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Measurable fractional spin for quantum Hall quasiparticles on the disk

Tommaso Comparin ,1,* Alvin Opler,2 Elia Macaluso ,3 Alberto Biella,2,3 Alexios P. Polychronakos ,4

and Leonardo Mazza2,†

1Univ. Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
2Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

3INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
4Physics Department, The City College of New York, New York 10031, USA

and The Graduate Center of CUNY, New York, New York 10016, USA

(Received 6 December 2021; accepted 24 January 2022; published 15 February 2022)

We study the spin of the localized quasiparticle excitations of lowest-Landau-level quantum Hall states defined
on a disk. The spin that we propose satisfies the spin-statistics relation and can be used to reconstruct the
topological geometric phase associated to the exchange of two arbitrarily chosen quasiparticles. Since it is related
to the quadrupole moment of the quasiparticle charge distribution, it can be measured in an experiment and could
reveal anyonic properties in a way that is complementary to the interferometric schemes employed so far. We first
discuss our definition for the quasiholes of the Laughlin state, for which we present a numerical and analytical
study of our spin, and we proceed with a discussion of several kinds of quasiholes of the Halperin 221 state.
Finally, we discuss the link between our spin and the adiabatic rotation of the quasiparticles around their axis
and demonstrate that our spin obeys the spin-statistics relation.
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I. INTRODUCTION

In recent years, an increasing amount of attention has been
devoted to the study of anyons, quasiparticles which display a
quantum statistics that is neither bosonic nor fermionic [1–8].
On top of the tremendous scientific interest for these objects, it
has also been proposed that they could play a key role in novel
quantum computing schemes, dubbed topological, and thus
trigger the development of innovative technologies [9,10].

The simplest model for an anyon is that of a charge-
flux composite, made of a charge q orbiting around an
infinitesimally-thin solenoid with magnetic flux � [11,12].
Historically, this represented a first concrete instance of a
quantum object living in two spatial dimensions characterized
by fractional properties. One key result of the studies on
this model is that the spin S of the charge-flux composite is
related to the geometric topological phase eiθ picked up by
the system wave function once two composites are exchanged
in a counter-clockwise fashion. The link between the two
concepts is expressed by e2π iS = eiθ , or, equivalently, by S =
θ/2π + Z, and constitutes an instance of the spin-statistics
theorem [13,14].

The first experimental setup with quasiparticle excitations
to be described in terms of anyons is the two-dimensional
electron gas in presence of a strong and perpendicular mag-
netic field [15–18]. Starting from the pioneering work by
Laughlin on the fractional quantum Hall effect (FQHE), who
introduced several model wave functions describing the quasi-
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hole and quasielectron excitations at certain filling factors
[19], an uncountable series of papers have discussed the frac-
tional charge and statistics of these objects, which are now
well assessed [20,21].

However, as we have seen, the notion of anyon is deeply
linked to that of fractional spin. The standard definition of
spin of an anyon is in terms of the statistical phase acquired by
the system when an anyon is exchanged with its anti-anyon,
which is a quasiparticle with which it can annihilate and fuse
to the vacuum [6]. In the context of the FQHE, the definition
of a quasiparticle spin that satisfies the spin-statistics theorem
has turned out to be problematic when the wave function is
defined on a disk, and it has been studied only when the
problem is defined on a spherical surface or on a cylinder.
Concerning the sphere, a few pioneering papers have shown
that when the wave function of the FQHE is defined on a
spherical surface and a quasiparticle is adiabatically moved
along a closed path, an anomalous rotation appears that can be
interpreted as a fractional spin and that is due to the coupling
of the spin to the curvature of the sphere [22–28]. In fact,
even in classical systems it is well known that the parallel
transport of a vector along a generic path on the spherical
surface generates a rotation. For what concerns the cylinder,
instead, the recent technique of momentum polarization has
provided a tool to access the quasiparticle spin via an analysis
of the entanglement properties of the quantum state [29–31].

In this article we propose and study a fractional spin for
the quasiparticle excitations of an incompressible FQHE state.
We will focus on the case of the lowest Landau level (LLL),
but generalisations are straightforward. The definition is well
suited for states that are defined on a planar surface, such
as a disk, which was so far an open problem; but it could
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also be used on a cylinder, where it would complement the
aforementioned momentum-polarisation technique. We test it
with the quasiholes of the Laughlin state (at filling 1/m, with
m = 2, 3, and 4) [19] and of the Halperin 221 state [32], where
the numerical computation for large systems is made possible
by the use of the plasma analogy [17–19,32]. In the Laughlin
case, we also find an analytical proof, and the result agrees
with that derived in Refs. [22,25,26,28] on the sphere.

