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Improving the transferability of density functional theory predictions through correlation analysis:
Structural and energetic properties of NiX alloys (X = C, Si, Ge, and Sn)
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This work reports on the performance of density functional theory (DFT) for a series of single and binary
systems, aiming for a quantitative description of NiX (X = C, Si, Ge, and Sn) alloys. Both semilocal GGA and a
meta-GGA density functional, with and without dispersion corrections, are tested. We found in our study that no
single functional simultaneously provides an accurate quantitative description of the investigated structural and
energetic properties. However, the spread in computed DFT data could be rationalized in terms of the distribution
of reduced density gradients and differences in the evolution of the exchange enhancement factors for different
functionals. We demonstrate how to construct a regression model based on data from several density functionals

that increases the predictivity of semilocal DFT. We foresee that the use of regression models (or extensions of
it) can be valuable in the development of more accurate density functionals that in the future could provide a
quantitative accuracy for complex multicomponent systems.
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I. INTRODUCTION

Metal alloys are used in a wide range of applications owing
to the possibility of tailoring the composition and atomic
structure and optimizing material properties to fit desired
usage areas. In the field of materials science, one classic
example is the reinforcement of steel in the carbon-iron sys-
tem, promoted by interstitial carbon atoms in the iron matrix.
There also exist other successful examples of alloys with
elements from group 14, commonly used in various tech-
nological applications. Transition metal silicides are used as
corrosion-resistant materials and as coatings in semiconductor
devices [1,2], transition metal germanites are interesting for
their versatile electrical and magnetic properties [3-5], and a
stannate alloy is the most successful example of a lead-free
solder in microelectronic applications [6,7]. Transition metal
nanoparticles alloyed with tin have also gained some attention
in the field of heterogeneous catalysis. In particular, tin alloy-
ing has been observed to improve the selectivity for certain
hydrogenation reactions [§—10]. Even though alloys are com-
monly used in many fields, it is still challenging to predict
the origin of synergistic effects from different constituents
using experiments alone. Here, theoretical calculations have
an important role to fill, which is to gain insight into the often
complex interplay between the different involved elements
and their impact on various alloy properties.

Theoretical endeavors in the field of alloying are of-
ten performed using various multiscale approaches with the
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density functional theory (DFT) serving as input for more
approximate methods [11,12]. Examples of such more ap-
proximate methods commonly used for predicting properties
of alloys are the cluster expansion model [13] and the mod-
ified embedded atom method (MEAM) [14—17]. These less
computationally demanding methods enable researchers to
reach another level of size and time scales than using DFT,
which is necessary to obtain the statistics needed to account
for entropic effects in alloy systems. For example, such ap-
proaches can be used to compute thermodynamic quantities
in conjunction with the CALPHAD approach to derive phase
diagrams [18,19]. However, to be successful in such applica-
tions, we need a theory that accurately describes all different
phases of a material, at all different compositions.

One problem when using DFT for complex chemical bond-
ing situations (e.g., combinations of metallic, covalent, and
ionic bonds) is that standard approximations, which often
serve as the basis in many multiscale approaches, are usually
of insufficient accuracy. Working with materials that display
a broad spectrum of possible chemical bonds makes it chal-
lenging for modelers to choose the most appropriate density
functional to use [20]. In such cases, the classification scheme
of Perdew and co-workers, who introduced the so-called
Jacob’s ladder to visualize the approximations used in differ-
ent density functionals when it comes to the exchange energy,
serves as a helpful guide [21]. In analogy to Jacob’s ladder,
they proposed a link between the earth (being the Hartree
world) and heaven where chemical accuracy is obtained.
Klime$§ and Michaelides provided a similar view for the inclu-
sion of dispersion (nonlocal correlation) [22]. In these views,
each rung in the ladder corresponds to a level of approxima-
tion, and a modeler can easily determine the approximations
being used. At the first rung, the local density approximation
(LDA) [23] is found, and the functional heaven is reached
when the functional form is exact, without any approxima-
tions. The rung closest to heaven comprises the random phase
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approximation (RPA) [24], which includes accurate models
for both exchange and correlation. Between the first and last
rungs, the functionals are classified based on how they deal
with the exchange energy through the generalized gradient ap-
proximation (GGA, second rung), meta-GGA approximation
(third rung), and hybrid functionals (fourth rung). At all these
rungs, side tracks adding dispersion corrections can be made,
each with its own set of rungs with different approximations
to compute the contribution from nonlocal correlation. Disper-
sion corrections start with a force field as the Grimme D(1-3)
methods, and they correspond to the first (where pairwise
coefficients are isotropic with respect to the chemical envi-
ronment) and second (where pairwise coefficients depend on
the effective volume of the atom) rungs in the ladder [25-27].
The third rung comprises a set of functionals where dispersion
corrections are included explicitly into the density functional
through the use of a kernel. These functionals are called van
der Waals density functionals (vdW-DF), and they offer means
of computing dispersion interactions self-consistently at an
affordable computational cost [28,29]. In Jacob’s ladder for
dispersion corrections, the fourth rung and beyond account for
dispersion interactions through many-body terms [30-32].

