 	0:
ne(� = 0; T ) ∼ e−	0/kBT . For finite �, the discussed devia-
tions in the chemical potential reflect in the carriers available
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FIG. 4. Transport in semiconductors: a parameter scan. Left column: varying band gaps 	0 for fixed hoppings t1 = 0.25 eV and t2 =
−0.30 eV (asymmetry α = 1.2) and scattering rate � = 10−4 eV; middle column: varying asymmetries α for fixed band gap 	0 = 200 meV
and scattering rate � = 10−4 eV; right column: varying scattering rate � for fixed 	0 = 200 meV and α = 1.2. Throughout, a quasiparticle
weight Z = 1 is used. From top to bottom we show the resistivity ρ, the coefficients of Seebeck S, Hall RH , Nernst ν, the activated number of
electrons ne (holes nh = ne), and the chemical potential μ. Notable characteristics: For finite �, the asymmetry α leads to a chemical potential
that does not converge to the gap midpoint for T → 0. This �-induced deviation in μ causes the high-temperature features at T μ

	 and T μ
ν .

There, the resistivity transitions between an activated regime corresponding to the fundamental gap 	0 to one with a reduced energy 	1,
given by twice the distance between μ(T → 0) and the nearest band edge. The characteristic T max

S , T ∗
ρ , and T ∗

RH
instead are driven by the

quantum kernels and the importance of higher-order polygamma functions in them: the resistivity and the Hall coefficient saturate at T ∗
ρ and

T ∗
RH

, respectively. The latter signals a finite density of carriers at the Fermi level even at absolute zero, congruent with ne > 0. The Seebeck
coefficient is suppressed and vanishes for T → 0 in accordance with the laws of thermodynamics. The Nernst coefficient peaks one more time
before also trending to zero for T → 0.

for conduction: Below the temperature T μ
ν , ne no longer

shrinks exponentially and, at T μ
	 , transitions into a regime

in which the number of available carriers is virtually in-
dependent of temperature. In this low-temperature regime,

the dominant control parameter for the number of carriers
is the scattering rate �, whereas asymmetry and the size of
the gap hardly affect ne(T → 0) on the shown exponential
scale.
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2. Electric resistivity

Signatures of the described evolution of the number of car-
riers available for conduction are readily seen in the resistivity
in the top row of Fig. 4. The activated behavior above T μ

ν ,
purely determined by the band gap 	0, transitions into a sec-
ond activated regime realized below T μ

	 , with an effectively
reduced band gap 	1 < 	0. As indicated in Fig. 4 (bottom
right panel), 	1 measures (twice) the distance between the
saturated μ(T � T μ

	 ) and the nearest band edge (for α > 1,
the conduction band). Again, this behavior is reminiscent of
an impurity-driven extrinsic regime. There, 	1 would mea-
sure the difference between the extrinsic impurity level on the
one hand and the conduction or valence band on the other.
In both scenarios, extrinsic in-gap states vs intrinsic states
with finite lifetimes, changes in conduction reflect a modifi-
cation in the chemical potential. Here, our theory provides a
complementary microscopic origin for the appearance of the
chemical potential-driven characteristic temperature scales
T μ

ν and T μ
	 . Note that for particle-hole symmetric systems,

where the chemical potential is temperature independent, no
such crossover exists and there is only one activationlike
regime [3].

Cooling further, also the second activated regime is
bounded from below: at a temperature T ∗

ρ , the resistivity en-
ters a saturation regime. Contrary to the features at higher
temperatures, T ∗

ρ has no signature in the chemical potential,
but derives entirely from the physics encoded in the kernel
function (25). As discussed in detail in Ref. [3] the crossover
temperature T ∗

ρ and the saturation value ρ(T → 0) strongly
depend on the scattering rate and the band gap. Notewor-
thy, the influence of � inverts as a function of temperature:
at high T , a larger scattering rate increases the resistivity.
This is the conventional behavior, also realized in metals. At
low T , however, where conduction is driven by incoherent
spectral weight inside the gap, the resistivity understandably
decreases with a growing scattering rate (see top right panel
in Fig. 4). Here, we extend the previous analysis [3] and
demonstrate that also the band asymmetry α has a strong
effect on the conduction. In the asymmetric case, the chem-
ical potential must be positioned closer to the conduction
(α > 1) or valence (α < 1) band so that the correct num-
ber of electrons in the system is occupied. Therewith, the
majority of carriers, those that reside in the centers of the
Lorentz-broadened peaks in the spectral function, conduct
more and freeze-out at a lower temperature, i.e., T ∗

ρ and
the corresponding saturation value ρ(T → 0) decreases with
α.

To summarize, the resistivity of an intrinsic narrow-gap
semiconductor with a finite scattering rate has four regimes:
(1) T > T μ

ν , the activated high-temperature region that is well
described in Boltzmann theory; (2) T μ

	 < T < T μ
ν , a narrow

regime in which the chemical potential starts to sense the inco-
herent spectral weight inside the gap and adjusts accordingly;
(3) T ∗

ρ < T < T μ
	 , a regime at intermediate temperatures in

which the (�-imposed) chemical potential shift has led to a
reduced activation energy for valence (α < 1) or conduction
(α > 1) carriers; (4) T < T ∗

ρ , a regime of resistivity satura-
tion in which thermal activation is frozen out but a residual
conductivity, driven by incoherent in-gap weight, remains
finite.

3. Seebeck coefficient

The three temperatures T ∗
ρ < T μ

	 < T μ
ν that separate the

four regimes in the electrical resistivity also account for fea-
tures in the Seebeck coefficient (second row in Fig. 4): the
increase of S starting from high temperatures is interrupted
by the crossover of the chemical potential at T μ

ν . Depending
on the parameters, the transition to the maximum amplitude at
lower temperatures can then either be smooth (large scattering
rate) and monotonous (large gap) or be accompanied by a
significant shoulder (large band gap, small scattering rates). In
extreme cases this shoulder transforms into a local peak (small
gap, strong asymmetry), i.e., the temperature dependence can
be nonmonotonous. The temperature at which the Seebeck
coefficient has its global maximum amplitude Smax is linked
to T ∗

ρ . In fact, S peaks at T max
S , consistently slightly above the

onset of the resistivity saturation regime (T max
S � T ∗

ρ ). Below
this global peak temperature, the Seebeck coefficient drops
rather abruptly. In the zero-temperature limit, it follows the
metal-like linear behavior S(T ) ∼ T , anticipated in Sec. IV A.

This rich structure is absent when the Boltzmann approach
is applied to the band structure ε0

kn of Eq. (38). The features
associated with T μ

	 and T μ
ν are missed if finite lifetimes are

unaccounted for in the search of the chemical potential; the
characteristic features further below are absent owing to the
simple structure of the Boltzmann transport kernels. Indeed,
for a momentum- and state-independent scattering rate �,
the kernels L11 and L12 in the Boltzmann approximation are
both merely proportional to �−1. Then, given by their ratio,
Eq. (8), Boltzmann’s Seebeck coefficient is independent of
the scattering rate. Manifestly, this approximation is a severe
oversimplification even for extremely small � (see Fig. 4,
right column, second panel from the top).

Next, we will comment on two approximate tools that are
popular for the analysis of thermoelectric measurements or
simulations.

a. The Goldsmid-Sharp gap. Goldsmid and Sharp [78]
motivated that the size of a semiconductor’s gap could be
gauged from the peak amplitude of the Seebeck coefficient:

	 ≈ 2e|Smax| · T max
S . (43)

This estimate works decently for both n- and p-type semi-
conductors [78], although deviations of the order of a factor
of 2 are not uncommon. The relation is used as a coarse
analysis tool [79–81] in simulations and experiments and even
as a descriptor in high-throughput materials discovery studies
[82]; Eq. (43) was deduced for a coherent, large-gap, particle-
hole symmetric semiconductor in which impurity states move
the chemical potential so as to optimize the Seebeck co-
efficient [11,78]. Allowing for particle-hole asymmetry, the
Seebeck coefficient can, however, be larger, while it is al-
ways bounded by |S| � |	/(eT ) + S(∞)|, where S(∞) is
the comparatively small high-temperature limit [|S(∞)| =
O(kB/e)] [11]. Since the original argument [78] relies
on replacing the Fermi-Dirac with the classical Maxwell-
Boltzmann statistics, further deviations occur if kBT max

S ��
	 [83].
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FIG. 5. Goldsmid-Sharp gap. We display the gap estimate
|Smax| · T max

S for scans of the band gap 	0 for asymmetries α = 1.04
(open circles) and α = 1.2 (closed circles). Also shown is a scan
of the asymmetry (open squares) and of the scattering rate (open
diamonds), using the same parameters as in Fig. 4. The expression
|Smax| · T max

S deviates strongly from 	0/2 (dashed line) when the
system’s asymmetry is at least moderate. Only in the vicinity of
particle-hole symmetry (α = 1.04, open circles) do we find good
agreement for Eq. (43). An increase in asymmetry leads to a sup-
pression of |Smax| · Tmax while different scattering rates have minimal
effects. Instead, plotting |Smax| · Tmax against the effective gap 	1

[cf. ρ(T ) in Fig. 4], the various scans collapse onto the 	1/2 line
(see inset): the Goldsmid-Sharp gap expression reliably estimates the
effective gap 	1.

