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The frustrated magnetism on the Kondo lattice system motivates intriguing Kondo breakdown beyond the
traditional Doniach scenario. Among them, the fractionalized Fermi liquid (FL*) has drawn particular interest
by virtue of its fractionalized nature. Here we study the phase diagram of the J1-J2 Kondo-Heisenberg model on
a honeycomb lattice at a quarter filling. Employing the slave-fermion mean-field theory with d ± id spin liquid
ansatz and exact diagonalization, we discuss the emergence of partial Kondo screening in the frustrated regime
with comparable J1 and J2, and the fractionalized superconductor (SC*), which is a superconductor analogy of
the FL*. Due to the larger number of local spin moments than itinerant electrons, the magnetic fluctuation is
still significant even in the strong-coupling limit, which influences the thermodynamic and transport properties
qualitatively. In particular, we estimate the thermal conductance to probe the low-energy excitation and show the
anomalous behavior in the SC* phase in contrast to the conventional superconductors.
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I. INTRODUCTION

Kondo lattice model (KLM) is prototypical for designing
the heavy fermion compounds and transition-metal oxides
[1–3]. After the discovery of resistivity minimum [4–6], a
wealth of correlated phenomena such as the effective mass
enhancement [7], quantum criticality [8–13], and uncon-
ventional superconductivity [14–17] have been reported. A
great deal of theoretical interest is devoted to understanding
those novel characters as a consequence of two competing
tendencies, Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action and the resonant hybridization on the KLM [18,19].
The underlying paradigm is that the dense arrays of magnetic
impurities immersed in the metal undergo several instabilities,
especially the spin-density waves and Kondo singlet forma-
tion, as the ratio of the competing energy scales varies below
the Kondo temperature.

Recently, it has been spotlighted that the geometrical
frustration is also decisive to the global phase diagram in
Kondo physics [20–23]. In the frustrated magnet, the low-
temperature paramagnet might develop a highly entangled
ground state, quantum spin liquid (QSL), which turns out to
be robust against small perturbations [24]. Then the Kondo
coupling to the conduction electrons might lead to interesting
physics, fractionalized Fermi liquid (FL*) [25,26]. Compared
to conventional Fermi liquid (FL), the robustness against
the Kondo screening is supported by the topological order,
accompanied by the Luttinger theorem violation. An alter-
native possibility for the small Fermi surface is the partial
Kondo screening (PKS) separated from the strong-coupling
limit to some extent [27,28]. In the presence of the interme-
diate Kondo exchange, only a portion of local moments is
hybridized, leaving the magnetic degrees of freedom. In the
thermodynamic limit, it has been speculated that the portion of
singlets tends to be regularly arranged on a specific sublattice.

In this way, the frustrated magnetism involves both FL*
and PKS, but their collaboration on KLM leaves an open
question. Starting from FL* instead of magnetic order, it is
tempting to consider the coexisting characters of FL* and PKS
as the Kondo coupling is turned on. If the numbers of Bloch
electrons and localized S = 1/2 spins are stringently equal,
the ground state inevitably flows to the heavy Fermi liquid in
the strong-coupling limit. Then the local spin moments alto-
gether engage in the hybridization channel. However, if there
is an excess of magnetic degrees of freedom, the strongly cou-
pled KLM does not necessarily imply the Kondo limit. Along
with the electronic quasiparticles, the remaining magnetic
spins still strongly fluctuate to bring about the charge-neutral
spinons. As a consequence, the transport and thermodynamic
behaviors are expected to exhibit both the fractionalization
and hybridization characters.

