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We present a nonperturbative study of the quantum many-body effects caused by the long-range Coulomb
interaction in a two-dimensional semi-Dirac semimetal. This kind of semimetal may be realized in deformed
graphene and a class of other realistic materials. In the noninteracting limit, the dispersion of semi-Dirac fermion
is linear in one direction and quadratic in the other direction. When the impact of Coulomb interaction is taken
into account, such a dispersion can be significantly modified. To reveal the correlation effects, we first obtain the
exact self-consistent Dyson-Schwinger equation of the full fermion propagator and then extract the momentum
dependence of the renormalized fermion dispersion from the numerical solutions. Our results show that the
fermion dispersion becomes linear in two directions. These results are compared to previous theoretical works
on semi-Dirac semimetals.
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I. INTRODUCTION

Over ten types of semimetal materials have been discov-
ered [1–4] in the past two decades. These materials exhibit
a variety of unusual phenomena that cannot be observed in
ordinary metals and as such have attracted intense theoreti-
cal and experimental investigations. Although most research
works are concentrated on the single-particle properties of
semimetals, such as nontrivial topology and chiral anomaly,
under proper conditions the interparticle interactions may play
a vital role [1–4], leading to strong renormalization of various
physical quantities and also some ordering instabilities.

The Coulomb interaction is usually unimportant in ordi-
nary metals that have a finite Fermi surface. The reason for
this fact is that the originally long-range Coulomb interaction
becomes short ranged due to the static screening induced by
the finite density of states (DOS) of electrons on the Fermi
surface. Renormalization group (RG) analysis indicates that
weak short-ranged repulsion is an irrelevant perturbation at
low energies [5]. Direct perturbative calculations [6] show that
short-ranged Coulomb interaction only leads to weak renor-
malization of physical quantities, which ensures the validity
of Landau’s Fermi liquid theory in ordinary metals. The role
of Coulomb interaction could be rather different in semimetals
that host band-touching points. Let us take a two-dimensional
(2D) Dirac semimetal (DSM) as an example. In the nonin-
teracting limit, undoped DSM manifests a perfect Dirac cone
near the band-touching neutral point [1,2]. Dirac fermions
emerge at low energies with a linear dispersion and a con-
stant velocity vF . Since the DOS of Dirac fermions vanishes
at the band-touching point, the Coulomb interaction remains
long ranged and can lead to considerable quantum many-body
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effects [1,2]. For instance, the fermion velocity acquires a
logarithmic dependence on momentum owing to the Coulomb
interaction [1,2,7–11]. As a consequence, the original Dirac
cone is apparently reshaped near the band-touching point [8].

One can tune some parameters of a 2D DSM to drive two
separate Dirac points to merge into one single point [12–15].
Such a manipulation generates a new type of 2D semimetal.
This new semimetal is called semi-DSM in the literature since
the fermion dispersion is linear along one (say, x) axis and
quadratic along the other (correspondingly, y) axis. The ki-
netic energy of 2D semi-Dirac fermions is expressed as

E = ±
√

υ2 p2
x + B2 p4

y, (1)

where υ is the effective velocity in the x direction and B
stands for the inverse of the effective mass in the y direction.
These fermions are the low-energy elementary excitations at
the quantum critical point (QCP) of the phase transition from
a 2D DSM to a band insulator (BI), as illustrated in Fig. 1.
Such kind of semi-Dirac fermions could be realized in a
variety of materials, including deformed graphene [12,13,16],
pressured organic compound α-(BEDT-TTF)2I3 [13,17–19],
certain TiO2/VO2 nanostructures [20–22], properly doped
few-layer black phosphorus [23], and some artificial optical
lattices [24,25]. In the past ten years, considerable research
efforts have been devoted to studying the interaction-induced
correlation effects [26–28], the hydrodynamic transport prop-
erties [29], and also several possible ordering instabilities
[30–33] in 2D semi-DSMs.