Here, we scrutinize the Goldsmid-Sharp relation (43) for
our two-band model: In Fig. 5 we report |Smax| · T max

S ex-
tracted from the parameter scans of Fig. 4 as well as for an
additional scan for an almost particle-hole symmetric system
α = 1.04 (open circles in the main panel). For the latter, the
Goldsmid-Sharp gap indeed provides a very accurate esti-
mation of the fundamental gap 	0. For systems with more
asymmetrical electronic structures, however, Eq. (43) yields
poor results: |Smax| · T max

S largely underestimates the charge
gap (filled circles). Looking at the corresponding resistivities,
Seebeck coefficients, and the chemical potential in Fig. 4
reveals the reason: The thermopower is largest at the lower
end of the second activated regime of the resistivity T ∗

ρ �
T max

S < T μ
	 . This regime emerges when a finite scattering rate

pushes the chemical potential towards the lighter band (in
our case the conduction band). As a consequence, the crucial
gap, as apparent in the resistivity, is the effective 	1, not 	0.
This observation suggests that the Goldsmid-Sharp gap does
not monitor the band gap 	0 but the effective gap 	1. This
hypothesis is confirmed in the inset of Fig. 5: plotted as a
function of the emergent 	1, the scatter plot of |Smax| · T max

S
collapses onto a single line indicating 	1/2. This statement is
largely independent of the scattering rate: |Smax| · T max

S only
slightly increases with �, leading to a mild overestimation
of 	1.

In all, in the realistic presence of a scattering rate,
the Goldsmid-Sharp expression quite accurately gauges the
effective gap 	1 that controls transport at intermediate tem-
peratures, but which can be significantly smaller than the true
band gap 	0.

b. The Mott formula. In metals, conduction is largely dom-
inated by states in the vicinity of the chemical potential.
Then, performing a low-temperature Sommerfeld expansion
of the conductivity is justified. Doing so for the Boltzmann
relaxation-time approximation (31) yields a convenient ex-
pression for the Seebeck coefficient

S ≈ −π2

3e
k2

BT
∂ ln σ (μ)

∂μ
, (44)

which is a simplified version of the so-called Mott formula
of the thermopower [84,85]. Here, σ (μ) is the electrical
conductivity for varying chemical potential μ. Clearly, the
above approximation is inaccurate for coherent semiconduc-
tors, where conduction is driven by conduction and/or valence
states that are far (more than several kBT ) from the chemical
potential. Manifestly, our general kernel functions therefore
do not verify Eq. (44). However, as we demonstrated [3], finite
lifetimes may drive residual conduction in semiconductors,
leading to resistivity saturation. The incoherent in-gap states
associated with this phenomenon might provide the metallic-
ity required to justify expanding the derivative of the Fermi
function around the chemical potential (Sommerfeld expan-
sion). Therefore, Eq. (44) is expected to hold in the saturation
regime, where conduction is dominated by said incoherent
in-gap weight. Evaluating Eq. (44) for the residual term of the
conductivity given in Eq. (32) indeed yields the lowest-order
expression of the low-T Seebeck coefficient (34). This valid-
ity of the Mott formula for metals in the resistivity saturation
regime of a semiconductor provides a direct link between
residual charge conduction [σ (T → 0) > 0] and a metal-like
linear-in-T thermoelectric Seebeck signal [S(T → 0) ∝ T ].

4. Hall coefficient

From high temperatures down to its maximum, the Hall
coefficient RH (third panel in Fig. 4) exhibits a qualitatively
similar dependency on 	0, α, and � as the Seebeck coeffi-
cient. However, RH peaks at a slightly smaller temperature
that matches T ∗

ρ from the resistivity. Also, instead of van-
ishing, RH saturates below a temperature T ∗

RH
(< T ∗

ρ ), in
agreement with the low-T expansion (35) and experiment (see
Figs. 1 and 11). This temperature arrangement is expected
since the spectral function enters Eq. (19) to higher order
compared to Eq. (18). Therefore, the KB

11 kernel effectively
senses a smaller amount of incoherent in-gap weight than
K11. Consequently, the temperature, below which the thermal
selection of valence and conduction carriers via (− ∂ f

∂ω
) can be

neglected in comparison to the incoherent in-gap weight that
drives the residual conduction, is effectively reduced. At large
temperatures (T > T μ

ν , Boltzmann regime), RH is dominantly
controlled by the band gap and the particle-hole asymmetry,
while the dependence on the scattering rate is weak. Instead,
at low T , it is mostly the scattering rate that controls both the
peak value and the saturation limit RH (T → 0).
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FIG. 6. Hall and thermal mobilities. Both mobilities vanish in the zero-temperature limit and coincide with each other at intermediate
temperatures, marking the ranges where the Nernst coefficient vanishes in Fig. 4. This transition, however, takes place at slightly different
temperature between μH and μT giving rise to the low-temperature ν contribution at roughly Tρ∗ (first shaded area). At large temperature the
two mobilities diverge from each other. μT increases drastically while μH gets suppressed, marking the second ν contribution which is peaked
at T μ

ν (second shaded area).

5. Nernst coefficient

The Nernst coefficient exhibits the most dramatic features.8

Starting from high temperature, ν increases and reaches a first
peak at T μ

ν where the chemical potential starts to transition
towards its saturation regime. The Nernst then quickly drops
to zero (unless the asymmetry is very small) and remains sup-
pressed in the intermediate regime (T ∗

ρ < T < T μ
	 ; the second

activation regime of ρ). The transition into the ρ-saturation
regime at T ∗

ρ is then accompanied by a second large and
sharp peak in ν before it finally converges linearly to zero for
T → 0. Similar to the Hall coefficient, the biggest changes
in the temperature profile of ν are achieved by varying the
band gap and the asymmetry, while absolute values are mostly
controlled by the scattering rate.

Focusing on (a) the large low-temperature peak and (b) the
T → 0 limit, we analyze the fabric of the Nernst coefficient
through different representations.

a. Hall and thermal mobilities. Using the expression (8)
of the Seebeck coefficient, we can rewrite the Nernst coeffi-
cient (12) as

ν = S(μH − μT ), (45)

where μH = LB
11/L11 is the Hall mobility, and μT = LB

12/L12

its thermal analog, introduced by Sun et al. [9]. From this
point of view, a finite Nernst signal can only appear when
there is a mismatch in the mobilities. The two mobilities
μH and μT are shown in Fig. 6 for varying (a) band gap,
(b) asymmetry, and (c) scattering rate. At large T , −μT 

−μH , resulting in a sizable Nernst coefficient. At interme-
diate temperatures, both mobilities exhibit a temperature-
and gap-independent plateau of equal magnitude: the Nernst
signal vanishes. At low T there is again a mobility mis-
match −μT > −μH , which is responsible for the pronounced

8Our survey of the Nernst coefficient can be compared to the
semiclassical relaxation-time approximation pioneered recently in
Ref. [67] that includes effects to leading order in 1/�.

low-temperature peak. Qualitatively, this behavior mirrors the
analysis of the experimental mobilities of FeSb2 from Ref. [9]
that we reproduce in the inset of Fig. 11(h). Also in experi-
ment, the mobility mismatch is notable only at low and high
temperatures.

b. Mott formula for the Nernst coefficient. Analogous to the
Mott formula of the Seebeck coefficient (44), a Sommerfeld
expansion can be used to obtain an approximate formula for

the Nernst coefficient. Using LB
12 ≈ π2k2

B
3e T 2 ∂LB

11(μ)
∂μ

, valid at
low T for Boltzmann-derived Onsager coefficients of met-
als [86], one finds [87]

ν ≈ −π2

3e
k2

BT
∂μH

∂μ
, (46)

where μH = LB
11/L11 is again the Hall mobility.9,10 As for

the Seebeck coefficient, we find the link Eq. (46) between
transport of charge (μH ) and entropy (ν) to hold in the low-T
saturation regime (in this case T < T ∗

RH
). In other words, the

lowest-order terms in the low-temperature expansions (32)
and (33) fulfill Eq. (46). In this sense, the saturation of both
σxx and σ B

xy dictates the Nernst coefficient to vanish linearly
for T → 0. This behavior, otherwise typical for metals [76],
is indeed experimentally observed in correlated narrow-gap
semiconductors [see Fig. 11(h) for the example of FeAs2].
In metals, however, the variation of the charge and Hall
conductivities with the chemical potential is usually small.
Then, Eq. (46) means that also the Nernst coefficient will be
very small, a statement referred to as Sondheimer cancella-
tion [76,86,88]. Instead, as we have seen here, a changing
chemical potential can notably manipulate the residual con-
ductivities of an incoherent semiconductor.