To make an educated choice of which density functional
is suitable for a certain material and property, it is essen-
tial to understand how functionals are constructed and in
what respect they differ. One strategy here is to identify
trends in calculated quantities with respect to the gradient
correction to the exchange energy, the so-called exchange
enhancement factor, which introduces a gradient dependence
via the reduced density gradient s[o(r)]. In theoretical chem-
istry, s[p(r)] is often used to quantify chemical bonding in
molecular systems [33-35]. Furthermore, s[p(r)] have also
been used to pinpoint desirable features of GGA or vdW-DF
density functionals [36]. In a previous attempt to increase
the awareness about the performance of different classes of
density functionals in their capability of predicting proper-
ties of materials, we used the distribution of reduced density
gradients to rationalize among differences in structural and
energetic bulk and surface properties computed with different
density functionals [37]. In Ref. [37], nickel (Ni) in vari-
ous forms (bulk, surface, and atom) represented the different
reduced density gradient distributions. In the current contribu-
tion, we introduce another level of complexity by considering
Ni bulk alloys. Similarly, we investigate the different chemical
bonding in bulk materials and determine the most important
ingredients for an accurate description of alloys with dif-
ferent bond characters. We focus our discussion on the role
of exchange and dispersion interactions in the description of
physical and chemical properties of the single- and multicom-
ponent systems of Ni alloys with group 14 elements of the
periodic table [carbon (C), silicon (Si), germanium (Ge), and
tin (Sn)].

II. THEORETICAL METHODS

A. Exchange-correlation functionals and dispersion corrections

A key factor controlling the accuracy of a DFT functional is
how the exchange-correlation energy is formulated. This work
focuses on density functionals constructed based on the GGA
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FIG. 1. Exchange enhancement factor F,(s) as a function of the
reduced density gradient s for the GGA (solid lines) and vdW-DF
(dashed lines) functionals studied in this work and for SCAN (dash-
dot lines) with different values of o. LDA (solid black line) serves as
a baseline when comparing these functionals.

approximation, where the exchange and correlation energies
are treated separately. In such a formalism, the exchange en-
ergy is typically written as:

EJOA = / drp(r)e™ F,(s), 4))

where p(r) is the total electron density, e}j“if is the exchange
energy from the uniform electron gas, and F,(s) is the ex-
change enhancement factor, which is a function of s, the
dimensionless reduced density gradient given by:

1 Vp(r)

5= 23721 pAA(r)’ @

A broad range of GGA functionals differ only in the way that
F.(s) is expressed between the limits of low s values, which
results in an LDA formalism (s = 0) and high values where
F.(s) should level out to the so-called Lieb-Oxford limit [38].
However, not all functionals fulfill this basic demand at high
s values. In fact, it is not clear if this is actually needed for a
“good” functional, as it add constraints on the shape of F;(s)
for intermediate s values. It is, however, clear that different
chemical bonding (metallic, ionic, or covalent), i.e., localized
or delocalized Kohn-Sham orbitals (large or small electron
density gradients), require different F,(s) functions. This is
illustrated in Fig. 1, where the solid lines show the F.(s)
computed using the Perdew-Burke-Ernzerhof (PBE) formu-
lation [39,40] together with two variants where the “shape”
has been optimized for solids (PBEsol) [41] and for molecules
(revised PBE, RPBE) [42]. In this respect, the PBE functional
can be seen as a compromise, being equally good when ap-
plied on both solids and molecules. To perform better for
molecules, a faster increase (higher functional steepness) in
F.(s) compared to the one in PBE is needed. On the other
hand, a lower steepness is required to better describe solids
(cf. Fig. 1). As such, it is not easy to formulate a GGA density
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functional that simultaneously performs equally accurate for
a broad range of s values.

Another class of functionals, which adds more flexibility
in the formalism, is the meta-GGA functionals. These func-
tionals additionally account for the electron kinetic energy
density, which gives extra degrees of freedom when it comes
to computing an effective F,(s) (in the language of GGA’s).
In principle, these additions allow F,(s) to change shape de-
pending on the local chemistry described by the local kinetic
energy density. In materials science, the strongly constrained
and appropriately normed (SCAN) functional [43] has been
brought forward since it is one of the most successful meta-
GGAs in describing materials properties. Therefore, we have
chosen this functional to represent the meta-GGA level of
approximation. The exchange enhancement factor for SCAN
is a function of two variables, s and «, enabling SCAN to
recognize different bonding characters, e.g., covalent when
o = 0, metallic when a = 1, and weak interactions when
o = oo. Since the exchange enhancement factor for SCAN
is a function of two variables, FS“AN(s, o) does not take the
form of a single function as for GGA functionals, as seen in
the dash-dot lines in Fig. 1. As such, this functional often pro-
vides higher accuracy for a broader set of chemical bonding
situations.

Neither GGA nor meta-GGA functionals account for long-
range dispersion interactions, and the total energy must be
corrected if one wants to account for such interactions in the
calculations. In this work, two ways to include dispersion
corrections were considered, either through an a posteriori
correction or using a self-consistent approach with the non-
local correlation explicitly accounted for within the density
functional. For the a posteriori correction, Grimme’s DX
(x = 1to 3) is one of the most common approaches to account
for dispersion interactions in computational chemistry, and the
D3 dispersion correction [27] was used in our calculations in
conjunction with the same set of GGA functionals described
above (PBE, PBEsol, and RPBE). In the self-consistent ap-
proaches, the so-called vdW-DF functionals [44-46], the
exchange and correlation energy is expressed according to:

E;/((:iW—DF — ExGGA + E}DA + Ez,ll, (3)

where dispersion interactions are accounted for self-
consistently through the nonlocal correlation term E” com-
puted using a precalculated kernel. As for GGA functionals,
there exists a large pool of different vdW-DF functionals,
which differ in terms of how their exchange enhancement
factor is formulated and in turn how ESYA is calculated. In
this work, a set of vdW-DF type of functionals that provide
a good balance between accuracy and computational cost
were selected based on findings in Ref. [37]. The exchange
enhancement factor of these functionals (revPBE-vdW, vdW-
DF-cx, and optPBE-vdW) are shown by the dashed lines in
Fig. 1.