In this paper we consider a J1-J2 Kondo-Heisenberg model
on the honeycomb lattice with quarter-filled conduction elec-
trons. Employing the ground-state ansatz of the frustrated
Heisenberg model to be a d ± id spin liquid, we turn on the
on-site Kondo exchange to propose the existence of a novel
fractionalized phase beyond FL*. As the Kondo exchange
increases, we show that only one sublattice is spontaneously
hybridized, forming a Kondo resonance, while the other sub-
lattice still retains the fractionalized excitation. Especially for
a sufficiently frustrated regime where J1 and J2 are compa-
rable, the proximate superconductivity is induced, preserving
the chirality of the superconducting order on the itinerant side.
As a consequence of existing gapless fractionalized excitation,
we expect the power-law longitudinal thermal conductance
behavior at the low temperature. This result is contrary to the
s-wave or chiral d-wave superconductors, with the gapped
spectrum exhibiting exponentially decaying behaviors. Fi-
nally, we also check that the partial Kondo screening occurs
for exact diagonalization on the 18-site honeycomb lattice.
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FIG. 1. (a) Kondo-Heisenberg model on the honeycomb lattice.
Upper and lower layers represent conduction electrons (ciα) and
the localized moments (S f

i ) layers, respectively. Those layers are
coupled by on-site Kondo coupling JK depicted by dotted lines.
(b) Nearest-neighbor hopping (left) and next-nearest-neighbor pair-
ing (right) phases of d ± id spin liquid. Black, red, and green colors
indicate 1, e2π i/3, and e4π i/3, respectively, and arrows on the left
figure show the corresponding electron hopping direction. �a1 and �a2

are primitive lattice vectors, and A, B are two sublattices in the unit
cell. (c) Next-nearest-neighbor pairing phase of d ± id spin liquid
for the A sublattice (left) and B sublattice (right) in momentum space.
Dotted line in the hexagonal plaquette shows the Fermi surface of the
quarter-filled conduction electron.

II. J1-J2 KONDO-HEISENBERG MODEL ON THE
HONEYCOMB LATTICE

In this section we study the J1-J2 Kondo-Heisenberg model
on the quarter-filled honeycomb lattice. The system consists
of two honeycomb layers [see Fig. 1(a)]. The upper layer is
occupied by one itinerant electron per unit cell on average
governed by the nearest-neighbor tight-binding Hamiltonian.
On the other hand, the lower layer is occupied by one localized
spin moment S f with |S f | = 1/2 per site governed by the
nearest-neighbor and the next-nearest-neighbor antiferromag-
netic Heisenberg exchanges J1, J2 > 0. Those two layers are
coupled by the on-site Kondo interaction JK whose Hamilto-
nian is given by

H = t
∑

〈i, j〉,α
(c†

iαc jα + H.c.) − μ
∑
i,α

c†
iαciα

+ J1

∑
〈i, j〉

S f
i · S f

j + J2

∑
〈〈i, j〉〉

S f
i · S f

j

+ JK

∑
i,αβ

(
1

2
c†

iασαβciβ

)
· S f

i , (2.1)

where c†
iα (ciα) is the conduction electron creation (annihila-

tion) operator at site i on the upper layer with spin α, β =

↑,↓, μ is the chemical potential for conduction electrons, and
σαβ are Pauli matrices. From now on, the conduction electron
hopping parameter t is set to be unity and all energy and
temperature scales are measured in units of t = 1.

In the decoupled limit JK = 0, the upper layer is a quarter-
filled metallic phase having a finite Fermi surface [dotted line
in Fig. 1(c)]. The lower layer is the J1-J2 Heisenberg model on
the honeycomb lattice whose ground state for the frustrated
regime with both J1 and J2 is still of debate: spiral [29], pla-
quette valence bond solid [30], magnetically disordered [31],
and spin liquid [32,33]. Among those candidates, the d ± id
spin liquid ansatz, the ground state confirmed by variational
Monte Carlo simulation, is of our interest to study the FL*. To
proceed, we introduce a fermionic spinon operator fiα which
constitutes the localized spin operator S f

i = f †
iασαβ fiβ/2. The

spinon is charge neutral but carries a fractionalized quantum
number spin-1/2. By employing the mean-field order param-
eters

bi = 〈 f †
iαciα〉, ρi = εαβ〈c†

iα f †
iβ〉,

(2.2)
χi j = 〈 f †

iα f jα〉, ηi j = εαβ〈 f †
iα f †

iβ〉,
the on-site Kondo Hamiltonian and localized spin-exchange
terms in Eq. (2.1) for d ± id spin liquid become