9This “Mott formula” for the Nernst coefficient is often written
using the Hall angle tan(θH )/B = μH with the magnetic field B.

10Alternatively, the temperature derivative of the Hall mobility can
be seen as a source for a finite Nernst signal ∝T ∂μH/∂T [110].
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FIG. 7. Thermal conductivity and Wiedemann-Franz law. The same parameter sets as in Fig. 4 are used. In addition to the total thermal
conductivity κ (top row) we plot also the contribution L22/T (dashed) individually. The Lorenz ratio (bottom row) converges to L(T → 0) =
L0 = π2k2

B
3e2 (see text for details).

6. Thermal conductivity and Lorenz ratio

Next, we discuss the electronic contribution to the thermal
conductivity κ . In the low-temperature ρ-saturation regime we
find the linear behavior from Eq. (36). Increasing the temper-
ature results in various kinks and shoulders. Again, we can
separate the influence of a changing chemical potential from
the inner structure of the transport kernel functions: While
the pure L22 contribution [first term in Eq. (9); dashed lines
in Fig. 7] only experiences the transition stemming from the
chemical potential, the shoulders in the intermediate regime
derive from the L12 contribution [second term in Eq. (9)].
Combined to the Lorenz ratio L [see Eq. (13)], we find a com-
plex temperature dependence: In the zero-temperature limit
L(T ) clearly converges to the Sommerfeld value of the Lorenz

number L0 = π2k2
B

3e2 . This can also be confirmed via the low-T
expansion

L = L0 +
(

kB

e

)2 16π4

45

5a2 − 2�2

(a2 + �2)2
k2

BT 2 + O(T 4) (47)

(see Appendix B for more details). This result is expected
since in our theory both the electrical and heat currents are
transported by the same carriers, subject to the same elastic
scattering mechanism. If inelastic scattering effects, e.g., via
an electron-phonon coupling, were to be included, this unison
will be jeopardized [89]. Then, the Wiedemann-Franz law can
be strongly violated at low (but finite) temperatures, with L
being notably suppressed [90].

In the opposite limit T → ∞, we find L(T → ∞) = 0.
Note that this result assumes a temperature-independent scat-
tering rate. For specific conditions on �(T ), the Lorenz ratio
converges to L0 at high temperatures, as will be discussed in
Sec. IV C.

7. Power factor and figure of merit

Finally, we consider the thermoelectric power factor S2σ

and the figure of merit zT , given by Eqs. (14) and (15) and
shown in Fig. 8. In order to achieve somewhat realistic zT val-
ues we add a (dominant) phonon contribution to the thermal
conductivity κ = κe + κph using an optimistic κph = 10 W

K2 m .
First, we note that S2σ is seemingly large at the upper end
of the shown temperature window. However, this behavior
originates from the temperature independence of the scatter-
ing rate, that we assume here for illustrative purposes. Indeed,
� = const causes (for large T ) a very small resistivity (see top
row of Fig. 4) that overcompensates the drop in the Seebeck
coefficient. In practice, the scattering rate itself is typically
temperature dependent. As explained below (see Sec. IV C 2),
a reasonable �(T ) causes both the power factor and zT to van-
ish quite rapidly at large temperatures [see Fig. 9 (lowest two
panels)]. We therefore focus on the lower-temperature struc-
ture in S2σ and zT in Fig. 8, that is equally present when a
realistic �(T ) is used. The displayed peak in the power factor
and zT is the result of the usual compromise [47,48] between
large S and small ρ.11 We find the optimal power factor to
occur in the vicinity of T μ

ν , the onset of the high-temperature
crossover from the first into the second activated-ρ regime.
Peak temperatures move up (down) for a growing band gap
(scattering rate), while peak amplitudes benefit from larger
gaps, larger asymmetry, but a smaller scattering rate.

As the ratio of power factor and thermal conductivity, zT
inherits its structure from the former, while the latter modu-
lates the overall magnitude. Indeed, band-gap variations keep

11Interestingly, this conventional tradeoff was recently found to be
broken in an ultrathin oxide film near its Mott transition [111].
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FIG. 8. Power factor and figure of merit. The power factor S2σ (top row) is peaked at the transition of the first into the second activated
regime of ρ = 1/σ . For T → 0, S2σ is suppressed due to the low-temperature limit of S(T ) ∼ T . At intermediate temperatures, S2σ develops
an important peak that is undetectable in Boltzmann theory (gray, dashed line). The high-temperature increase in the power factor is nonphysical
and disappears when a T -dependent scattering is included (see Sec. IV C 2). The figure of merit zT (bottom row) shows similar features but,
due to the thermal-conductivity weighing, peak sizes are affected differently. Note: In zT we included a constant phonon contribution of
κph = 10 W

K2 m
. Again, the low-temperature peak zT , indicative of potential merit in thermoelectric devices, is completely missing in the

Boltzmann regime (gray, dashed line).

the peak amplitude of S2σ essentially unchanged but move the
peak position. The maximal zT then increases for larger band
gaps, as the (here: electrical) thermal conductivity dwindles.
Variations of the band asymmetry, instead, only change the
size of the zT maximum, while increasing scattering rates
lower the peak amplitude and shift it to higher temperatures.

Importantly, the just described peak in both S2σ and zT is
absent when the Boltzmann approach is applied to the band
structure (dashed gray lines in the right panels of Fig. 8).
Indeed, we find that maximal thermoelectric performance is
realized in the temperature range delimited by T μ

	 and T μ
ν .

These characteristic scales are driven (see above) by changes
in the chemical potential μ, caused by the finite lifetimes of
conduction and valence states, an effect beyond mere ther-
mal activation. As a consequence, assessing the potential of
narrow-gap semiconductors for thermoelectric applications on
the basis of Boltzmann theory applied to coherent electronic
band structures is virtually meaningless. A (high-throughput)
screening of materials [91–93] that neglects finite electronic
lifetimes of intrinsic carriers may miss potentially favorable
compounds.

C. Temperature-dependent scattering rate

In the previous section, we held the scattering rate �

constant to unravel the prototypical variations of transport
observables with respect to gap, particle-hole asymmetry,
and the scattering rate itself. Setting �(T ) = �0 led to some
effects not observed in experiments. In particular, the re-
sistivity became vanishingly small in the intermediate- to

high-temperature regime (
ρ(T <T ∗

ρ )
ρ(T >T μ

ν ) ∼ 105). Indeed, only when
temperature reaches a value greater than the system’s band-
width, the resistivity starts again to increase (not shown).
Experiments probing narrow-gap semiconductors, however,
witness an insulator-to-metal crossover above a temperature
that is still small with respect to the charge gap [1]. In FeSi
(	 ∼ 50 meV = kB × 580 K), for example, the slope of the
resistivity turns positive above 300 K [94], while in opti-
cal spectroscopy for FeSb2 (	 ∼ 30 meV = kB × 350 K) a
Drude-type peak starts developing at around 100 K [95,96].
Clearly, this metallization is beyond mere thermal activation
of carriers across the charge gap. Theoretically, this phe-
nomenon has been attributed to incoherent spectral weight
spilling into the gap and was advocated to derive from elec-
tronic correlation effects [28] or thermal disorder [97,98].
In the correlations’ picture, the Hund’s rule coupling drives
a scattering rate that grows quadratically with tempera-
ture [28,31]. Therefore, we will restrict ourselves in the
following to scattering rates with a polynomial temperature
dependence.