Dispersion corrections can also be used together with
a meta-GGA functional, even though some short- and
intermediate-ranged dispersion interactions have been
claimed to be already accounted for in these functionals.
For example, SCAN is commonly used with the revised
Vydrov and van Voorhis kernel (SCAN-rVV10) as described

in Ref. [47]. Since one of the goals of this work is to
investigate how dispersion corrections affect the accuracy
of DFT, results from SCAN-rVV10 were also included. For
further details concerning different approximations for E,.
and dispersion corrections in DFT, the reader is referred to
Refs. [21,22,48,49].

B. Computational details

Spin-polarized calculations were performed based on den-
sity functional theory in the implementation with plane waves
and pseudopotentials using the Vienna ab initio simulation
package (VASP) [50-53]. Projected augmented wave (PAW)
pseudopotentials were used in all calculations [54,55]. The
45?343 for Ni, and ns’np?, where n is the main quantum
number for C, Si, Ge, and Sn, were treated as valence elec-
trons. The pseudopotentials were obtained from the VASP
library and are generated using the PBE density functional.
For consistency, the same pseudopotential for a given element
was used regardless of the chosen functional. Nonspherical
contributions from the gradient corrections inside the PAW
spheres were included in all calculations.

Structural optimizations of the unit cell and atomic posi-
tions for all bulk systems were performed using the conjugate
gradient algorithm [56], where the relaxation continued until
all components of the stress tensor were less than 0.01 kBar
and the forces on each atom were less than 0.01 eV/A. The
Brillouin zone was sampled using a k spacing of 0.2 A~ for
all bulk and alloy compounds. In all calculations, the plane
wave energy cutoff was set to 600 eV.

C. Structural models

A series of structural models of single-component and
alloy phases were investigated in this work. For the single-
component systems, we considered the thermodynamically
most stable low-temperature phases that have been found ex-
perimentally. This implies Ni in its face-centered cubic (fcc)
phase, C in its graphitic phase, and the diamond phase for
Si, Ge, and Sn. Additional allotropes of Ni, C, and Sn were
also investigated: body-centered cubic (bcc) Ni, diamond C,
and body-centered tetragonal (bct) Sn. NiX alloys (X = C,
Si, Ge, and Sn) were chosen based on the alloy with the
lowest alloy mixing energy reported in the Materials project
database [57,58]. The structural information for all models
was taken from the same database and served as the input
for geometry optimization. Only one composition was inves-
tigated for NiSi and NiGe alloys, whereas for NiSn, three
low-temperature alloys were considered. Table I summarizes
structural parameters of the investigated single-component
and binary systems used in this work.

D. Evaluated properties
1. Bulk structural parameters of the single-component elements

Bulk lattice constants of the pure elements for Ni fcc,
C, Si, Ge and Sn diamond, and the interlayer spacing in C
graphite were calculated and compared with experiments. The

085127-3



DE ANDRADE, KULLGREN, AND BROQVIST

PHYSICAL REVIEW B 105, 085127 (2022)

TABLE I. Crystallographic data used as structural input in this study. For cubic lattices, only a and « are given; for hexagonal lattices, only

a and c are presented.

Chemical Symbol (Phase) Space Group a, b, c [A] (a, B Angles °) Materials Project ID Expt. Refs.
Ni (fcc) Fn3m (225) 2.479 (60) mp-23 [59]
Ni (bce) Im3m (229) 2.416 (109) mp-1008728

C (graphite) P65 /mmc(194) 2.468, 8.685 (90, 120) mp-48 [60]
C (diamond) Fd3m (227) 2.527 (60) mp-66 [61]
Si (diamond) Fd3m (227) 3.867 (60) mp-149 [62]
Ge (diamond) Fd3m (227) 4.075 (60) mp-32 [63,64]
Sn (diamond) Fd3m (227) 4.700 (60) mp-117 [65]
Sn (bcet) 14, /amd (141) 4.482 (97, 137) mp-84 [66]
Ni;C R3C (167) 5.051 (54) mp-7586

Ni,Si Pnma (62) 3,734, 4.983, 7.068 (90) mp-1118

NisGe; C2/c (15) 6.369 (64) mp-1428

Ni;Sn P63 /mmc (194) 5.305, 4.242 (90, 120) mp-20112 [67-69]
Ni;Sn, Pnma (62) 5.218,7.127, 8.208 (90) mp-669720 [69-71]
Ni;Sny C2/m (12) 6.472,5.270, (76, 37) mp-20174 [69]

percentage error (PE) by a functional was calculated as

Etheo - Eexp
Sexp

where &, is the experimental value of the property and &ipeo
is its computed value.

PE = , 4

2. Relative stability of NiX alloys

Relative stabilities were calculated per atom in the unit cell
for Ni, C, Si, Ge, and Sn. The reference structures were the
most stable phase/allotrope of each element: for Ni it is the
fce phase, for C it is the graphite, and for Si, Ge, and Sn it is
the diamond phase.

3. Alloy mixing energy for NiX alloys

The alloy mixing energy AEx per atom for the NiX alloys
is defined as follows:

E(NiXy) — xE(Ni) — yE(X)
xX+y '

where E(Ni X)), E(Ni), and E(X) are the total energies per
atom of the NiX alloy, and the single-component Ni and X,
respectively, and x and y are the number of atoms for Ni and
X in the alloy unit cell. The single-component bulk phases are
Ni fcc, C graphite, Si, Ge, and Sn diamond. AEx is calcu-
lated without taking into account vibrational and/or entropic
effects.