Similar to 2D DSM, the DOS of the semi-Dirac fermions
vanishes at the Fermi level. Thus the Coulomb interaction
is also long ranged. It is important to examine whether the
poorly screened Coulomb interaction produces nontrivial cor-
relation effects. This issue has been previously addressed by
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FIG. 1. The quantum phase transition between a DSM and a BI is
tuned by changing the sign of the gap �. For � < 0, the system is a
DSM with two band-touching Dirac points. As � → 0, two isolated
Dirac points merge into one single point at which 2D semi-Dirac
fermions emerge. If � > 0, the system becomes a normal BI.

several groups of theorists. Isobe et al. [26] carried out RG
calculations based on the 1/N expansion, where N is the
fermion flavor, and claimed to reveal a crossover from non-
Fermi liquid behavior to marginal Fermi liquid behavior as
the energy scale is lowered. Cho and Moon [27] made a RG
analysis of the same model system by employing two different
perturbative expansion schemes and predicted the existence of
a novel quantum criticality characterized by the anisotropic
renormalization of the Coulomb interaction. Recently, Ko-
tov et al. [28] revisited this problem. They employed the
weak-coupling expansion method to perform leading-order
RG calculations, choosing the fine structure constant α as
a small parameter, and found a weak-coupling fixed point
that appears to be different from the unusual fixed points
obtained by means of 1/N expansion [26,27]. In particular,
Kotov et al. [28] showed that the fermion dispersion becomes
linear in both the x and y directions after incorporating the
renormalization caused by the Coulomb interaction.

An interesting problem is to unambiguously determine the
impact of Coulomb interaction on the low-energy properties
of semi-Dirac fermions. For this purpose, it is necessary to
go beyond both the weak-coupling expansion and the 1/N
expansion and find a suitable method that is valid for any value
of α and any value of N . Recently, an efficient nonperturba-
tive quantum-field-theoretical approach has been developed
[11,34] to handle strong fermion-boson couplings. The crucial
procedure of this approach is to derive the exact and self-
closed Dyson-Schwinger (DS) equation of the full fermion
propagator. The contributions of the fermion-boson vertex
corrections are entirely determined by solving a number of ex-
act identities satisfied by various correlation functions [11,34].
This approach has previously been adopted to deal with the
electron-phonon interaction in ordinary metals [34] and the
Coulomb interaction between Dirac fermions in 2D DSMs
[11]. Here we apply this approach to study the Coulomb inter-
action in semi-DSM. We first obtain the exact self-consistent
integral equations of the renormalization functions for υ and
B, which are valid for arbitrary values of α and N , and then
numerically solve these equations. We find that the disper-
sion of semi-Dirac fermions are substantially renormalized by
the Coulomb interaction. At low energies, the renormalized
fermion dispersion is linear in momentum in two directions,
qualitatively consistent with the weak-coupling results [28].

FIG. 2. (a) Schematic illustration of the dispersion of 2D semi-
Dirac fermions with (inside) and without (outside) including the
effects of Coulomb interaction. (b) Renormalized (inside) and un-
renormalized (outside) dispersion 2D Dirac fermions (see Ref. [8]
for more details).

As shown in Fig. 2(a), the fermion dispersion is strongly
reshaped and becomes a Dirac cone.

The rest of the paper is organized as follows. In Sec. II we
define the effective model of the system. In Sec. III we present
the DS equation of fermion propagator by using four coupled
Ward-Takahashi identities (WTIs). In Sec. IV we show the
numerical results and discuss the physical implications. In
Sec. V we summarize the main results.

II. MODEL

The model considered in this work describes the Coulomb
interaction between 2D semi-Dirac fermions. We now present
the generic form of the action. The partition function of the
system has the following form:

Z =
∫
DψDψ̄Da0ei

∫
dxL[ψ,ψ̄,a0], (2)

L[ψ, ψ̄, a0] = L f [ψ, ψ̄] +Le[a0] +L f e[ψ, ψ̄, a0]. (3)

Here x = (t, x) denotes the (1 + 2)-dimensional coordinate
vector and dx = dtdx. Below we define the three parts of
L[ψ, ψ̄, a0] in order.