1. General considerations

Without a growing scattering rate the Lorenz ratio L
approaches zero in the high-temperature limit and an unrea-
sonably large power factor S2σ appears in the intermediate-
temperature regimes (see the high-T upturn in Fig. 8). If,
instead, we consider a residual scattering rate plus a term
with a polynomial temperature dependence �(T ) = �0 +
γ T η, where γ > 0, η > 0, the argument z of the polygamma
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FIG. 9. Temperature-dependent scattering rate. Effects of
�(T ) = �0 + γ T 2, with residual scattering �0 = 10−4 eV and
varying γ , for fixed band gap 	0 = 200 meV and asymmetry
α = 1.2. The dashed black lines are results for γ = 0. The
additional temperature dependence causes a resistivity upturn at
high temperatures which also results in a smoothed Seebeck and Hall
coefficient. This metallic trend directly removes the nonphysical
upturn in the power factor while simultaneously causing the Lorenz
factor L to converge towards L0 (horizontal, dashed, gray line).

functions ψi(z) becomes

z(T ) = 1

2
+

[
�0 + ia

2πkBT
+ γ T η

2πkBT

]
. (48)

Scattering rates that increase slower than linearly (η < 1) lead
to arguments that converge to z(T → ∞) = 1

2 ; exact linear
behavior leads to z(T → ∞) = 1

2 + γ

2πkB
while η > 1 leads

to a diverging z(T ).
In the first two cases, the Lorenz ratio simplifies in leading

order to L(T ) ∼ O(T 2η−2). η < 1 therefore implies a vanish-
ing Lorenz ratio while η = 1 implies some saturation value
L(γ ), which, numerically, is generally orders of magnitude
smaller than L0. If the scattering rate increases faster (η > 1),
the same Taylor series of the polygamma functions that was
applied in the zero-temperature limit (see Appendix B) can be
employed. Consequently, the high-temperature limit is identi-
cal to the low-temperature limit and thus L(T → ∞) = L0.

2. Fermi-liquid-like scattering

Dynamical mean-field theory calculations suggest that the
scattering rate evolves quadratically with temperature for both
Kondo insulators [3] and d-electron-based narrow-gap semi-
conductors [28,31]. From here on, we therefore assume a
Fermi-liquid-like

�(T ) = �0 + γ T 2. (49)

Figure 9 illustrates how the additional scattering term changes
the transport for a range of γ values (shades green to red)
compared to γ = 0 (dashed black line), for a fixed band gap
	0 = 200 meV, residual scattering �0 = 10−4 eV, and asym-
metry α = 1.2.

Overall, the increased scattering smoothes all considered
quantities. A minimal γ is sufficient to suppress the high-
temperature shoulder in ρ at T μ

ν and causes a slight upturn
at high temperatures. The saturation regime is instead stable
up to rather large γ . Naturally, the added scattering term only
notably influences transport above temperatures for which
γ T 2 ∼ �0. In this vein the high-temperature shoulder of the
Seebeck coefficient is smoothed out and parts of the signal
are pushed up in temperature. Quite generally, the increased
scattering leads to less pronounced peaks which are shifted to
higher temperatures. Since the shoulder in S at T μ

	 was respon-
sible for the strong signal in the power factor and the figure of
merit (see above), significant qualitative changes are expected
for γ > 0: Aside from the suppression of the nonphysical
increase of the power factor at high temperatures, both S2σ

and zT are equally attenuated for γ > 0 and their peaks shift
up in temperature, as expected. Again, we included in zT a
phonon contribution κph = 10 W

K2 m to the thermal conductivity.
As already seen in the �0 scan in Fig. 4, a noticeable suppres-
sion is observed for the high-temperature peak of the Nernst
coefficient. The second, low-T peak in the Nernst coefficient
(that is absent in Boltzmann approaches) is instead relatively
stable with γ as it occurs at low enough temperatures T ∼ T ∗

ρ .
As discussed in Sec. IV C 1 the Fermi-liquid-like scattering
rate enforces that the high-temperature limit of the Lorenz
ratio converges to L0. This is evident in Fig. 9: for the largest
scattering rate, L reaches L0 within the shown temperature
window.
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V. MODELING MATERIALS

Having established an understanding of how relevant pa-
rameters drive changes in transport observables, we now turn
to material-specific simulations. While still focusing on a
minimal description, we attempt to reproduce the temperature
profiles of transport properties in selected narrow-gap semi-
conductors, as well as trends among them.

A. FeSb2: Characteristic temperature scales
without impurity states

First, we discuss the result for FeSb2 shown in the
front Fig. 1. FeSb2 is a correlated semiconductor [7–9,95]
with a narrow gap of 	 � 30 meV, as extracted from
activation-law fits of the resistivity [7,9] or the magnetic sus-
ceptibility [99,100]. Consistent with GW and GW +DMFT
simulations [10,11], we model FeSb2 with a noninteracting
gap 	0 = 60 meV and an effective mass enhancement Z−1 =
2. We find that a small asymmetry α = 1.06 mimics the mate-
rial well. Finally, we assume a scattering rate of the form (49),
where the parameters of the residual scattering �0 and the
prefactor γ of the quadratic term are adjusted by hand. We find
that best agreement with experiment is reached for �(T ) =
5 × 10−5 eV + 10−7 eV

K2 T 2 (see Fig. 1). This scattering rate is
quite realistic: dynamical mean-field calculations for the re-
lated correlated narrow-gap semiconductor FeSi [28,31] yield
comparable values. Having optimized the electronic struc-
ture parameters so that the simulated resistivity qualitatively
follows the experiment, the temperature profiles of all other
transport observables for FeSb2 automatically fall into place
(see Fig. 1). The approach therewith in particular verifies
the experimentally observed correlation between features in
different response functions.

At low temperatures, the onset of resistivity saturation at
T ∗

ρ is accompanied by a peak in both the Hall and the Nernst
coefficients at the identical temperature and a peak in the
Seebeck coefficient at a slightly higher temperature, all of
which is congruent with experiment. This low-T behavior
of transport properties is encoded in the linear response ker-
nel functions. Agreement with experiment confirms that our
approximations for the kernels, linearized self-energy, omis-
sion of vertex corrections, conserves the essential physics.
Instead, in previous modelings of FeSb2, based on semiclas-
sical approaches [14–16], resistivities and the Hall coefficient
either diverged at low T or had to be suppressed by impurity
states, e.g., by forcing the chemical potential into the conduc-
tion band. An alternative scenario for residual conduction in
FeSb2 could be provided by the recent observation of metal-
lic surface states [10,101]. Whether these weakly dispersive
states can account for the typical low-T characteristics across
all transport observables remains to be seen. We also note
that for the topological insulator SmB6 conduction by sur-
face states and residual bulk conduction from finite lifetimes
coexist [3].

Moving to higher temperatures, the resistivity exhibits two
distinct activation regimes. We find the shoulder in-between
T μ

	 < T < T μ
ν to be driven by changes in the chemical po-

tential. Therefore, if the chemical potential only accounts for
the thermal broadening of excitations, as commonly done in

the context of Boltzmann approaches for band theory meth-
ods, all structure at intermediate temperatures is lost (gray,
dotted lines in Fig. 1). If, instead, the chemical potential,
e.g., via Eq. (24), accounts for the scattering rate, Boltzmann
simulations do capture the intermediate-T features (see black,
dashed lines in Fig. 1). Alternatively, the temperature de-
pendence of the chemical potential can be engineered by
assuming in-gap impurity states [14–16]. Given that transport
observables exhibit three to four distinct regimes, phenomeno-
logical modelings actually used up to three impurity levels to
properly guide the chemical potential [14]. In our description,
no impurity states are required: According to the presented
phenomenology for transport in narrow-gap semiconductors,
the intriguing temperature dependence in FeSb2 exclusively
originates from its intrinsic electronic structure. Instead of
being set by explicit energy levels inside the gap, characteristic
temperatures emerge through the interplay of relevant energy
scales: the gap, the hopping, temperature, and, crucially, the
scattering rate.

In the following section, we investigate the influence of
potential impurity states in more detail for FeSb2. Thereafter,
we will see that explicit impurity states are not fully out of
the picture for other materials, but likely account for at least
some aspects of conduction at intermediate temperatures in
semiconductors with gaps 	 > 50 meV.