HK = JK

∑
i

(bi f †
i ci + ρi fici + H.c.), (2.3)

HJ1 = J1

∑
〈i, j〉α

(χi j f †
iα f jα + H.c.), (2.4)

HJ2 = J2

∑
〈〈i, j〉〉

(ηi j fi↑ f j↓ + H.c.). (2.5)

In Eq. (2.2), εαβ is the Levi-Civita symbol, and the repeated
indices are summed. The Kondo hybridization order param-
eters bi and ρi are restricted to the on-site, while the spinon
hopping χi j = χeiφi j and pairing ηi j = ηeiθi j run over nearest-
neighbor and next-nearest-neighbor sites, respectively. Here
χ and η are the self-consistently calculated real number, and
φi j and θi j are given in Fig. 1(b). Note that the Lagrange
multiplier for the spinon always vanishes λi = 0 to enforce
the condition 〈 f †

i fi〉 = 1 on average. During the mean-field
calculation, we keep φi j and θi j for the whole range of J1,
J2, and JK to investigate the phase transitions out of FL*.
In the next section we will explore the translation-invariant
saddle-point solutions of Eq. (2.2) to Eq. (2.5).

III. MEAN-FIELD PHASE DIAGRAM

Below the critical Kondo value 0 � JK < JK |c, no electron-
spinon hybridization occurs bi = ρi = 0, which preserves the
emergent gauge symmetry mediating the spinons. In this case,
the mean-field solution favors different FL* phases depend-
ing on the ratio between J1 and J2. For J2/J1 � 1 where
the frustration effect is less dominant, the spinon propa-
gates on the uniformly finite spinon hopping order parameter
strength |χi j | = χ , while the next-nearest-neighbor spinon
pairing vanishes ηi j = 0, called the fractionalized Fermi
liquid–uniform resonant valence bond phase (FL*-uRVB).
The schematic order parameter configuration and correspond-
ing spinon band structure are shown in Fig. 2(a). In the band
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FIG. 2. The spinon band structure of (a) fractionalized Fermi
liquid–uniform resonant valence bond (J1 = 1, J2 = 0) and (b) frac-
tionalized Fermi liquid–d ± id spin liquid (J1 = 0, J2 = 1). The
band structure of the d ± id spin liquid is doubly degenerate.
(c) The electron band structure of a partial Kondo screening–chiral
d-wave fractionalized superconductor (J1 = 0, J2 = 1, JK = 4). The
A-sublattice spinon spectrum is the same as Fig. 2(b). �c ∼ O(1)
is the superconducting gap induced from Kondo hybridization with
the B sublattice of a spinon layer. A detailed analysis about �c is
discussed in Sec. V. The black lines in the left column represent the
first Brillouin zone boundary.

structure there are two Dirac cones at the high-symmetry
points:  and K ′. Those are protected by the product of
inversion P and time-reversal T symmetries. Although the
PT -symmetric mean-field ansatz does not preserve P and T
symmetry separately, the Gutzwiller projected wave function
is symmetric under both P and T symmetries [32].

Increasing J2/J1, the first-order phase transition occurs to-
ward the fractionalized Fermi liquid -d ± id spin liquid phase
(FL*-d ± id SL) [see Fig. 2(b)]. In this case the nearest-
neighbor spinon hopping order parameter vanishes, χi j = 0,
but has finite next-nearest-neighbor spinon pairing order pa-
rameters ηi j 	= 0. As shown in the right side of Fig. 2(b),
two sublattices A and B on the spinon layer are completely
decoupled so that the spinon spectrum in Fig. 2(b) is doubly
degenerate. Even though the spinon band structure of the
two sublattices are completely equivalent, the chiral structure

around the gapless points is opposite. In Fig. 1(c) we plot
the phase of the next-nearest-neighbor pairing term for each
sublattice on the momentum space ηA(k) = |ηAk| exp iθA(k)
and ηB(k) = |ηBk| exp iθB(k). At the  point, quadratic band
touching occurs and the winding number around the  point is
w = ±2, or equivalently, a d ± id chiral structure, on each
sublattice. In addition, there exist two Dirac cones at K and
K ′ points with winding number wK,K ′ = ∓1, or equivalently,
p ∓ ip chiral structure, since the winding number over the
whole Brillouin zone should be 0. Those gapless points with
finite chiral structure are protected by PT symmetry, similar
to FL*-uRVB.