AEmix =

&)

E. Correlation analysis between functional steepness
and bulk properties

In Ref. [37], it was observed that it is possible to obtain
a linear relation between computed energetic and structural
properties and the “steepness” of the enhancement factor F (s)
within each class of density functionals, e.g., GGA or vdW-
DF. The steepness is defined as the value of the enhancement
factor at a particular optimal reduced density gradient value,
Sopt» Which is specific for each property and functional class.
This observation was used to devise a computational scheme

to improve the predictive power of density functional theory
for material properties. In this work we further explore this
possibility for binary systems (NiX alloys).

The steepness of F,(s) in Ref. [37] was best represented
using a F; calculated at a particular optimal s, value resulting
in a maximal regression between computed properties and
F for different density functionals. In practice, sop: Was
found by computing F,(s) for s values ranging from 0O to
2.5 with the different density functionals (a vertical line in
Fig. 1), followed by a regression analysis at each point with
respect to corresponding materials properties. To maximize
the regression, one sop value for each property and class
of density functionals (grouped according to their level of
approximation, e.g., GGA or vdW-DF) was obtained.

In this analysis, only GGA and vdW-DF functionals were
considered. GGA-D3 functionals were not included because
the exchange enhancement factor is the same for the par-
ent GGA functional, and the dispersion correction applied
a posteriori will merely cause a close to a constant shift
of the fitted line. The meta-GGA functionals SCAN and
SCAN-rVV10 were not included since these functionals have
different exchange enhancement factors depending on the
electronic kinetic energy density and the mapping of the re-
duced density gradient in the unit cell.

III. RESULTS AND DISCUSSION

Our previous work considered only a single-component
system of Ni where trends in computed properties were ratio-
nalized based on differences in the reduced density gradient
for each system (bulk, surfaces, and nanoparticles) [37]. The
computed data was also used in a scheme for predicting
properties where experiments are uncertain. Herein, we use
the same approach for binary bulk systems in the form of
NiX alloys (X = C, Si Ge, and Sn). This section starts by
reporting computed material properties of single-component
bulk materials from group 14, and after that, we turn to the
NiX alloy systems.
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FIG. 2. Structural data calculated using GGA, GGA-D3, vdW-
DF, and meta-GGA functionals for C diamond and C graphite
and their regression with ;™ for GGA and vdW-DF functionals.
(a) Conventional lattice parameter for C diamond, (b) interlayer
distance of C graphite, (c) linear regression between F;™ and lattice
parameter for C diamond, and (d) linear regression between F° and
interlayer distance for C graphite. The square marker is the computed
property with the optB86b-vdW functional and its corresponding
E™ (see Sec. I1I C for details).

A. Structural properties of bulk structures from group 14

We start discussing the diamond phase, focusing only on
C but similar trends were also obtained for Si, Ge, and Sn.
For comparison, lattice parameters and the percentage errors
for all structures can be found in the Supplemental Mate-
rial [72]. In the following, we will discuss structural properties
followed by energetics. After the discussion of each property,
we discuss the regression analysis.

In Fig. 2(a), we show the lattice constants computed us-
ing different density functionals. All functionals are found
to describe the lattice constant for C diamond with good
accuracy (0.17% < PE < 1.57%, the least accurate being
revPBE-vdW), although all functionals overestimate the lat-
tice, which is a common feature of GGAs [20,73]. Among
the GGA functionals, the one optimized for condensed phase
systems (PBEsol) is closer to the experimental value (PE =
0.33%). The inclusion of Grimme’s D3 dispersion correction
shrinks the cell, thus making PBEsol-D3 the most accurate
among all investigated functionals here, with PE = 0.17%.
Similarly to the GGA functionals, all vdW-DF functionals
overestimate the lattice constant (PE is 0.67%, 1.13%, and
1.57% for vdW-DF-cx, optPBE-vdW, and revPBE-vdW, re-
spectively), following the same trend as for GGA functionals
with respect to the functional character in terms of “steepness”
in the enhancement factor F, (s) as discussed above (cf. Fig. 1).
For the meta-GGA SCAN, the computed lattice constant is
off by only 0.30% and the inclusion of long-range dispersion

correction through the rVV10 formalism has a small effect on
the lattice parameter (SCAN-rVV10 PE = 0.26%).

Next, we move on to C graphite, a typical example of
a material where dispersion interactions play a critical role
in dictating the interlayer distance, and it is known that the
correct description by DFT is only achieved when disper-
sion corrections are included [74-76]. Figure 2(b) shows
the calculated interlayer distance for graphite using different
functionals and different dispersion corrections.

For the GGA functionals, the more “molecular oriented”
the functional is, i.e., having a higher F(s) steepness, the
less accurate it becomes (PE going from 6.70% for PBEsol
to 36.75% for RPBE). Employing the a posteriori dispersion
correction through Grimme’s D3 approach greatly improves
the interlayer distance [the PE for GGA-D3 functionals lies
between —2.49% (PBEsol-D3) and 3.08% (PBE)]. Moreover,
the RPBE prediction goes from a severe overestimation to
a very accurate prediction of the interlayer distance when
including D3 corrections (PE = —0.63% for RPBE-D3).
The self-consistent dispersion corrected functionals (vdW-
DF class) generally show good performance when describing
structural parameters of graphite. The interlayer distance is
slightly underestimated using vdW-DF-cx (PE = —3.19%)
and slightly overestimated for optPBE-vdW and revPBE-vdW
(PE = 1.96% and 5.91%, respectively). The meta-GGA den-
sity functional SCAN (PE = 2.04%) gives similar results
as optPBE-vdW. The inclusion of dispersion in SCAN-
rVV10 shrinks the interlayer distance making SCAN-rVV10
to have PE = —1.12%. Interestingly, while the variations in
the predicted interlayer spacing are considerable for the GGA
functionals, the addition of dispersion corrections, either us-
ing an a posteriori or vdW-DF approach, brings the variation
among different predictions to similar percentages as found
for the diamond structure.