Before, however, a few comments regarding thermoelec-
tricity in FeSb2 are in order. While our approach neatly
captures the temperature profile of transport observables, we
do not reproduce the large amplitude of the Seebeck and
Nernst coefficients. In fact, this is expected, as FeSb2 violates
the upper bound |S| � 	/T for a thermopower exclusively
driven by electron diffusion [11]. As alluded to in the In-
troduction, this riddle was successfully solved [11–16] by
attributing the colossal amplitude to the phonon-drag ef-
fect. Simply speaking, the thermal gradient also leads to a
nonequilibrium phonon distribution. Working to equilibrate
the thermal gradient, phonons then scatter with electrons dom-
inantly towards the cold end of the sample, which is also the
direction of the net electronic diffusion. Thereby momentum
is constructively injected into the electronic subsystem, sig-
nificantly boosting thermoelectric effects. This well-known
phenomenon [102] continues to receive renewed interest, in
the context of electronic correlations [1,14,16] (the effect
is large when coupling to heavy electrons), the phonon-
engineering pathway to efficient thermoelectrics [103], or
both [104]. Crucially for our argument here, this phonon
enhancement of the electric response is expected to be
smooth in temperature, so as to not produce additional fea-
tures in transport observables. Indeed, while experimental
peak amplitudes cover almost an order of magnitude Smax ∼
5–45 mV

K across different samples [7,9,17,21], the correspond-
ing characteristic temperature profiles are almost identical.
Crucially, Pokharel et al. [12] and Takahashi et al. [13]
demonstrated that the phonon drag in FeSb2 can be con-
sistently suppressed by geometric constraints. With their
severely limited phonon mean-free path, polycrystalline sam-
ples are then expected to yield Seebeck amplitudes compatible
with the purely electronic diffusion simulated here. Indeed,
experimental peak amplitudes for polycrystalline samples
Smax ∼ O(0.1–1) mV

K [12,13,105,106] are comparable to our
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modeling (see Fig. 1). With the phonon drag thus mainly
scaling the amplitude of the thermoelectric response, previous
modelings including this effect had to explicitly introduce
in-gap impurity levels [14–16] to generate the experimen-
tally evidenced characteristic temperature scales. Here, we
showed that the electron diffusion part of the Seebeck
and Nernst coefficients has the correct temperature pro-
file without the need for ad hoc in-gap levels, provided
that finite lifetimes of intrinsic carriers are accounted for
consistently.

B. FeSb2: Explicit impurity states?

To strengthen the argument that in-gap impurity states
are not crucial for an understanding of transport properties
of FeSb2, we study the explicit inclusion of such states. In
Fig. 10 (bottom panel) we compare several ways to obtain
the needed chemical potential: (i) μψ (solid blue) indicates
an occupation determined via Eq. (24), that accounts for
both thermal broadening and the finite lifetimes of valence
and conduction states (data reproduced from Fig. 1); (ii)
μFD (black) that only includes thermal broadening via the
Fermi-Dirac distribution; (iii) μFD + imp (pink dashed) in
which an in-gap impurity level has been designed to mimic
μψ ; and (iv) μψ + imp (green dashed) in which the same
impurity level is added in the presence of finite lifetimes of
intrinsic states.

Clearly, the Fermi-Dirac description of the chemical poten-
tial (black), in which the chemical potential converges towards
the midgap point (origin of energy) for T → 0, yields very
different transport functions (upper panels). Their temperature
profiles do not agree with experiment [cf. Fig. 1 (insets)].
Still, the resistivity and the Hall coefficient saturate (albeit
at values different than in the “μψ” scenario) and the Nernst
and Seebeck coefficients vanish for T → 0 since these low-
temperature properties stem from the employed LINRETRACE

kernels [Eqs. (25)–(30)]. As a consequence, if the chemical
potential μψ , that drives both the features at intermediate
temperatures and influences the saturation values, could be
mimicked by other means, transport properties will be very
similar to the intrinsic “μψ” picture. And, indeed, imitating
the temperature dependence of μψ through the inclusion of
a single explicit donor level (at an energy ED = 26 meV,
degeneracy g = 1, and density ρD = 5 × 10−6 per unit cell),
these “μFD + imp” results (pink dashed) are very close to the
μψ results. In turn, if we include the same impurity level
on top of the lifetime effects that drive μψ [a combination
labeled “μψ + imp” (green dashed) in Fig. 10], nothing much
happens. In other words, if finite lifetimes of intrinsic valence
and conduction states are properly accounted for, extrinsic
in-gap states have little influence on transport properties in
FeSb2. This finding strengthens our alternative scenario in
which the driver of the characteristic temperature profile in
transport properties is the scattering rate.

C. Related materials: FeAs2, FeGa3, RuSb2

We now extend our transport study to other materials. In
the right column of Fig. 11 we reproduce experimental data of
various intermetallic semiconductors. In order of increasing

FIG. 10. FeSb2 and impurity in-gap states. We imitate the chem-
ical potential determined via Eq. (24) (μψ ) with the Fermi-Dirac
distribution through the presence of an explicit impurity level (μFD +
imp) in the vicinity of the conduction band. We employ the same
parameters as in Fig. 1. Additionally, an impurity donor level with
density ρD = 5 × 10−6 1

unit cell , degeneracy g = 1 is positioned at
ED = 26 meV below the conduction band (before renormalization
via Z). The chemical potential is then adjusted according to N ≡
nocc(μ) − ρD

1+gf (μ−ED ) . For comparison we also show the (very differ-
ent) chemical potential determined by the Fermi-Dirac distribution
without the donor level (μFD) and the digamma-computed chemical
potential with the additional impurity (μψ + imp) which is indistin-
guishable from μψ . All shown transport quantities employ the full
LINRETRACE kernels (25)–(30).

gap, FeSb2 [9], FeAs2 [9], RuSb2 [17], and FeGa3 [18,38].
For all considered compounds, the charge gap can be ex-
tracted directly from the high-temperature behavior of the
resistivity (or optical data). With the exception of FeSb2

(Z−1 = 2), we do not apply a quasiparticle renormalization
(Z = 1). Indeed, larger hybridization-gap semiconductors are
expected to exhibit less correlation signatures [1] and also
the substitution of a 3d transition metal with its 4d homolog
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FIG. 11. Modeling of intermetallic narrow-gap semiconductors. The experimental temperature profile of transport observables of
FeSb2 [9], FeAs2 [9], RuSb2 [17], and FeGa3 ([100] orientation) [18,38] is simulated with finite lifetimes and a single donor level at a distance
ED below the conduction band. Lifetimes dominantly determine transport at intermediate to low temperatures. Instead, the donor level virtually
only affects higher temperatures near T μ

	 and T μ
ν . In particular, in congruence with experiment, the level accounts for the metallic slope in the

resistivity seen in all materials other than FeSb2. To limit the number of adjustable parameters, band gaps were fixed to experimental values:
using Z = 0.5 for 	FeSb2 = Z × 	0,FeSb2 = 30 meV and Z = 1 in 	FeAs2 = 200 meV; 	RuSb2 = 290 meV; 	FeGa3 = 500 meV. All modeling
parameters are listed in Table II. Jointly, finite lifetimes and the impurity level yield an accurate description without the need for other electronic
structure details.

will reduce correlation effects [31], as explicitly shown for
Fe1−xRuxSb2 [24,107].

While the resistivity of FeSb2 only displays a shoulder at
T ∼ T μ

	 [successfully modeled with �(T )], a distinct peak
can be observed in the three other materials. The metallic
slope ∂ρ/∂T > 0 at temperatures below said peak cannot be
replicated with a chemical potential that is driven by finite
lifetimes through Eq. (24) alone. Indeed, the transition of
the chemical potential must occur more abruptly in temper-
ature, making explicit impurity states a necessity to achieve
agreement with experiment. We find that deploying a single
donor level near the conduction band allows us to reproduce
the qualitative behavior of all considered materials across all
transport observables.

a. Resistivity. For FeSb2 this leads to minor improvements
in T μ

	 and T μ
ν of the initial fit (Fig. 1). For Fe/RuAs2 and

FeGa3 the engineered chemical potential causes the resistivity
to decrease when cooling below their T μ

ν (metallic slope),
before it rises again to enter the second activated region and,

eventually, the saturation regime below T ∗
ρ . The overall agree-

ment is astounding: with a single impurity level characteristic
temperatures, qualitative features, and even relative ampli-
tudes between various materials can be accurately modeled.12

b. Seebeck coefficient. Unsurprising from the previous
analysis and the optimal parameters listed in Table II the
magnitude of the theoretical Seebeck coefficients [Fig. 11(b)]
does not differ significantly in the modeling. For all materi-
als considered we observe a peak amplitude in the range of
|Smax| = 0.8–1.3 mV

K positioned at a respective T max
S slightly

above the saturation temperatures T ∗
ρ of Fig. 11(a). While

lacking the phonon-drag boost to the Seebeck magnitude, our
treatment still captures quite well both the dominant peak’s

12The only noticeable deviation constitutes FeGa3 where the cho-
sen experiment exhibits a less clear transition between an activated
and a saturated region. See, however, the c-axis resistivity in
Ref. [38].
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TABLE II. Electronic structure parameters for simulated materi-
als. Quasiparticle renormalization Z , band gap 	0, band asymmetry
α = |t2/t1|, scattering rate coefficients in �(T ) = �0 + γ T 2, and a
single donor level of concentration ρD positioned at a distance ED

below the conduction band. Gap sizes 	 = Z	0 are kept fixed to
experimental values during the (manual) optimization procedure.