The the Lagrangian density of free semi-Dirac fermions is

L f [ψ, ψ̄] =
N∑

σ=1

ψ̄σ (x)(iγ 0∂t −H f )ψσ (x). (4)

The conjugate of spinor field ψ is ψ̄ = ψ†γ 0. The flavor
index is denoted by σ , which sums from 1 to N . The spinor ψ

has two components. The Hamiltonian densityH f is

H f = −iυγ 1∂x − Bγ 2∂2
y , (5)

where υ is the velocity along the x direction and 1
(2B) > 0 is

the mass along the y direction. The three 2 × 2 Dirac matrices
can be written as γ 0 = σ3, γ 1 = iσ1, and γ 2 = iσ2.

The pure Coulomb interaction is modeled by a direct
density-density coupling term

HC = 1

4π

e2

υε

∑
σ,σ ′

∫
d2xd2x′ρσ (x)

1

|x − x′|ρ
†
σ ′ (x′), (6)

where the fermion density operator is ρσ (x) ≡ ψ†
σ (x)ψσ (x) =

ψ̄σ (x)γ 0ψσ (x). The DS equation approach was designed to
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treat fermion-boson couplings [11,34]. In order to use this
approach, it is convenient to introduce an auxiliary scalar
field a0 and then to reexpress the Coulomb interaction by the
following two terms [11]:

Le[a0] = a0
D

2
a0, (7)

L f e[ψ, ψ̄, a0] =
N∑

σ=1

a0ψ̄σ γ 0ψσ . (8)

After performing Fourier transformation, the inverse of the
operator D is converted into the free boson propagator D0(q),
which will be given later. Notice the absence of self-coupling
terms of the bosonic field a0, which is owing to the important
fact that the Coulomb interaction originates from an Abelian
U (1) gauge symmetry.

The strength of Coulomb interaction is characterized by a
dimensionless parameter

α = e2

υεd
, (9)

where εd is the dielectric constant, which can be regarded as
an effective fine structure constant. The velocity υ is explicitly
written down throughout this paper.

III. DYSON-SCHWINGER EQUATIONS

In this section we present a number of DS equations and
exact identities satisfied by various correlation functions. The
free boson propagator, expressed in terms of α, has the form

D0(q) = 2παυ

|q| . (10)

The free fermion propagator is

G0(p) ≡ G0(p0, p) = 1

γ 0 p0 − υγ 1 px − Bγ 2 p2
y

. (11)

After including the interaction-induced corrections, it is sig-
nificantly renormalized and becomes

G(p) ≡ G(p0, p)

= 1

A0(p)γ 0 p0 − A1(p)υγ 1 px − A2(p)Bγ 2 p2
y

, (12)

where the renormalization function A0(p) ≡ A0(p0, p)
embodies the (Landau-type) fermion damping, A1(p) ≡
A1(p0, p) reflects the renormalization of fermion velocity
along the x axis, and A2(p) ≡ A2(p0, p) contains the
renormalization of fermion mass along the y axis.

The free and full propagators are related by the following
self-consistent DS integral equations:

G−1(p) = G−1
0 (p) + i

∫
d3k

(2π )3
γ 0G(k)D(k − p)int (k, p),

D−1(q) = D−1
0 (q) − iN

∫
d3k

(2π )3
Tr[γ 0G(k + q)

×int (k + q, k)G(k)]. (13)

Here D(q) denotes the full boson propagator. For notational
simplicity, the DS equations are expressed in the momentum

space. These two DS equations can be derived rigorously by
performing field-theoretic analysis within the framework of a
functional integral [11]. Here int (k, p) stands for the proper
(external-legs truncated) fermion-boson vertex function de-
fined via the following three-point correlation function:

D(k − p)G(k)int (k, p)G(p) = 〈φψψ̄〉. (14)

To determine G(p) and D(q), one needs to first specify the
vertex function int (k, p). By carrying out functional calcula-
tions, one can show that int satisfies its own DS equation

int (k, p) = −γ 0 +
∫

d3 p′

(2π )(3)
G(p′ + k)int (k, p′)

× G(p′)K4(p, p′, k), (15)

where K4(p, p′, q) represents a kernel function that is related
to the four-point correlation function 〈ψψ̄ψψ̄〉 as follows:

G(p + p′ + k)G(p′)K4(p, p′, k)G(p)G(k) = 〈ψψ̄ψψ̄〉.
(16)

The function K4(p, p′, q) also satisfies a peculiar DS integral
equation, which in turn is linked to five-, six-, and higher-
point correlation functions. Repeating such manipulations,
one would obtain an infinite hierarchy of coupled integral
equations [11,34]. The full set of DS integral equations are
exact and can give us all of the interaction-induced effects.
However, such equations seem to be of little use in practice
since they are not closed and cannot be really solved.