For sufficiently large JK with J2/J1 < 2/3, the spinons
and conduction electrons evenly take part in the hybridization
(bi 	= 0 and ρi 	= 0 for all i) to become a Kondo insulator (KI).
As the electron-spinon hybridization order parameters bi and
ρi increase, the χi j and ηi j between hybridized sites naturally
decrease, since the local spin fluctuation is suppressed rather
than generating the spinon hopping or pairing.

However, if considerable frustrated Heisenberg exchange
J1 � J2 exists, the one-sublattice, say B sublattice, of the
honeycomb sites is spontaneously covered by the spinon-
electron singlets and the other sublattice is not by virtue of the
commensurate filling of conduction electrons [see Fig. 2(c)].
Therefore, bB, ρB 	= 0, and the local moments on the A sub-
lattice are decoupled from the Kondo singlet sites (bA = ρA =
χi j = 0) with its own d-wave spin liquid solution optimizing
Eq. (2.5) (ηA 	= 0). This quantum phenomenon is called par-
tial Kondo screening. Although the spinon pairing is always
finite on the A sublattice, the magnitude of B-sublattice pair-
ing diminishes as the hybridization is solidified. It obviously
vanishes for an infinite JK limit, but we find a ηB, bB, ρB 	= 0
solution for finite Kondo coupling strength distinct from the
Kondo limit. In this case, the Cooper pairing is induced on
the hybridized sites whose gap structure is inherited from
d − id pairing on the B-sublattice while preserving chirality.
Since the A sublattice still keeps its own d-wave spin liquid
induced by partial Kondo screening, the deconfined spinons
coexists with the chiral d-wave superconductor, or partial
Kondo screening–chiral d-wave fractionalized superconduc-
tor (PKS-dSC∗).

IV. THERMAL CONDUCTANCE BEHAVIORS

The existence of the gapless excitation and its dispersion
specify the thermodynamics behaviors. The FL*-uRVB and
FL*-d ± id SL contains both the electron and gapless spinon
excitation. However, such excitation is frozen in the KI. The
PKS-dSC∗ only contains gapless spinon excitation, and the
electron sector is gapped out by electron-spinon hybridiza-
tion partially inducing superconductivity. This affects the heat
transport, especially the thermal conductance, which is of our
interest. The thermal conductance tensor κμν (μ, ν = x, y in
d = 2 spatial dimension) at temperature T is given by

κμν (T ) = 1

T 2

(
L22

μν (T ) −
[
L12

μν (T )
]2

L11
μν (T )

)
, (4.1)
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FIG. 3. Longitudinal thermal conductance-temperature plot for
partial Kondo screening–chiral d-wave fractionalized superconduc-
tor (PKS-dSC∗) and Kondo insulator (KI). The inset shows a log-log
plot for the low-temperature limit. The linear relation between log κxx

and log T indicates that the low-temperature thermal conductance for
PKS-dSC∗ has power-law behavior. The parameters we choose to
plot are dotted blue (PKS-dSC∗) and red (KI) in Fig. 4.

where the L11
μν , L12

μν , and L22
μν are defined as

L11
μν (T ) =

∫ ∞

−∞
dE [−∂E f (E , T )]ζμν (E , T )

L12
μν (T ) =

∫ ∞

−∞
dEE [−∂E f (E , T )]ζμν (E , T )

L22
μν (T ) =

∫ ∞

−∞
dEE2[−∂E f (E , T )]ζμν (E , T ). (4.2)

Here f (E , T ) = 1/(eβE + 1) (β = 1/T with kB = 1) is the
Fermi-Dirac distribution function, and ζμν (E , T ) is

ζμν (E , T ) = T

πNbNc

Nb∑
b=1

∑
k

v(b)
μ (k)v(b)

ν (k)[G(b)(k, E )]2.