	0 �0 γ ED ρD

Z (meV) α (eV) ( eV
K2 ) (meV) ( 1

unit cell )

FeSb2 0.5 60 1.02 1.5 × 10−4 8 × 10−7 20 6 × 10−8

FeAs2 1 200 1.12 1.5 × 10−5 3 × 10−7 15 1.5 × 10−4

RuSb2 1 290 1.12 7 × 10−5 2 × 10−7 18 3.5 × 10−4

FeGa3 1 500 1.04 3 × 10−4 2 × 10−7 40 1.5 × 10−3

position at T max
S and the high-temperature shoulder (peak) at

T μ
	 for FeSb2 (FeGa3). Unfortunately, no data for FeAs2 and

RuSb2 are available for higher temperatures: For them, we
anticipate an additional Seebeck feature where the respective
resistivities are peaked.

c. Hall coefficient. The agreement to experiment for the
Hall coefficient, Fig. 11(g), is comparable to that of the
resistivity: as in the experiments, the position of the peak
in RH virtually coincides with the T ∗

ρ crossover in the re-
sistivity. Equally, the hierarchy across materials is captured
for the saturation value RH (T → 0), and also the decay at
higher temperatures mirrors the experiment. Clearly, the high-
temperature shoulder is connected to the resistivity peak at
T μ

	 . We therefore expect RH of RuSb2 to similarly drop if
temperatures slightly beyond the shown experimental range
were probed.

d. Nernst coefficient. For the Nernst coefficient less exper-
imental data are available [see Fig. 11(h)]. For the cases of
FeSb2 and FeAs2 the qualitative agreement between simula-
tion and measurements is reasonably good. Of course, what
has been said about the Seebeck coefficient of FeSb2 also
applies to its Nernst signal: it is substantially boosted by the
phonon drag [14,16], limiting us to discussing the qualita-
tive temperature profile.13 Not suffering from this intricacy,
clearer agreement is seen for FeAs2: there, the experimen-
tal low-temperature signal neatly follows the linear behavior
ν ∝ T (dashed line) as derived in Eq. (37) and illustrated in
Fig. 11(d).

For FeSb2, we also indicate the Hall and thermal mo-
bilities of Eq. (45) in the insets of Figs. 11(d) and 11(h).
The experimental data [9] qualitatively match the theoretical
prediction: at high temperatures a divergence between μT and
μH is observed, giving rise to FeSb2’s smaller Nernst peak
at T ≈ 40 K. Below, at intermediate temperatures T ≈ 20 K,
the two mobilities almost coincide (i.e., ν is suppressed). At
low temperatures T ≈ 10 K, again a slight mismatch occurs,
giving rise to the prominent low-temperature peak.

13Contrary to S, ν depends on the lattice constant and scales ac-
cording to ν ∝ a2

lattice (see Appendix D). Using instead of our generic
a = 1 Å, a realistic lattice constant, FeSb2’s Nernst amplitude is, in
principle, not out of reach of the electron diffusion picture.

D. Perspective

The previous section made clear that with reasonable scat-
tering rates and (for larger gap systems) an explicit impurity
in-gap level, all experimental transport coefficients can be
qualitatively matched with an essentially featureless band
structure. This emphasizes the notion that most, if not all,
of the relevant transport physics in narrow-gap semiconduc-
tors are purely determined by the interplay of the gap, the
chemical potential profile (shaped by temperature, carrier life-
times and, potentially, impurity states), and the scattering rate.
Electronic structure intricacies, such as details of the band
structure beyond the gap value and optical transition elements,
all seem to play only a secondary role. Further, we evi-
denced that, at low temperatures (T ∗

RH
< T ∗

ρ < T max
S ), features

are controlled by the scattering rate through the (quantum
= beyond-Boltzmann) transport kernels, whereas the higher-
temperature features (T μ

	 < T μ
ν ) are determined through the

behavior of the chemical potential, which can be driven by
the scattering rate of intrinsic carriers as well as by extrinsic
impurity in-gap states.

Future extensions of the presented formalism (and soft-
ware package [68]) could include the ability to describe
phonon-drag contributions to thermoelectric observables. This
advance could remedy our current inability to quantitatively
match the amplitude of the Seebeck coefficient, in particu-
lar of single crystalline FeSb2. Furthermore, an inclusion of
(topological) surface conduction and in-depth comparisons
of their importance vis-à-vis the discussed bulk conduction
is desirable, also in view of FeSb2 [10,101]. Finally, also
anomalous bulk contributions could be included, following,
e.g., the recent Ref. [108].

VI. SUMMARY AND CONCLUSIONS

We conceptualized an efficient linear response transport
formalism: a low-energy expansion of quasiparticle renor-
malizations enabled performing frequency integrations in
dominant Feynman diagrams analytically. This algorithmic
innovation, implemented in the LINRETRACE [68] package,
allows accurate simulations down to temperatures where full
Kubo calculations are cumbersome and Boltzmann techniques
insufficient. We applied the methodology to narrow-gap semi-
conductors and established a comprehensive phenomenology
of their transport properties.

First, we analytically extracted low-temperature character-
istics of various transport observables: in congruence with
experiments, both the resistivity and the Hall coefficient sat-
urate at finite values for T → 0. The Seebeck and Nernst
coefficients, instead, vanish linearly in the zero-temperature
limit, consistent with thermodynamic expectations. These be-
haviors are beyond the reach of semiclassical approaches
like Boltzmann theory in the relaxation-time approximation,
highlighting the importance of a fully quantum mechanical
description.

Next, we simulated transport properties as a function of
temperature for varying band gap, particle-hole asymmetry,
and scattering rate. This survey establishes the prototypical
temperature dependence of transport in narrow-gap semi-
conductors to be structured by five emergent characteristic
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temperatures: T ∗
RH

< T ∗
ρ < T max

S < T μ
	 < T max

ν : At high tem-
peratures, T > T μ

ν , the shape of all observables is controlled
by the band gap 	 and our equations yield results iden-
tical to Boltzmann approaches. Upon cooling, T μ

	 < T <

T μ
ν , the system experiences a crossover from the activated,

Boltzmann-type regime to a renormalized activation region
T ∗

ρ < T < T μ
	 , with an associated energy 	1 < 	. We find

this crossover to be driven by the chemical potential: finite
lifetimes of valence and conduction states cause incoherent
spectral weight to spill into the gap. Below a characteristic
temperature, these incoherent carriers can no longer be ne-
glected with respect to the charges that are thermally activated
across the gap 	0. In particle-hole asymmetrical systems,
the chemical potential then has to adapt to preserve charge
neutrality by moving to a position separated by only 	1 from
the top (or bottom) of the valence (or conduction) band. This
intrinsic mechanism provides an explanation alternative to the
common extrinsic scenario in which the moving of the chem-
ical potential (and the associated shoulder in the resistivity) is
attributed to the presence of impurity in-gap states. Finally, at
low enough temperature T < T ∗

ρ (T < T ∗
RH

), the system enters
lifetime-dominated regimes in which the resistivity (the Hall
coefficient) saturates and thermoelectric observables vanish
linearly.

In semiclassical approaches, the lifetime of excitations
appears as a mere prefactor of, say, the conductivity. In the
quantum formulation derived here, instead, the scattering rate
is a relevant control parameter that can compete with other
energy scales of the problem. Indeed, the emergence of all
characteristic transport features is a direct consequence of
the interplay of the charge gap and the scattering rate. In

other words, in our transport equations, thermal and lifetime
broadening are described on an equal footing.

Crucial for potential applications, we find the LINRE-
TRACE methodology to be essential to describe the temper-
ature region where the thermoelectric power factor and the
figure of merit are optimal. Materials discovery efforts based
on conventional Boltzmann approaches, instead, are likely to
overlook promising compounds. To mend this shortcoming,
we note that our methodology allows for an easy integra-
tion into already established code bases, heralding future
high-throughput material scans using, e.g., phenomenological
scattering rates.