To make such DS equations solvable, one needs to find
a proper way to introduce truncations. The strategy of the
widely used Migdal-Eliashberg (ME) theory is to simply dis-
card all the vertex corrections by replacing the full vertex
function with the bare one, i.e.,

int (k, p) → −γ 0. (17)

Then the originally infinite number of DS equations are re-
duced to only two equations of G(p) and D(q), namely

G−1(p) = G−1
0 (p) − i

∫
d3k

(2π )3
γ 0G(k)D(k − p)γ 0,

D−1(q) = D−1
0 (q) + iN

∫
d3k

(2π )3
Tr[γ 0G(k + q)γ 0G(k)].

These two equations are self-closed and solvable. However,
the validity of the ME theory is indeed unjustified, especially
in the strong-coupling regime.

The nonperturbative approach developed in Refs. [11,34]
aims to take into account the contributions of all the vertex
functions int (k, p) by properly using several exact identi-
ties obeyed by some correlation functions. Below we briefly
outline how this approach works in the case of 2D semi-
DSM. More details about this approach can be found in
Refs. [11,34].

Now let us introduce a generic current operator

jμM (x) = ψ̄σ (x)Mμψσ (x) (18)

based on four matrices

Mμ = (γ 0, γ 1, γ 2, γ 012), (19)
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where γ 012 = γ 0γ 1γ 2. This current can be used to define a
corresponding current vertex function 

μ
M as follows:

〈 jμM (x)ψα (y)ψ̄β (z)〉

=
∫

dξ1dξ2[G(y − ξ1)μ
M (ξ1 − x, x − ξ2)G(ξ2 − z)]

αβ
.

(20)

The four components of the current vertex function 
μ
M satisfy

four self-consistent generalized WTIs. Solving these WTIs,
one can express the current vertex functions as a linear com-
bination of the inverse of the full fermion propagator G(p).
The procedure of deriving such WTIs is illustrated in great
detail in Ref. [11] and will not be repeated here. Below we
only present the WITs that relate 

μ
M to G(p).

We use γ 0 , γ 1 , γ 2 , and γ 012 to denote the four compo-
nents of 

μ
M . For notational simplicity, let us define several

quantities here: q0 = k0 − p0, P0 = k0 + p0, q1 = k1 − p1,
P1 = k1 + p1, q2 = k2 − p2, and P2 = k2 + p2. According to
the detailed analysis presented in Ref. [11], these four current
vertex functions and the full fermion propagator are linked to
each other via the following four WTIs:

MA

⎛
⎜⎝

γ 0

γ 1

γ 2

γ 012

⎞
⎟⎠ =

⎛
⎜⎝
A0

A1

A2

A3

⎞
⎟⎠, (21)

where the matrix

MA =

⎛
⎜⎝

q0 q1 −q2 0
−q1 −q0 0 P2

q2 0 −q0 P1

0 −P2 −P1 q0

⎞
⎟⎠ (22)

and

A0 = −G−1(k) + G−1(p), (23)

A1 = G−1(k)γ 0γ 1 + γ 0γ 1G−1(p), (24)

A2 = G−1(k)γ 0γ 2 + γ 0γ 2G−1(p), (25)

A3 = −G−1(k)γ 1γ 2 + γ 1γ 2G−1(p). (26)

After solving the above four coupled identities, each of the
four current vertex functions, namely γ 0 , γ 1 , γ 2 , and
γ 012 , can be determined and expressed purely in terms of the
fermion propagator G(p). Notice that the matrix MA given by
Eq. (22) is different from that obtained in the case of 2D DSM
[11] due to the difference in the fermion dispersions.