(4.3)

where G(b)(k, E ) is a Green’s function for the bth band, vμ(k)
is μth component of group velocity, Nb is the number of
bands, and Nc is the number of grids we set in the numerical
calculation.

In Fig. 3 the low-temperature behavior of longitudinal ther-
mal conductance κxx is plotted. Blue and red lines represent
the thermal conductance-temperature relation of PKS-dSC∗
and KI, which are marked as blue and red dots in Fig. 3,
respectively. The inset shows a log-log plot of low temperature
(0.005 < T < 0.02). In the KI phase, it exhibits exponential
suppression due to the finite gap induced by Kondo hybridiza-
tion. Meanwhile, PKS-dSC∗ features almost linear relations
between the logarithm of thermal conductance and logarithm
of temperature, which implies the power law of thermal con-
ductance, even though it also has a finite gap in conduction
electron layers induced by Kondo hybridization. This anoma-
lous thermal conductance behavior comes from the gapless

FIG. 4. The mean-field phase diagram of J1-J2 Kondo-
Heisenberg model on the quarter-filled honeycomb lattice. Each
abbreviation in the phase diagram indicates the fractionalized
Fermi liquid–uniform resonant valence bond (FL*-uRVB),
fractionalized Fermi liquid–d ± id spin liquid (FL*-d ± id
SL), partial Kondo screening–chiral d-wave fractionalized
superconductor (PKS-dSC∗), and Kondo insulator (KI). Blue and
red dots are the colors for the thermal conductance plot, and add
markers in Fig. 3 as well are the parameters to plot Fig. 3.

excitation of spinons which do not couple with the electron
layer. Note that the thermal conductance behaviors of the con-
ventional or gapped chiral superconductor are exponentially
decaying due to their gap spectrum.

V. ANALYSIS

In the mean-field calculation, FL*-uRVB and FL*-d ± id
SL are shown to be stable up to critical Kondo coupling
strength (see Fig. 4). In this regime, the local spin moments
strongly fluctuate but are decoupled from the itinerant elec-
trons. The robustness of FL* compared to the conventional
ordered magnet is generically guaranteed by the topological
order. Here we discuss the influence of Kondo interactions on
our mean-field solutions at Jk = 0. In the continuum (d + 1)
dimension, the generic on-site coupling which respects the
global U (1) symmetry (local Z2 symmetry) of the c ( f )
fermion is

Sint =
∑
αβγ δ

Jαβγ δ

∫
dd xdτ [c†

α (x)cβ (x)][ f †
γ (x) fδ (x)]. (5.1)

Let us assume that the dispersion of the electron and spinon
are linearized, ε

c, f
k ∼ vc, f |k|, on the momentum space. In

the strong-coupling limit Jαβγ δ → ∞, it obviously conden-
sates 〈c†

α (x) fβ (x)〉 	= 0 and 〈c†
α (x) f †

β (x)〉 	= 0, which breaks
the global U (1) and Z2 symmetries. In our context, this cor-
responds to the Kondo insulator. To examine whether the
arbitrary small interaction Jαβγ δ leads to this picture or not,
we employ the dimensional analysis of Eq. (5.1). In the lin-
earized action, the scaling dimensions of c and f fermions
are [c] = [ f ] = d/2. As a result, the scaling dimension of Sint

is [Jαβγ δ] = 1 − d , which implies the irrelevance of Eq. (5.1)
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for spatial dimensions larger than 1 at the tree level. If the lo-
cal spin operators are fractionalized into deconfined spinons,
the power counting is applicable to the Kondo interaction
in Eq. (5.2). This argument supports the reliability of our
mean-field results in Fig. 4 and clarifies the Kondo breakdown
for small JK separated from the heavy Fermi liquid.