The established transport phenomenology further allowed
us to fit experimental measurements and reverse engineer
scattering rates (a task previously highlighted for Kondo
insulators [3]), activated carrier densities, and (if needed) im-
purity in-gap states. For the examples FeSb2, RuSb2, FeAs2,
and FeGa3, all characteristic features across transport ob-
servables were well captured, including trends between the
different compounds. We therefore believe our phenomenol-
ogy to be prototypical in the wider context of narrow-gap
semiconductors [1].
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(a) I11 (k, n; Ω; iνm > 0) (b) I11 (k, n; Ω; iνm < 0)

FIG. 12. Contour integration. (a) Extending the desired integral along ω = Rez (Imz = 0), the contour is closed via the lower half-plane
for νm > 0 or (b) closed via the upper half-plane for νm < 0. The poles of the Fermi function are located on the imaginary axis z = iνm =
i π

β
(2m + 1) while the poles of the spectral function are located at z = akn + � ± i�kn. Due to functional decay f (z) = O(za+b−7) (see text)

in the limit of R → ∞ the half-circles do not contribute. A straightforward residue evaluation (inside the closed contour) is thus sufficient to
calculate the initial integral.
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Calculations were performed on the Vienna Scientific Cluster
(VSC).

APPENDIX A: TRANSPORT KERNELS

In this Appendix we illustrate the contour integration and
Matsubara summations necessary to evaluate the transport
kernels. Again, we will restrict ourselves to the intraband case
of Eqs. (18) and (19). For brevity we will abridge the notation
and drop the full momentum and band dependence of the
spectral function A(ω), quasiparticle weight Z , scattering rate
�, and energy a = ε − μ.

1. Contour integration

Starting from the generalized transport kernels (a ∈ {1, 2},
b ∈ {1, 2}) from Eq. (18)

Kab(k, n) =
∫ ∞

−∞
dω ω(a+b−2)

(
− ∂ f

∂ω

)
A2(ω) (A1)

we insert the Matsubara representation of the derivative of
Fermi function

− ∂ f

∂ω
= lim

�→0+

f (ω) − f (ω + �)

�

= lim
�→0+

1

β

∑
m

1

�

(
1

iνm − ω
− 1

iνm − ω − �

)
(A2)

as well as the (coherent part of the) spectral function

A(ω) = Z�

π

1

(ω − a)2 + �2
, (A3)

where the fermionic Matsubara frequencies are νm = (2m +
1)π

β
with m ∈ Z. The resulting expression

Kab(k, n) =
∫ ∞

−∞
dω

Z2�2

π2

ω(a+b−2)

[(ω − a)2 + �2]2

× 1

β

∑
m

lim
�→0+

1

�

(
1

iνm − ω
− 1

iνm − ω − �

)
(A4)

can be abbreviated with

Iab(k, n; �; iνm) =
∫ ∞

−∞
dω

(ω − �)(a+b−2)

[(ω − a − �)2 + �2]2

1

iνm − ω

(A5)

as

Kab(k, n) = Z2�2

π2

1

β
lim

�→0+

[
1

�

∑
m

[Iab(k, n; 0; iνm)

− Iab(k, n; �; iνm)]

]
. (A6)

For finite (positive) scattering rates � > 0, Eq. (A5) is an
integral over a function with three distinct poles in the com-
plex plane: z = a + � + i�, z = a + � − i�, and z = iνm.
This function decays with z → ∞ as O(za+b−7) which for all
considered values of a and b is stronger than O(z−2), ensuring
that any infinitely large arc in the complex plane will not
contribute. Our desired integral, located on the real axis, can
therefore be extended to a closed loop and thus be expressed
as a sum of residues (see Fig. 12). By always choosing the
half-circle opposite to the pole of the Matsubara frequency we
can restrict the evaluation to exactly one (higher-order) pole

Iab(k, n; �; iνm) =
∮
C

dz
(z − �)(a+b−2)

[(z − a − �)2 + �2]2

1

iνm − z

= −sign(νm) 2π i Resz=(a+�−isign(νm )�)
(z − �)(a+b−2)

[(z − a − �)2 + �2]2

1

iνm − z
. (A7)

Due to the different mathematical integration directions, positive and negative fermionic Matsubara frequencies result in differing
signs. Evaluating the residue at z = [a + � − i sign(νm)�] results in the following expressions:

I11(k, n; �; iνm) = π

2�3

[
i� sign(νm)

[iνm − a − � + i�sign(νm)]2 + 1

[iνm − a − � + i� sign(νm)]

]
, (A8)

I12(k, n; �; iνm) = π

2�3

[
�2 + i(a + �)� sign(νm)

[iνm − a − � + i� sign(νm)]2 + (a + �)

[iνm − a − � + i� sign(νm)]

]
− �I11(k, n; �; iνm), (A9)

I22(k, n; �; iνm) = π

2�3

[
i(a + �)2� sign(νm) + 2(a + �)�2 − i�3sign(νm)

[iνm − a − � + i� sign(νm)]2 + �2 + (a + �)2

[iνm − a − � + i� sign(νm)]

]
− 2�I12(k, n; �; iνm) + �2I11(k, n; �; iνm). (A10)

2. Matsubara sums

The second step is to perform the Matsubara sums

Iab(k, n; �) = 1

β

∞∑
m=−∞

Iab(k, n; �; iνm). (A11)
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Using the series representation of the digamma and
polygamma functions

ψ (z) = −γ +
∞∑

n=1

(
1

n
− 1

n + z

)
, (A12)

ψm>0(z) = (−1)m+1m!
∞∑

k=0

1

(z + k)m+1 , (A13)

the summations appearing in Eqs. (A8)–(A10) result in

1

β

∞∑
m=−∞

1

iνm − a + i� sign(νm)
= − 1

π
Imψ (z), (A14)

1

β

∞∑
m=−∞

1

[iνm − a + i� sign(νm)]2 = − β

2π2
Reψ1(z), (A15)

1

β

∞∑
m=−∞

sign(νm)

[iνm − a + i� sign(νm)]2 = − iβ

2π2
Imψ1(z), (A16)

1

β

∞∑
m=−∞

1

[iνm − a + i� sign(νm)]3 = β2

8π2
Imψ2(z), (A17)

1

β

∞∑
m=−∞

sign(νm)

[iνm − a + i� sign(νm)]3 = − iβ2

8π3
Reψ2(z) (A18)

with z = 1
2 + β

2π
(� + ia). Then, the transport integrals sim-

plify to

I11(k, n; �) = π

2�3

[
β�

2π2
Imψ1

(
z + iβ�

2π

)

− 1

π
Imψ

(
z + iβ�

2π

)]
, (A19)

I12(k, n; �) = π

2�3

[
−�2β

2π2
Reψ1

(
z + iβ�

2π

)

+ (a + �)�β

2π2
Imψ1

(
z + iβ�

2π

)

− (a + �)

π
Imψ

(
z + iβ�

2π

)]

−�I11(k, n; �), (A20)

I22(k, n; �) = π

2�3

[
(a + �)2�β − �3β

2π2
Imψ1

(
z + iβ�

2π

)

−2(a + �)�2β

2π2
Reψ1

(
z + iβ�

2π

)

−�2 + (a + �)2

π
Imψ

(
z + iβ�

2π

)]

−2�I12(k, n; �) + �2I11(k, n; �). (A21)

3. Dynamic limit

Taylor expanding the frequency-dependent digamma and
polygamma (m > 0) functions around z,

ψ

(
z + iβ�

2π

)
= ψ (z) + iβ�

2π
ψ1(z) + O(�2), (A22)

ψm

(
z + iβ�

2π

)
= ψm(z) + iβ�

2π
ψm+1(z) + O(�2) (A23)

and evaluating the limit

Kab(k, n) = Z2�2

π2
lim

�→0+

1

�
[Iab(k, n; 0) − Iab(k, n; �)],

(A24)
we finally arrive at the intraband equations listed in the main
text:

K11(k, n) = Z2β

4π3�

[
Reψ1(z) − β�

2π
Reψ2(z)

]
, (A25)

K12(k, n) = Z2β

4π3�

[
a Reψ1(z) − a�β

2π
Reψ2(z)

− �2β

2π
Imψ2(z)

]
, (A26)

K22(k, n) = Z2β

4π3�

[
(a2 + �2)Reψ1(z)

+ β

2π
�(�2 − a2)Reψ2(z) − β

π
a�2Imψ2(z)

]
.