Now let us apply the regression model for the lattice of
C diamond and the interlayer distance of C graphite. As dis-
cussed in Ref. [37], different classes of functionals, with and
without van der Waals corrections, will provide a different
linear F;*™ dependence. Therefore, we perform the regression
analysis for the two classes (GGA and vdW-DF) separately,
cf. Fig. 2(c). As expected, we observe a clear linear rela-
tionship between the F;™ and the lattice parameter for both
the GGA and vdW-DF functionals. At a certain F;™ value
both functionals will give an accurate prediction of the lattice
constant. An accurate prediction of the lattice constant within
the vdW-DF occurs for a lower F;™ value compared to the
GGA class, but since C diamond is mainly covalently bonded,
the difference is not so significant.

Figure 2(d) shows the regression for the interlayer distance
between C layers in graphite and F,™ for GGA and vdW-
DF functionals. Here, we observe larger differences in the
resulting regressions for the two density functional classes
compared to the regressions in Fig. 2(c) for C diamond. For
the interlayer distance, the regression for GGA is not as good
as for vdW-DF (the correlation between F; " and dcc is more
scattered for GGA, blue dots), indicating that exchange alone
is not sufficient to describe the interlayer distance accurately.
Although the regression for the GGA class will eventually
cross the experimental dashed line, the correct lattice con-
stant will, in this case, be obtained for the wrong reasons.
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FIG. 3. The relative stability (AE) per atom for C and Sn
allotropes was calculated using GGA, GGA-D3, vdW-DF, and meta-
GGA functionals. (a) is AE of C diamond with respect to C graphite,
and (b) is AE of Sn diamond with respect to bet. (¢) and (d) are
the GGA and vdW-DF linear regression models between F;*™ and
AE for C and Sn, respectively. The square marker is the computed
property with the optB86b-vdW functional and the corresponding
E™ (see Sec. 111 C for details).

Compensating the lack of nonlocal correlation with exchange
to predict one property accurately will most certainly affect
the possibility to predict other properties accurately.

B. Relative stabilities of carbon and tin allotropes

Alloy stabilities are typically referenced to the energetics
of the corresponding single-component systems. Calculating
such properties with DFT is often challenging since the nature
of the chemical bonds in alloys may change upon mixing.
In the NiX alloy systems studied here, we have Ni, a metal,
mixed with X, a semiconductor. In the following, we first
investigate how different density functional approximations
perform on allotropes of the pure elements. We focus on total
energy differences rather than atomization energies to cir-
cumvent the problem in DFT in calculating reference atomic
energies [37,41].

Figure 3(a) shows the relative stability per atom of the two
C allotropes discussed above (diamond and graphite). Posi-
tive numbers infer that graphite is more stable than diamond.
Experimentally, graphite is well known to be the most stable
polymorph at normal conditions (1 atm and 298 K). Using
the various density functionals presented above, we note that
the energy difference between these allotropes can be as large
as 0.20 eV/atom (RPBE). Here, PBEsol and SCAN-rVV10
are functionals that give a total energy difference closest to
the experimental value of 0.02 eV/atom [77,78]. For the
GGA class of density functionals, having a functional with
a slower “steepness” in Fy(s), i.e., tuned towards an accurate

description of the condensed phase, brings the result closer
to experimental observations. Hence, PBEsol is the GGA
functional that gives an accurate description of relative stabil-
ities. On the contrary, as observed for the interlayer distance
in C graphite, adding Grimme’s D3 dispersion correction
only slightly affects the relative stability between the two
C allotropes, resulting in an overestimation of the diamond
stability for PBE-D3 and RPBE-D3. For the vdW-DF func-
tionals, vdW-DF-cx predicts that C graphite is as stable as C
diamond. In contrast, optPBE-vdW and revPBE-vdW follow
the overall trend for the GGA functionals, i.e., an overestima-
tion of the relative energy. For the meta-GGA functionals, the
inclusion of dispersion in SCAN-rVV10 slightly improves the
agreement with experimental observations.

Next, we move on to the relative stability of the two most
stable Sn allotropes. From experiments, these are the diamond
phase (a-Sn), stable at low temperatures (T < 13°C), and a
bct phase (B-Sn), stable at higher temperatures. The relative
energy difference between these Sn allotropes at 0 K is only
0.02 eV/atom [79,80], and as for the C relative energies dis-
cussed above, an accurate prediction using DFT for this slight
energy difference is a challenge. Let us see how the studied
functionals herein perform.

The computed relative energies are given in Fig. 3(b).
Compared to the C results, we observe more drastic errors
in predicting which phase is stable at 0 K. For the GGA
functionals, the PBE functional predicts the expected energy
difference between the Sn allotropes. In contrast, the PBEsol
functional overestimates the stabilization of the bct phase, and
the RPBE functional overestimates the stability of the dia-
mond phase. The inclusion of Grimme’s D3 vdW correction
results in a slight stabilization of the bct phase, thus making
PBE-D3 the most accurate functional here. Interestingly, the
inclusion of self-consistent dispersion corrections does not
improve the relative energies for the Sn allotropes. The vdW-
DF-cx functional overestimates the stabilization of the bct
phase while the optPBE-vdW and revPBE-vdW functionals
stabilize the diamond phase. As for SCAN and SCAN-rVV10,
both functionals overestimate the diamond phase stability,
although the inclusion of dispersion corrections in SCAN-
rVV10 considerably improves the results.