Apparently the current vertex functions do not enter into
the original DS equations of G(p) and D(q). To make the
above WTIs useful, we should find a way to substitute the
current vertex functions into the DS equation of G(p). As
demonstrated previously in Ref. [11], there exists an iden-
tity that connects γ 0 (k, p) to D0(k − p), D(k − p), and
int (k, p). Such an identity also exists in the case of 2D semi-
DSM, given by

D0(k − p)γ 0 (k, p) = D(k − p)int (k, p). (27)

It is now clear that we only need one of the four current vertex
functions, i.e., γ 0 (k, p). After solving the four coupled WTIs,
γ 0 can be easily obtained:

γ 0 (k, p) = 1

det(MA)

[
q0

(
q2

0 − P2
1 − P2

2

)
A0

− (
q1P2

1 + q2P1P2 − q2
0q1

)
A1

− (
q2

0q2 − q1P1P2 − q2P2
2

)
A2

+ q0(q2P1 − q1P2)A3

]
, (28)

where the denominator is

det(MA) = q4
0 − q2

0

(
q2

1 + q2
2 + P2

1 + P2
2

) + (P1q1 + P2q2)2.

(29)

According to the identity (27), the product D(k − p)int (k, p)
appearing in the DS equation of G(p) can be replaced with the
product D0(k − p)γ 0 (k, p), which leads to

G−1(p) = G−1
0 (p) + i

∫
d3k

(2π )3
γ 0G(k)D0(k − p)γ 0 (k, p),

(30)
where γ 0 (k, p), as shown by Eq. (28) and Eqs. (23)–(26),
depends solely on the full fermion propagator. Clearly the DS
equation of G(p) becomes entirely self-closed. To investigate
the renormalization of fermion dispersion, we substitute the
generic form of G(p), i.e., Eq. (12), into Eq. (30) and obtain

A0(p)γ 0 p0 − A1(p)υγ 1 px − A2(p)Bγ 2 p2
y − γ 0 p0 + υγ 1 px + Bγ 2 p2

y

= i
∫

d3k

(2π )3
γ 0

A0(k)γ 0k0 − A1(k)υγ 1kx − A2(k)Bγ 2k2
y

A2
0(k)k2

0 − A2
1(k)υ2k2

x − A2
2(k)B2k4

y

D0(k − p)γ 0 (k, p). (31)

This DS equation can be readily decomposed into three
coupled integral equations of A0(p), A1(p), and A2(p). Multi-
plying three matrices γ 0, γ 1, and γ 2 to both sides of Eq. (31)
and then calculating the trace would lead us to three coupled
integral equations of A0(p), A1(p), and A2(p), respectively. All
the interaction-induced quantum many-body effects of Dirac
fermions can be extracted from the numerical solutions of
A0(p), A1(p), and A2(p).

The three integral equations can be solved by means of
the iteration method. The detailed procedure of implement-
ing this method has already been demonstrated previously
in Ref. [34]. These equations contain an integration over
three variables, including k0, kx, and ky. It would consume
an extremely long computational time to integrate over three
variables by using the iteration method. In order to sim-
plify numerical computations, we introduce an instantaneous
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approximation and assume that the frequency dependence of
A0,1,2(p) is rather weak. Throughout this paper we fix the
functions A0,1,2(p) at zero energy, i.e., p0 = 0, and consider

only the momentum dependence of A0,1,2(px, py). In this ap-
proximation, it is easy to see that A0 = 1, we get a coupled
system of equations for A1(p) and A2(p):

A1(p) = 1 + 1

px

∫
dεd2k
(2π )3

D0(k − p)

ε2 + A2
1(k)k2

x + A2
2(k)β2k4

y

1

det(MA)

×
{
ε2

[(
qxP2

x + qyPxPy + ε2qx
) + (

ε2 + P2
x + P2

y

)
[A1(p)px − A1(k)kx]

+ (qxPy − qyPx )
(
A2(p)βp2

y + A2(k)βk2
y

)]

+ A1(k)kx

[
ε2

(
ε2 + P2

x + P2
y

) − (
qxP2

x + qyPxPy + ε2qx
)
[A1(p)px − A1(k)kx]