We now discuss the chiral gap structure on the itinerant
electrons induced by partial Kondo screening. With the itin-
erant electron side, the mean-field decoupled Hamiltonian
equations (2.3) to (2.5) can be arranged as

H =
∑

k

(
�c(k)

� f (k)

)†(Hc(k) K

K† Hf (k)

)(
�c(k)

� f (k)

)
, (5.2)

�c, f (k) =

⎛
⎜⎜⎜⎝

c, fA↑(k)

c, f †
A↓(−k)

c, fB↑(k)

c, f †
B↓(−k)

⎞
⎟⎟⎟⎠ ≡

(
ψU

c, f (k)

ψS
c, f (k)

)
, (5.3)

where Hc(k) and Hf (k) are the electron and spinon Hamilto-
nian matrix at k, respectively. Hc(k) and Hf (k) are connected
via the translation-invariant on-site Kondo coupling matrix
K and are thus momentum independent. Beyond the critical
Kondo coupling strength with a frustrated regime, we know
that one sublattice spontaneously hybridizes with electron
layers. Let us assume that the hybridized sublattice is a B
sublattice [see Fig. 2(c)]. Then we can divide the A and B
sublattice as Kondo unscreened and screened sites, denoted
as U and S in the superscript. From now on we omit the
momentum dependency of the Hamiltonian matrices and basis
operators unless there is any confusion.

When JK � Jc
K , the Kondo coupling matrix K and spinon

Hamiltonian Hf become

�†
c K� f =

(
ψU

c

ψS
c

)†(KU = 0 0

0 KS

)(
ψU

f

ψS
f

)
, (5.4)

�
†
f Hf � f =

(
ψU

f

ψS
f

)†(
HU

f h f = 0

h†
f = 0 HS

f

)(
ψU

f

ψS
f

)
, (5.5)

where KS is a nonzero matrix that hybridizes the electron
and spinon on the Kondo screened sites. We note that the
Kondo matrix for the unscreened sites is KU = 0, as the
name unscreened depicts. As we discussed earlier, finite order
parameters for Kondo coupling on the Kondo screened sites
implies that the spinon on the Kondo screened sites prefers
interacting with electrons rather than spinons. Thus we have
h f = 0, making spinons on the Kondo unscreened sites com-
pletely decoupled to the electron layer and spinons on the
Kondo screened sites.

Let us first calculate the induced electron Hamiltonian
driven by PKS. We integrate out Eq. (5.5) from Eq. (5.2) and
obtain the effective electron action Seff

c , given as

Seff
c =

∑
k,iωn

�̄c
(
G−1

c − KG f K†)�c, (5.6)

where Gc, f = (−iωn + Hc, f )−1 is the Green’s function of the
electron and spinon, and ωn = (2n + 1)π/β is the fermionic
Matsubara frequency. At low temperature, the induced term
of Eq. (5.6) can be outlined by substituting ωn = 0 as

�†
c KG̃ f K†�c =

(
ψU

c

ψS
c

)†(0 0

0 KS[HS
f ]−1KS†

)(
ψS

c

ψU
c

)
. (5.7)

Let us assume that the Kondo screened sites form a
translation-invariant lattice structure with a single sublattice,
such as a triangular or square lattice. Then HS

f and KS can be
written in 2 × 2 matrix form in the momentum space as

ψS†
c KSψS

f = (c†
k↑ c−k↓)

(
b ρ∗

ρ −b∗

)(
fk↑

f †
−k↓

)
,

(5.8)

ψ
S†
f HS

f ψ
S
f = ( f †

k↑ f−k↓)

(
ξ f η∗

η −ξ f

)(
fk↑

f †
−k↓

)
,

where b, ρ, and η are defined in Eq. (2.2). Inserting Eq. (5.8)
into Eq. (5.7), the induced electron Hamiltonian on the Kondo
screened sites near the Fermi surface becomes

HS
c ≡ −KS[HS

f ]−1KS† ≡
(

ξS
c �S∗

c

�S
c −ξS

c

)
= 1

ξ 2
f + |η|2

(−2�[η∗bρ] − ξ f (|b|2 − |ρ|2) b2η∗ − ρ∗2η − 2bρ∗ξ f

b∗2η − ρ2η∗ − 2b∗ρξ f 2�[η∗bρ] + ξ f (|b|2 − |ρ|2)

)
, (5.9)

where � is the real part, and ξS
c and �S

c are induced
electron hopping and the pairing term on the Kondo screened
sites.