The results obtained when applying PBEsol, PBEsol-D3,
or vdW-DF-cx functionals indicate that a phase transforma-
tion from Sn diamond («@-Sn) to Sn bct (8-Sn) would never
occur since the bct phase will always be more stable than
the Sn diamond. Such a wrong prediction of phases stabili-
ties may have consequences on ab initio phase diagrams and
on the conclusions drawn from thermodynamic calculations
using for example the CALPHAD method. Compared to the
case for C allotropes, the diamond phase was at least as stable
as graphite, even though the relative energy was overestimated
in some cases. Therefore, we emphasize the importance of
carefully validating results from DFT calculations before us-
ing them in multiscale modelling approaches.

As for structural properties, one can make a linear regres-
sion model for the relative stabilities of C and Sn to investigate
trends among the results. We again observe for C relative sta-
bilities, cf. Fig. 3(c), that the regression for vdW-DF crosses
the experimental value at smaller ;™ compared to the re-
gression for GGA functionals, although the difference is not

085127-6



IMPROVING THE TRANSFERABILITY OF DENSITY ...

PHYSICAL REVIEW B 105, 085127 (2022)

. T 10
30t (a) fec | (b) diamond (©) diamond
bee " graphite | 81 bet

> L
=20 6
5
@) 5t 4r

10

2 +
0 : : : 0 : . : 0 :
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
S S S

FIG. 4. Reduced density gradient distributions for (a) Ni fcc (red) and bce (blue) phases, (b) C diamond (red) and graphite (blue), and

(c) Sn diamond (red) and bct (blue) phases.

as large as for the regression for the interlayer distance. Even
though dispersion corrections are important for the interlayer
distance in graphite, it is important to highlight that the main
contribution for an accurate description of C relative stabilities
arises from the exchange since covalent bonds between the
atoms are the main contribution to the total energies. The same
conclusions drawn for C are valid for the computed Sn relative
stabilities, cf. Fig. 3(d). However, the slope of the regressions
for the relative stabilities of Sn allotropes shows that a slight
change in how the exchange is computed causes a substantial
effect in the calculated property, especially for the vdW-DF
class.

C. Validation of regression model and further explorations
of F.*

In Secs. IITA and III B we have shown that it is possible
to find a F;*™ value that coincides with the experimental value
of a given materials property. In Ref. [37], this observation
was used to derive a scheme for predicting properties where
experiments are uncertain or even lacking. One problem with
this scheme is that the lack of experimental data makes vali-
dation difficult. In this section, we therefore propose another
means of validation by predicting the results of other density
functionals using the already fitted regression model F;*". For
this purpose, we have chosen to use the density functional
optB86b-vdW, which has previously been shown to be very
accurate in predicting structural properties of molecules and
materials [81]. The F;" values and the corresponding com-
puted material property calculated using the optB86b-vdW
functional are indicated by the green squares in Figs. 2(c)
and 2(d) and Figs. 3(c) and 3(d). As seen in the figures,
the computed values lie very close to the estimated values
given by the linear regression. This exercise demonstrates
the robustness of the approach taken and provides further
support for the proposed extrapolation scheme for improved
predictability of materials properties with DFT.

D. Reduced density gradient distributions of Ni, C,
and Sn allotropes

Now let us put the results shown for C and Sn allotropes
into the perspective of finding a suitable functional for de-
scribing the single-component elements of an alloy. For Ni,
we observed a negligible difference among the functionals

for the relative energy between the fcc and bce phase, and
all predicted fcc as the stable phase [37]. On the other hand,
the energy difference is 0.1 eV /atom for C allotropes, and
the difference for Sn allotropes is +0.08 eV/atom. One can
understand the results obtained when using different function-
als for Ni, C, and Sn by analyzing each allotrope’s reduced
density gradient distribution. We observe in Fig. 4(a) that both
Ni fcc and bee have a very similar distribution of reduced
density gradients, while the distribution for graphite shows
a wider spread compared to the distribution for diamond, cf.
Fig. 4(b) blue and red bins, respectively. For small s values, as
for fcc, bee, and diamond, all functionals will produce similar
results, since F,(s) &~ 1 when s &~ 0. On the other hand, the
wider spread in s values for graphite will affect how the
exchange energy is computed for each functional, leading to a
larger span in the computed property values.

Looking at the reduced density gradient distribution of Sn
diamond and bct, Fig. 4(c), we also observe less overlap be-
tween the two distributions than for Ni fcc and bcc. However,
the spread in s values is not as large as for C graphite, which
could explain why the span in computed energy differences
in Sn allotropes is less than for the C allotropes. One could
also say that the different contributions to the exchange energy
for the Sn diamond phase contribute the most to the different
results for relative stabilities. By looking at F,(s) for GGA
and vdW-DF functionals, one sees that the weak dependence
of PBEsol and vdW-DF-cx tend to overstabilize the metallic
(bct) phase due to a “penalty” of the exchange energy in
Sn diamond. On the contrary, for PBE, RPBE, optPBE-vdW,
and revPBE-vdW, the F,(s) tend to stabilize systems with a
higher contribution from the exchange at larger s values, and
therefore, the diamond phase is favored. Finally, the flexibility
in SCAN when treating various chemical bonds, as discussed
in Sec. II, tends to favor the diamond phase, and the inclusion
of nonlocal correlation improves the description of relative
stabilities.