− (
qyP2

y + qxPxPy + ε2qy
)(

A2(p)βp2
y − A2(k)βk2

y

)]

− A2(k)βk2
y

[
ε2(qxPy − qyPx ) + (

qyP2
y + qxPxPy + ε2qy

)
[A1(p)px + A1(k)kx]

− (
qxP2

x + qyPxPy + ε2qx
)(

A2(p)βp2
y + A2(k)βk2

y

)]}
, (32)

A2(p) = 1 + 1

βp2
y

∫
dεd2k
(2π )3

D0(k − p)

ε2 + A2
1(k)k2

x + A2
2(k)β2k4

y

1

det(MA)

×
{
ε2

[(
qyP2

y + qxPxPy + ε2qy
) − (qxPy − qyPx )[A1(p)px + A1(k)kx]

+ (
ε2 + P2

x + P2
y

)(
A2(p)βp2

y − A2(k)βk2
y

)]

+ A1(k)kx

[
ε2(qxPy − qyPx ) + (

qyP2
y + qxPxPy + ε2qy

)
[A1(p)px + A1(k)kx]

− (
qxP2

x + qyPxPy + ε2qx
)(

A2(p)βp2
y + A2(k)βk2

y

)]

+ A2(k)βk2
y

[
ε2

(
ε2 + P2

x + P2
y

) − (
qxP2

x + qyPxPy + ε2qx
)
[A1(p)px − A1(k)kx]

− (
qyP2

y + qxPxPy + ε2qy
)(

A2(p)βp2
y − A2(k)βk2

y

)]}
. (33)

The integration ranges for kx and ky are chosen as kx ∈
(−�x,�x ) and ky ∈ (−�y,�y), respectively. In practice, it
is sufficient to take �x = �y = �, where � is an UV cut-
off of momentum. In principle, the energy ε takes all the
possible values, namely ε ∈ (−∞,∞). In practical numeri-
cal computations, the energy is integrated within the range
of (−�ε,�ε ), where the cutoff �ε should be taken to be
sufficiently large to make sure that the results are nearly in-
dependent of �ε . It is convenient to rescale all the momenta
as follows:

kx → kx/�, ky → ky/�. (34)

Then the integration range is altered to kx,y ∈ (−1, 1). Af-
ter dividing the left and right sides of the original integral
equations by υ, the integration range of energy is rescaled
to ε ∈ (− �ε

υ�
, �ε

υ�
) with υ� being the unit of energy. In

our numerical calculations, we choose ε ∈ (−10, 10). The
model contains three tuning parameters: the interaction
strength α, the velocity υ, and a tuning parameter β =
B�/υ. In the above two equations, we have D0(k − p) =

2πα√
(kx−px )2+(ky−py )2

, qx = kx − px, Px = kx + px, qy = βk2
y −

βp2
y, Py = βk2

y + βp2
y, and det(MA) = ε4 + 2ε2(k2

x + p2
x +

β2k4
y + β2 p4

y ) + (k2
x − p2

x + β2k4
y − β2 p4

y )2.

IV. RENORMALIZATION OF FERMION DISPERSION

In the noninteracting limit, the fermion spectrum exhibits
a linear dependence on px with a coefficient υ and a quadratic
dependence on py with a coefficient B. When the correlation
effects are incorporated, these two coefficients υ and B will
be renormalized, described by the functions A1(px, py) and
A2(px, py), respectively. The interaction-induced modification
of fermion dispersion should be extracted from the numerical
solutions of A1(px, py) and A2(px, py). Throughout this sec-
tion, the momentum (such as px or py) is in unit of � and the
energy is in unit of υ�.