Close to the Fermi surface where the denominator is non-
vanishing, we focus on the induced Cooper pairing in the
itinerant electron layer. In our saddle-point solutions, it turns
out that |ρ| < |b| and thus the off-diagonal �S

c is largely
contributed from b∗2η. Therefore, the chirality of induced
electron pairing has the same chiral structure of spinons on
the hybridized sublattice. Furthermore, the magnitudes of
order parameters in our numerical solution are given as ξ f =

0, |b| ∼ O(10−1), |η| ∼ O(10−2), and |ρ| ∼ O(10−3) and re-
sult in |ξS

c | ∼ O(10−2) and |�S
c | ∼ O(1), which implies that

the superconducting gap has an order of 1. In Fig. 2(c),
�c ∼ O(1), which perfectly matches with our analytical
calculation.

VI. CONCLUSIONS

In this work we study the J1-J2 Kondo-Heisenberg model
at quarter-filled conduction electrons on the honeycomb
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lattice. Based on the slave-fermion mean-field approach, a
new fractionalized phase, called a PKS-dSC∗ phase, out of
the weak-coupling FL* regime is proposed by turning on
the Kondo coupling collaborated with frustrated RKKY ex-
changes. This phase appears for a wide range of mean-field
phase diagrams having a fractionalized spinon excitation due
to the frustration effect endowed with the unbalanced filling.
We then discuss the stability of fractional excitation against
the Kondo exchange, the chirality of the induced supercon-
ductivity, and the thermal conductance behaviors for each
phase as the temperature varies.

For sufficiently large JK � J1, J2, we check that the partial
Kondo screening occurs when J2/J1 � 2 by exact diago-
nalization up to 18 sites in the honeycomb lattice with
open-boundary conditions (see Appendix A for details).
Therefore it will be interesting to study the partial Kondo
screening out of FL* beyond the mean-field regime on the
different frustrated lattice systems. Furthermore, we can also
consider the Lifshitz transition controlled by the filling factor.
As can be seen in Fig. 1(c), there is a p ∓ ip pairing structure
around the K and K ′ points for FL*-d ± id SL. Therefore if
the electron filling factor becomes larger than 1/3 and thus
the Fermi surface surrounds the K and K ′ points, keeping par-
tial Kondo screening, we expect the Lifshitz transition from
PKS-dSC∗ to PKS-pSC∗, which will be left for future work.
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APPENDIX: EXACT DIAGONALIZATION

First of all, we have solved the J1-J2 Kondo-Heisenberg
model with three electrons by exact diagonalization for a
small system size (N = 6 sites with a hexagonal shape).
In this case, the Kondo singlet pair only exists on the
one sublattice, and the others do not for frustration limit
(J2 � J1) with sufficient Kondo coupling strength. Based on
this result, we have considered an N = 18 site (2 × 3 × 3
open-boundary condition) honeycomb lattice in the follow-
ing way. In the procedure we first consider the half of sites
already formed by the Kondo singlet pairing between lo-
calized spins and quarter-filled electrons. Then we compute
the exact ground state and corresponding energy for the
J1-J2 Heisenberg model on the remaining sites and focus
on the lowest energy states. We find out that the lowest
energy state prefers Kondo singlet pairing only on the one
sublattice.

[1] G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
[2] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cam-

bridge Studies in Magnetism (Cambridge University Press,
Cambridge, England, 1993).

[3] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod.
Phys. 79, 1015 (2007).

[4] W. de Haas, J. de Boer, and G. van deën Berg, Physica 1, 1115
(1934).