To conclude the discussion on single-component elements
of group 14, we observe that the relative stabilities of C
allotropes are accurately achieved by an accurate descrip-
tion of exchange, which can be obtained by analyzing the
value of F;™ when the regression model crosses the exper-
imental value. However, dispersion interactions are crucial
for describing the interlayer distance in graphite. We note
that for relative stabilities of C and Sn allotropes, there is a
delicate balance on how much the exchange energy should
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functionals.

be accounted for in order to produce accurate results. The
discussions from the regression model reinforce that a GGA
or vdW-DF functional can either be accurate for structural
parameters or relative energies but never both. However, an
accurate description of exchange is crucial for the transfer-
ability of the functional. Our results show that the meta-GGA
formalism indeed solves some of these problems and is trans-
ferable over a wider variety of chemical bonding situations.

E. Properties of NiX alloys

The next step in this work is to investigate how the choice
of density functional affects the prediction of specific alloy
bulk properties. Besides C, which has been found to form
interstitial alloys with Ni, all other group 14 elements form
stable substitutional alloys [69,82,83]. Due to the increased
complexity in studying interstitial alloys, we have focused
only on substitutional ones in this work. We have chosen the
following set of substitutional alloys: NizC, Ni,Si, NisGes,
and Ni3Sngs. Among these, the nickel carbide is not stable
under standard conditions [84,85] but is still interesting in
the purpose of testing density functionals. Information about
the structures can be found in Sec. II C, in Table I, and in the
Supplemental Material [72].

Starting with structural properties, we observe the same
trend for the alloys as for the single-component systems (lat-
tice parameters for all investigated alloys are found in the
Supplemental Material [72]). PBEsol (RPBE) gives the small-
est (largest) lattice parameter among GGAs, the inclusion of
D3 corrections shrinks the cell, and vdW-DF functionals fol-
low the same trend as GGA class when it comes to functional
steepness: vdW-dDF-cx gives the smallest and revPBE-vdW
the largest lattice parameter. Finally, the inclusion of disper-
sion corrections in SCAN-rVV10 does not significantly affect
the computed lattice parameters. Note that it is not possible
to evaluate which functional that predicts the best structural
properties since, to the best of our knowledge, experimental
lattice constants extrapolated to O K are not available in the
literature for the systems investigated in this work.

Next, we evaluate the stability of NiX alloys by calculat-
ing AEnx according to Eq. (5) for each alloy and for each
functional. These results are reported in Fig. 5. For Ni3C, all
functionals correctly predict that this alloy is not stable (posi-
tive AEnix values). For the Ni,Si, NisGes, and NizSny alloys,
all functionals predict that they are stable (negative AEpx
values). We note that even though the different functionals
predict a wide span of mixing energies, one can conclude
that all of them are in qualitative agreement when it comes
to predicting the stability (the sign of AEy,;x) of NiX alloys.

Let us look a little closer at the data for the stable NiSi,
NiGe, and NiSn alloys in Fig. 5 (see also Supplemental Ma-
terial [72]). We note that for all alloys, the revPBE-vdW
functional gives the smallest absolute value of AEy,x (least
stable), whereas PBEsol-D3 gives the largest (most stable).
The energy spread in computed AEy,;x decreases going down
the group 14: 0.28, 0.21, and 0.19 eV/atom, respectively,
for Ni,Si, NisGes, and NizSny. Grimme’s D3 dispersion cor-
rection always decreases the absolute AEpx value (makes
it less stable), but for the meta-GGA SCAN functional, the
self-consistent dispersion correction in the form of rVV10
kernel has little effect on computed AE,,x values.

At this point, there are, to the best of our knowledge, no
experimental data to validate the computed AE.;x against,
which makes it difficult to judge which is the most accu-
rate functional for a quantitative prediction of the computed
AE.ix. We note, however, a large spread in computed mix-
ing energies, which of course, will affect the phase diagram
of the respective alloys. We only discuss the mixing ener-
gies computed at 0 K here and do not aim to calculate the
actual transition temperatures, which would require the com-
putation of entropic effects upon the phase transformation
and alloy formation. However, if we assume that the calcu-
lation of AEx causes similar consequences for the phase
transformation as we discussed for the diamond-to-bct phase
transformation of Sn in Section III B, it is clear that different
functionals will predict different phase transition tempera-
tures. In the following section, we will demonstrate how our
regression analysis can deal with these problems.
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explanation).

F. Lattice constants and AE;, for NiSn alloys with various

compositions

Since there only exists sparse experimental data for alloys

in the scientific literature, it is not easy to judge which func-
tional best describes multicomponent systems with various
compositions, especially if the nature of chemical bonding in

the pure compounds of the constituents are very different. To
overcome this problem, we will in the following make use
of and extend our scheme for improved predictions of mate-
rial properties presented in Ref. [37] to enable prediction of
properties for alloys with varying composition. As discussed
above, we observe a clear trend between the “steepness” of
F,(s) and a computed specific property of the single-element
compounds, and that the experimental value of this property
can be found at a specific ;™ value for single-component
systems. In the extended scheme, these F" values will serve
as boundaries when predicting properties for the alloy. To
demonstrate the scheme, we will in the following predict the
lattice constant of Ni3Sny. The procedure (also illustrated in
Fig. 6) is as follows:

(i) Generate the regression model for the two single-
component systems and for the alloy for a given functional
class and property (in this illustration the GGA class and the
lattice parameter of Ni, Sn, and Ni3Sny).

(ii) Read out ;™™ for the experimental value of the property
in the regression model for the single-component systems. We
call this value F,™-exp.

(iii) Interpolate F;™ for the alloys according to their com-
position, i.e., the amount of Sn in the alloy. For example,
NizSny has 57 atom-% of Sn, and therefore its F;*" cross is
weighted averaged to 0.43 atom-% of Ni. The F;*™ values of
the single-component systems are boundaries in the interpola-
tion scheme.