Let us first discuss the behavior of renormalization func-
tion A2(px, py). We find it more convenient to consider the
momentum dependence of the function A2(px, py)βp2

y, in-
stead of A2(px, py) itself. The full momentum dependence
of A2(px, py)βp2

y obtained by solving Eqs. (32) and (33) in
Fig. 3, for six different values of α. It is easy to find that
A2(px, py)βp2

y is nearly independent of px for small values of
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FIG. 3. The full momentum dependence of the function A2(px, py )βp2
y obtained by solving the self-consistent integral equations of A1(p)

and A2(p). We choose six different values of α, including α = 0.01, α = 0.04, α = 0.1, α = 0.3, α = 0.6, and α = 1.2. The parameter β is
taken as β = 1.0. Over a wide range of px and py, A2(px, py )βp2

y exhibits a linear dependence on py but is nearly independent of px . Close
to the small momentum py, A2(px, py )βp2

y appears to deviate from the linear behavior, which stems from the opening of a finite gap. Such a
deviation would disappear once this gap is closed by carefully tuning the system to approach the semi-DSM QCP.

α. As α exceeds 0.6, A2(px, py)βp2
y exhibits a considerable

dependence on px. In contrast, A2(px, py)βp2
y manifests a

significant dependence on py for all values of α. To show
these properties more explicitly, we plot the px dependence of
A2(px, py = 0) in Fig. 4(a) and the py dependence of A2(px =
0, py ) in Fig. 4(b).

The py dependence of A2(px, py)βp2
y deserves a little

more analysis. Over a wide range of py below the UV cut-
off, A2(px, py)βp2

y displays a linear dependence on py. This
behavior indicates that the originally quadratic fermion dis-
persion along the y direction is turned into a linear dispersion
owing to the Coulomb interaction. Consequently, the 2D semi-
Dirac fermions behave in the same way as the ordinary 2D
Dirac fermions that exhibit a linear dispersion along two di-
rections. For small values of py, the dispersion is no longer
linear in py. Indeed, a finite energy gap �0 is opened at py = 0
and such a gap is an increasing function of α. The interaction-
induced quadratic-to-linear transition of the fermion disper-
sion along y direction and also the generation of a finite gap
have already been obtained previously in the weak-coupling
perturbative calculations of Kotov et al. [28]. Our nonpertur-
bative studies show that these two conclusions remain correct
even when the interaction parameter α becomes large.

Summarizing the results shown in Figs. 3 and 4(b), we find
that A2(px, py) can be approximately described by

A2(px, py) ∼ a

py
+ b

p2
y

, (35)

where a and b are two fitting constants. We assume that a � b
in the limit of py → � and that a � b in the limit of py → 0.

For large values of py, the first term dominates over the second
term, leading to

A2(px, py)βp2
y ∼ py. (36)

For small values of py, the second term dominates such that

A2(px, py)βp2
y ∼ bβ, (37)

where the constant bβ represents a finite gap. Notice that such
a gap does not break any symmetry of the system and per-
sists for an arbitrary weak Coulomb interaction. Its existence
implies that the semi-DSM state is unstable against Coulomb
interaction and can be easily turned into a BI. However, one
can tune this gap to vanish by carefully varying certain ex-
ternal parameters [28], which then would drive the system to
approach the DSM-to-BI QCP. In this regard, the second term
of A2(px, py) can be simply dropped, leaving us with only the
first term.

The above results show that the function A2(px, py)βp2
y is

linear in py in the low-energy region. An indication of such
a behavior is that the semi-DSM state is actually unstable
against the Coulomb interaction since the originally quadratic
dispersion along the y direction is strongly renormalized and
becomes a linear one. Consequently, the renormalized disper-
sion of low-energy fermionic excitations of a 2D semi-DSM
resembles the cone-shaped dispersion of noninteracting 2D
Dirac fermions. By comparing Fig. 2(a) to Fig. 2(b), one can
see that the Coulomb interaction renormalizes the dispersions
of 2D Dirac fermions and 2D semi-Dirac fermions very differ-
ently. Our nonperturbative results qualitatively agree with that
obtained by using the first-order weak-coupling perturbative
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(a) (b)

(c) (d)

FIG. 4. (a) The px dependence of the function A2(px, py )βp2
y obtained in the py → 0 limit. (b) The py dependence of the function

A2(px, py )βp2
y obtained in the px → 0 limit. (c) The px dependence of the function A1(px, py ) obtained in the py → 0 limit. (d) The py

dependence of the function A1(px, py ) obtained in the px → 0 limit. Here we set β = 1.0 and choose four different values of α, including
α = 0.01, α = 0.1, α = 0.3, and α = 1.2.