(A27)

The equivalent calculation is easily performed for the mag-
netic kernel functions

KB
ab(k, n) =

∫ ∞

−∞
dω ω(a+b−2)

(
− ∂ f

∂ω

)
A3

kn(ω) (A28)

which only differ from their nonmagnetic counterparts by an
additional spectral function. The integrals

IB
ab(k, n; �; iνm) =

∫ ∞

−∞
dω

(ω − �)(a+b−2)

[(ω − a − �)2 + �2]3

1

iνm − ω

(A29)

then evaluate to

IB
11(k, n; �; iνm) = iπ

8�5

[
2i�2

[iνm − a − � + i� sign(νm)]3 + 3� sign(νm)

[iνm − a − � + i� sign(νm)]2 + −3i

[iνm − a − � + i� sign(νm)]

]
,

(A30)

IB
12(k, n; �; iνm) = iπ

8�5

[
2i(a + �)�2 + 2�3sign(νm)

[iνm − a − � + i� sign(νm)]3 + 3(a + �)� sign(νm) − i�2

[iνm − a − � + i� sign(νm)]2 + −3i(a + �)

[iνm − a − � + i� sign(νm)]

]
− �IB

11(k, n; �; iνm), (A31)
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IB
22(k, n; �; iνm) = iπ

8�5

[
2i(a+ �)2�2 + 4(a + �)�3sign(νm)− 2i�4

[iνm − a − � + i� sign(νm)]3 + −2i(a + �)�2+ �3sign(νm) + 3(a + �)2� sign(νm)

[iνm − a − � + i� sign(νm)]2

+ −i�2 − 3i(a + �)2

[iνm − a − � + i� sign(νm)]

]
− 2�IB

12(k, n; �; iνm) + �2IB
11(k, n; �; iνm). (A32)

Performing the Matsubara sums and taking the dynamical limit, the transport kernels results in the magnetic transport kernels

KB
11(k, n) = Z3β

16π4�2

[
3 Reψ1(z) − 3�β

2π
Reψ2(z) + �2β2

4π2
Reψ3(z)

]
, (A33)

KB
12(k, n) = Z3β

16π4�2

[
3a Reψ1(z) − 3a�β

2π
Reψ2(z) − �2β

2π
Imψ2(z) + a�2β2

4π2
Reψ3(z) + �3β2

4π2
Imψ3(z)

]
, (A34)

KB
22(k, n) = Z3β

16π4�2

[
(�2 + 3a2)Reψ1(z) − β�(�2 + 3a2)

2π
Reψ2(z) − βa�2

π
Imψ2(z)

− β2�2(�2 − a2)

4π2
Reψ3(z) + β2a�3

2π2
Imψ3(z)

]
. (A35)

APPENDIX B: LOW-TEMPERATURE EXPANSION

In order to evaluate the low-temperature behavior we ex-
ploit the Taylor expansion around z = ∞ of the digamma
function

�

(
1

2
+ z

)
= ln(z) + 1

24z2 − 7

960z4 + O(z−6), (B1)

and all higher-order polygamma functions

�1

(
1

2
+ z

)
= 1

z
− 1

12z3 + 7

240z5 + O(z−7), (B2)

�2

(
1

2
+ z

)
= − 1

z2 + 1

4z4 − 7

48z6 + O(z−8), (B3)

�3

(
1

2
+ z

)
= 2

z3 − 1

z5 + 7

8z7 + O(z−9). (B4)

Equations (25)–(30) then become

K11 = Z2

π2

�2

(a2+ �2)2

[
1+ 2π2

3

5a2 − �2

(a2+ �2)2
k2

BT 2+ O(T 4)

]
,

(B5)

K12 = 4Z2

3

a�2

(a2 + �2)3

×
[

k2
BT 2 + 7π2

5

5a2 − 3�2

(a2 + �2)2
k4

BT 4 + O(T 6)

]
, (B6)

K22 = Z2

3

�2

(a2 + �2)2

×
[

k2
BT 2 + 14π2

5

5a2 − �2

(a2 + �2)2
k4

BT 4 + O(T 6)

]
, (B7)

KB
11 = Z3

π3

�3

(a2 + �2)3

[
1 + π2 7a2 − �2

(a2 + �2)2
k2

BT 2 + O(T 4)

]
,

(B8)

KB
12 = 2Z3

π

a�3

(a2 + �2)4

×
[

k2
BT 2 + 28π2

15

7a2 − 3�2

(a2 + �2)2 k4
BT 4 + O(T 6)

]
, (B9)

KB
22 = Z3

3π

�3

(a2 + �3)3

×
[

k2
BT 2 + 21π2

5

7a2 − �2

(a2 + �2)2 k4
BT 4 + O(T 6)

]
. (B10)

Therefore, for any limT →0 �(T ) > 0 the resistivity as well as
the Hall coefficient will saturate. Furthermore, the Seebeck
coefficient, the Nernst coefficient, as well as the thermal con-
ductivity will tend to zero in a linear fashion.

APPENDIX C: KERNEL APPROXIMATIONS

In order to better understand the transport kernels, we
consider two types of approximations to the full kernel expres-
sions: the ψ1 approximation, as the name suggests, consists
of simply using the lowest explicit order in �, resulting in
expressions that functionally depend only on the first-order
polygamma function, e.g.,

Kψ1
11 (k, n) = Z2β

4π3�

⎡
⎢⎢⎢⎣Reψ1(z) −β�

2π
Reψ2(z)︸ ︷︷ ︸

!≡0

⎤
⎥⎥⎥⎦. (C1)

Due to the additional, implicit � dependence through the
polygamma argument z = 1

2 + β

2π
(� + ia), this approxima-

tion is not reasonable in the zero-temperature limit where
the ψ2 term becomes equally important (see Appendix B). A
better approximation is to go one step further and take the full
leading � dependence into consideration: Expanding for small
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(a)

(b)

FIG. 13. ψ1 approximation and Boltzmann approximation of the
full kernel expression K11 for Z = 1, a = 0.03, �0 = 10−5, and γ =
10−7. (a) Kernel behavior with temperature-independent scattering
rate �(T ) = �0. (b) Kernel behavior with Fermi-liquid-like scat-
tering rate �(T ) = �0 + γ T 2. Using the lowest-order polygamma
function is a good approximation at high temperature even for
relatively large scattering rates. At low enough temperatures, we
find a crossover where both terms of the kernel contribute equally.
Surprisingly, the Boltzmann approximation follows the full kernel
expression longer, however, does not saturate.

β�, i.e., around z = 1
2 + iβa

2π
,

Re�n

(
1

2
+ β

2π
(� + ia)

)

= Reψn

(
1

2
+ iβa

2π

)
+ β�

2π
Reψn+1

(
1

2
+ iβa

2π

)
+ O(β2�2), (C2)

and inserting Eq. (C2) into the initial kernel expression results
in an exact cancellation of all terms linear in �, recovering the
Boltzmann expression

KBoltzmann
11 (k, n) = Z2β

4π3�

[
Reψ1

(
1

2
+ iβa

2π

)
︸ ︷︷ ︸

− 2π2
β

f ′(a)

+ O(β2�2)︸ ︷︷ ︸
!≡ 0

]

(C3)

which ignores terms of the order (β�)2 and higher.
The full kernel and the corresponding approximations, il-

lustrated in Fig. 13, show that the ψ1 approximation produces
a finite saturation value in the zero-temperature limit, that,
however, emerges at too large T . Taking the implicit � depen-
dence into account, the resulting Boltzmann approximation
(dashed) leads to a better agreement at intermediate temper-
atures. Yet, this comes with a tradeoff: the Boltzmann kernel
is able to trace the full kernel down to lower temperature, but
does not saturate, KBoltzmann

11 (T → 0) = 0. Identical behaviors
can be observed for the higher-order transport kernels. Com-
bined to observable transport tensors this deficiency in the
limiting behavior causes the usual problem of the relaxation-
time approximation with its nonphysical entropy transport
in gapped systems. Employing the full kernels on the other
hand does not suffer from this problem and entropy-transport
quantities become thermodynamically consistent.

APPENDIX D: SCALING WITH LATTICE CONSTANTS
AND BAND STRUCTURE

Due to the reductionist approach in the main text (only
nearest-neighbor hopping, cubic lattice constant alattice = 1 Å)
the absolute values of the transport properties were for the
most part ignored. A first step towards more realism is using
a proper lattice spacing alattice: the (cubic) unit-cell volume
is V = a3

lattice, while the optical elements within the Peierls
approximation (Sec. II B 2) scale with M ∝ a2

lattice and MB ∝
a4

lattice. Combined, the Onsager coefficients scale like

Lab ∝ a−1
lattice, (D1)

LB
ab ∝ alattice. (D2)

Equations (6)–(12) then naturally lead to

ρ ∝ alattice, (D3)

S ≡ const, (D4)

RH ∝ a3
lattice, (D5)

ν ∝ a2
lattice. (D6)

The second step is a more realistic band structure and tran-
sition matrix elements. An input from density functional
calculations and including beyond-Peierls matrix elements is
straightforward within LINRETRACE [68]. Here, however, we
wanted to restrict ourselves to a tight-binding model with
hoppings t to extract the most essential physics. Then, matrix
elements transform like M ∝ t2 and MB ∝ t3. In a multiband
situation, an overall scaling of results for varying hopping
parameters is not possible.
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