(iv) Project the interpolated F,™-exp to the regression
model for the alloy and read out the predicted lattice constant.

A note on step (iii): We use an interpolation for the F;™'-
exp of the alloy since we observed a gradual change in the
s distribution following the alloy composition from Ni to Sn
(see Fig. S1 in the Supplemental Material).

Now let us use this procedure to compute lattice constants
for different NiSn alloys. Figure 7 shows the predicted lat-
tice constants for NizSn, Ni3Sn,, and Ni3Sny together with
optimized lattice constants from all considered density func-
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FIG. 7. Lattice parameters were calculated using GGA, GGA-D3, vdW-DF, and meta-GGA functionals for NiSn alloys with various
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GGA and vdW-DF functionals, respectively.

_exp of the extended linear regression model for
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tionals. In the figure, we see that the predictions made from
the GGA and vdW-DF based regression models agrees to
a large extent for all considered alloys. Using the predicted
lattice parameters from our regression, we can now assess
the quality of the different functionals. We observe that PBE
and optPBE-vdW are the functionals that better describe the
lattice of Ni3Sn, and PBEsol and vdW-DF-cx the lattice of
Ni3Sn; and Ni3Sny. RPBE and revPBE-vdW have the largest
overestimation compared to the predicted lattice parameter
from the regression model, suggesting that structural prop-
erties of NiSn alloys might not be well described by these
functionals. The shrinkage caused by D3 dispersion correc-
tions makes the prediction of structural parameters worse for
Ni3Sn and Ni3Sn,, but PBE-D3 is very good for NizSny. The
SCAN meta-GGA functional seem to underestimate the lat-
tice constants of NizSn and Ni3zSn, but describe the structure
of Ni3Sny reasonably well.

We now apply the same procedure for AE.;x of NiSn
alloys. These results are reported in Fig. 8. In the case of
structural parameters, it was possible to use the same property
(lattice constant) to find F;™-exp for the single-component
systems, but AEy;x is by construction zero for Ni fcc and Sn
diamond. Therefore, it is necessary to choose another property
that is based on total energies. In this work, we chose the
Ni(111) surface formation energy and the Sn relative sta-
bilities for the single-component systems. These choices are
motivated based on the predicted Wulff constructions for Ni
nanoparticles in Ref. [37] and the discussion of Sn allotropes
in Sec. III B.

Among the GGA functionals, we observe that AE;x
for PBEsol is the closest to the predicted AE.x. The
shift towards overstabilization by the D3 corrections seen
in all binary systems studied here caused PBEsol-D3 to
overstabilize AE;x, and therefore PBEsol-D3 becomes less
accurate. The span of results for vdW-DF functionals is
larger than GGA functionals, where vdW-DF-cx tends to
slightly overstabilize the alloy, whereas optPBE-vdW and
revPBE-vdW tend to severely understabilize it. For the meta-

GGA functionals, an understabilization is observed for all
compositions.

Finally, we conclude that it is possible to obtain a qual-
itative agreement among different functionals for various
properties of binary systems, but the results can be quan-
titatively quite different. Given the difficulty in comparing
the results for binary (and multicomponent) systems with
experiments, the regression analysis, extensively discussed
for the single-component systems above and in Ref. [37], is
here proposed to be a valuable tool for rationalizing results
from the various density functionals. Furthermore, it makes
it possible to provide an educated guess of the accuracy of
computed properties. From the theoretical side, these results
can guide the development of more accurate functionals.

IV. CONCLUSIONS

We have investigated and compared the performance of
different semilocal GGA and meta-GGA density functionals
with and without dispersion interactions in terms of their
ability to describe key properties of bulk elements of group
14 and some substitutional NiX (X = C, Si, Ge, Sn) alloys.

We find for the single-component systems that the best
agreements with experiments are:

(1) RPBE-D3 for C graphite interlayer distance.

(i) PBEsol-D3 for the C and Sn diamond lattice parame-
ters.

(iii) SCAN-rVV10 for the Si and Ge diamond lattice pa-
rameters.

(iv) PBEsol for the relative stability of C diamond with
respect to graphite.

(v) PBE, optPBE-vdW, and SCAN-rVV10 for the relative
stability of Sn bct with respect to Sn diamond.

These results suggest that the quantitative performance of
a density functional is system and property dependent. There-
fore, none of the functionals studied here can simultaneously
describe all the different chemical characteristics that can be
found in materials based on the elements from group 14.
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We further rationalized our results in the light of a re-
gression model that correlates a specific property with the
steepness of the exchange enhancement factor F.(s) for a
given class of density functionals, e.g., GGA or vdW-DF,
obtained by maximizing the regression at a certain sop, value.
For the single-component systems, we show that it is pos-
sible to capture the experimental value (or theoretical) for
certain properties using the generated regression model for
E™.

We also investigated how the choice of density functional
affects the prediction of key properties in binary NiX al-
loys. We observed that all functionals qualitatively agree on
the stability of the alloys. However, quantitatively, the com-
puted data is scattered, both in terms of their predicted lattice
parameters and AFEx. Regarding their predicted structural
and energetic properties, we observed that they follow the
same trend as the single-component systems concerning the

steepness of the exchange enhancement factor. Based on this
observation, we extended the scheme for improved property
prediction in DFT presented in Ref. [37] to binary compounds.
We foresee that the use of regression models (or extensions of
such) can be valuable in the development of more accurate
density functionals that in the future could provide quantita-
tive accuracy even for complex multicomponent systems.
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