RG method [28], but appear to be at odds with that obtained
by the 1/N-expansion approach [26,27].

We see from Fig. 4(c) that the renormalization function
A1(px, 0) is nearly independent of px. Close to the limit of
px → 0, A1(px, 0) appears to be substantially enhanced. We
emphasize that such an enhancement is actually an artifact of
IR cutoff. There is always an IR cutoff for px in carrying out
numerical computations. In our case, the IR cutoff is taken
as 10−5�. The contributions of the range of px < 10−5� to
A1(px, 0) are inevitably neglected. However, as demonstrated
in Ref. [11], the long-range nature of the Coulomb interac-
tion indicates that small-momentum contributions are always
larger than those of large momenta. If we reduce the IR cutoff,
the plateau always extends to lower momentum.

According to the results shown in Fig. 4(d), A1(0, py) is
also nearly independent of py for small values of α. But as
α grows to fall into the strong-coupling regime, A1(0, py)
becomes significantly dependent on py. Based on the above
results, we infer that the fermion dispersion remains linear
along the x direction within a broad range of α and momentum
even when the impact of Coulomb interaction is included.

In Figs. 5(a) and 5(b) we show how the renormalized
fermion spectrum, characterized by the function ε(px, py) =
±

√
A2

1(px, py)p2
x + A2

2(px, py)β2 p4
y , depends on px and py for

a fixed value of α, respectively. This spectrum manifests a

nearly linear dependence on momentum in both of the two di-
rections within a broad range of px and py. There seems to be
a deviation from the standard linear behavior in the region of
small px,y. This deviation stems from the existence of a finite
gap at px,y = 0. If such a gap is removed by tuning suitable
external parameters, the deviation from linear behavior would
disappear.

V. SUMMARY AND DISCUSSION

In summary, we have performed a nonperturbative field
theoretical study of the renormalization of the dispersion of
2D semi-Dirac fermions by incorporating the influence of
long-range Coulomb interaction. Making use of several exact
identities, we derive the self-closed DS integral equation of
the full fermion propagator and obtain the momentum de-
pendence of the renormalized fermion spectrum based on the
numerical solutions of such an equation. Our results show that
the originally quadratic dispersion of semi-Dirac fermions is
dramatically renormalized by the Coulomb interaction and
changed into a linear one, which is illustrated in Fig. 2(a).
However, the originally linear dispersion remains linear after
renormalization.

Comparing to the RG approach, the DS equation ap-
proach has two major advantages. First, the full momentum
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(a) (b)

FIG. 5. (a) The px dependence of the renormalized fermion dispersion ε(px, py ) = ±
√

A2
1(px, py )p2

x + A2
2(px, py )β2 p4

y obtained in the

py → 0 limit. (b) The py dependence of ε(px, py ) obtained in the px → 0 limit. Here we set β = 1.0 and α = 1.2. In the case of strong
coupling, the fermion excitations exhibit an anisotropic linear dispersion due to the strong renormalization caused by the Coulomb interaction.

dependence of such physical quantities as the renormalization
functions A1(px, py ) and A2(px, py) can be obtained from the
numerical solutions of their integral equations. In contrast, the
RG equations of various model parameters depends merely
on a varying scale l = ln(�/E ) where E is either the energy
or the absolute quantity of the momentum. Second, the DS
equation of fermion propagator is exact and contains all the
interaction-induced effects. Hence the DS equation approach
is valid for any values of α and N .

In order to simplify numerical computations, we have
neglected the energy dependence of the renormalization
functions A1(px, py) and A2(px, py). Under such an approxi-
mation, the quasiparticle residue Z cannot be calculated since
the renormalization function A0(p) = 1. Thus the results pre-
sented in this paper cannot be used to judge whether the

system exhibits non-Fermi liquid behaviors. The computa-
tional time of solving the complicated integral equations of
A0(p0, px, py), A1(p0, px, py), and A2(p0, px, py) is much
longer than that needed to solve the integral equations of
A1(px, py) and A2(px, py). We wish to undertake such a task
in a future project.
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