[5] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[6] M. D. Daybell and W. A. Steyert, Rev. Mod. Phys. 40, 380

(1968).
[7] K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 35,

1779 (1975).
[8] M. B. Maple, C. L. Seaman, D. A. Gajewski, Y. Dalichaouch,

V. B. Barbetta, M. C. de Andrade, H. A. Mook, H. G. Lukefahr,
O. O. Bernal, and D. E. MacLaughlin, J. Low Temp. Phys. 95,
225 (1994).

[9] P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys.:
Condens. Matter 13, R723 (2001).

[10] P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama,
K. Tenya, O. Trovarelli, and F. Steglich, Phys. Rev. Lett. 89,
056402 (2002).

[11] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli,
C. Geibel, F. Steglich, P. Coleman, and Q. Si, Nature (London)
432, 881 (2004).

[12] G. R. Stewart, Rev. Mod. Phys. 78, 743 (2006).
[13] P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. 4, 186

(2008).
[14] N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M.

Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature
(London) 394, 39 (1998).

[15] C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).
[16] F. Steglich, J. Phys.: Conf. Ser. 400, 022111 (2012).
[17] O. Bodensiek, R. Žitko, M. Vojta, M. Jarrell, and T. Pruschke,

Phys. Rev. Lett. 110, 146406 (2013).
[18] C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).
[19] S. Doniach, Physica B+C 91, 231 (1977).
[20] S. Burdin, D. R. Grempel, and A. Georges, Phys. Rev. B 66,

045111 (2002).
[21] T. T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405

(2009).
[22] P. Coleman and A. H. Nevidomskyy, J. Low Temp. Phys. 161,

182 (2010).
[23] Q. Si and S. Paschen, Phys. Status Solidi B 250, 417 (2013).
[24] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).
[25] T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90,

216403 (2003).
[26] T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111

(2004).
[27] Y. Motome, K. Nakamikawa, Y. Yamaji, and M. Udagawa,

Phys. Rev. Lett. 105, 036403 (2010).
[28] T. Sato, F. F. Assaad, and T. Grover, Phys. Rev. Lett. 120,

107201 (2018).
[29] J. Oitmaa and R. R. P. Singh, Phys. Rev. B 84, 094424 (2011).
[30] S.-S. Gong, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher,

Phys. Rev. B 88, 165138 (2013).
[31] F. Mezzacapo and M. Boninsegni, Phys. Rev. B 85, 060402(R)

(2012).
[32] F. Ferrari, S. Bieri, and F. Becca, Phys. Rev. B 96, 104401

(2017).
[33] B. K. Clark, D. A. Abanin, and S. L. Sondhi, Phys. Rev. Lett.

107, 087204 (2011).

085135-6

https://doi.org/10.1103/RevModPhys.56.755
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1016/S0031-8914(34)80310-2
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1103/RevModPhys.40.380
https://doi.org/10.1103/PhysRevLett.35.1779
https://doi.org/10.1007/BF00754938
https://doi.org/10.1088/0953-8984/13/35/202
https://doi.org/10.1103/PhysRevLett.89.056402
https://doi.org/10.1038/nature03129
https://doi.org/10.1103/RevModPhys.78.743
https://doi.org/10.1038/nphys892
https://doi.org/10.1038/27838
https://doi.org/10.1103/RevModPhys.81.1551
https://doi.org/10.1088/1742-6596/400/2/022111
https://doi.org/10.1103/PhysRevLett.110.146406
https://doi.org/10.1103/RevModPhys.48.219
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1103/PhysRevB.66.045111
https://doi.org/10.1103/PhysRevLett.103.066405
https://doi.org/10.1007/s10909-010-0213-4
https://doi.org/10.1002/pssb.201341608
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevLett.105.036403
https://doi.org/10.1103/PhysRevLett.120.107201
https://doi.org/10.1103/PhysRevB.84.094424
https://doi.org/10.1103/PhysRevB.88.165138
https://doi.org/10.1103/PhysRevB.85.060402
https://doi.org/10.1103/PhysRevB.96.104401
https://doi.org/10.1103/PhysRevLett.107.087204