The interest of our fractional spin is twofold. First of all,
it satisfies a generalized spin-statistics relation. This result
is well confirmed by our analytical argument and numerical
simulations in all situations that we studied: The values that
we obtain for the fractional spin of one and of two quasiholes
can be combined according to standard recipes to obtain the
exchange phase of the quasiholes. Secondly, our definition has
an experimental relevance because it is only a function of the
density profile of the liquid in the vicinity of the quasiparticle.
Given that the experimental detection of fractional statistics is
a delicate subject, our paper could foster experimental studies
that are complementary to the existing ones, as it is partic-
ularly suitable for measurements performed with ultracold
gases or quantum fluids of light [33–38]. As an additional
advantage, our scheme does not require the study of both
the quasiparticle and its anti-quasiparticle, as required by the
general definition: the study of clusters of quasiparticles of the
same kind is sufficient to predict the desired statistical phases.

The definition of a quasiparticle spin for a FQHE state
defined on a planar surface has long been debated, and several
papers have discussed this possibility. The quantity that we are
proposing is associated to the quasiparticle angular momen-
tum, and was already mentioned in Ref. [39] (the statement
is reproposed in Ref. [26]), but the authors claimed that it
should be equal to zero because of the constant-screening sum
rule. Our explicit calculation shows that this is not the case.
Although the calculation is very demanding from a numerical
viewpoint (it is associated to the quadrupole moment of the
anyonic charge density), results are not compatible with zero;
within error bars, they are compatible with fractional values
that are consistent with our analytical predictions. We men-
tion also a series of articles that have studied the properties
of the second moment of the depletion density of fractional
quasiparticles, which is shown to be related to the conformal
dimension; the spin-statistics relation has not been discussed
explicitly [40–42].

Nonetheless, we could perform our calculations only in
some specific cases. For this reason, in the second part of the
article we present a general argument supporting our findings;
the basic idea is that a quasiparticle that is at rest in a rotating
reference frame performs a motion in the laboratory frame that
includes a rotation around itself. We identify the geometric
phase picked up in this process and link it to the fractional spin
of the quasiparticle; when discussing two quasiparticles, we
recover the aforementioned fractional spin-statistics relation
in full generality. This derivation also provides additional
insight into previous works where the braiding phase for
quasiparticle excitations was linked to their depletion profiles
[43–45]. Whereas in those previous papers the emphasis was
on the statistics of quasiparticles, here we perform a step
further and link it to their fractional spins, which was not
discussed in those papers.

This article is organized as follows. In Sec. II we present
our definition of quasiparticle spin and we compute it for the
quasiholes of the Laughlin state, for which we show that it
satisfies the generalized spin-statistics relation. Our results are
benchmarked against the existing literature on the fractional
spin of Laughlin quasiholes, and they agree with those in
Refs. [22,26]. In Sec. III we study the Halperin 221 state and
compute the fractional spin of its quasiholes using our defini-
tion. We use these values to infer the statistical phase of the
quasiholes, and benchmark our results with the data presented
in Ref. [46]; again, our findings are perfectly compatible with
a spin-statistics relation. Further comments on the link with
the standard definition of topological spin are presented in
Sec. IV, where we discuss another model of quasiparticles.
In the second part of the article (Sec. V), we employ a more
abstract approach to discuss the nature of our fractional spin.
We present a scheme to rotate the quasiholes and to compute
the geometric phase picked up during the process. Once this
approach is applied to a single quasihole, it leads in a very
natural way to our definition of fractional spin (see Sec. V C).
When we specify our calculation to two quasiholes, we obtain
information on the statistics of the quasiholes and establish
a spin-statistics relation (see Sec. V D). Our conclusions and
a final discussion on the significance of our results are in
Sec. VI.

II. QUASIPARTICLE SPIN

In this section we present the definition for the spin of a
quasiparticle excitation of a many-body state defined on a disk
in the LLL. We compute it for the quasiholes of the Laughlin
state and show that although the spin that we propose does
not agree with other earlier definitions, (i) it satisfies a correct
spin-statistics relation and (ii) it is a measurable quantity.

A. Definition

We consider a two-dimensional system composed of N
quantum particles (they can be bosons or fermions) in the
presence of a perpendicular magnetic field B; for all particles
we use the complex coordinates z = x + iy. We assume that
the system realizes an incompressible FQHE state in the LLL.
We also assume that an external pinning potential localizes a
quasiparticle at position η, whose distance from the boundary
is much larger than any relevant length-scale of the problem.
The density profile is ρη(z), and if we neglect boundary effects
and assume rotational invariance of the quasiparticle it is just
a function of |z − η|.

We propose the following definition of the quasiparticle
spin:

J =
∫
A

( |z − η|2
2�2

B

− 1

)
(ρη(z) − ρ̄ )d2z, (1)

where �B = √
h̄/(eB) is the magnetic length, e > 0 is the

elementary charge, ρ̄ is the bulk density (far from the bound-
aries, and in the absence of quasiparticles), and we set h̄ = 1.
The integral is extended over a large region A around the
quasiparticle, which should be chosen in such a way to avoid
the boundary. In practice, when performing a numerical sim-
ulation, we will consider a disk geometry, place the quasihole
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at the center of the disk (η = 0) and integrate over a circle
of radius R smaller than the sample radius. The spin J in
Eq. (1) is a measure of the excess of angular momentum
associated to the presence of the quasiparticle with respect to
the homogeneous situation, and it follows from the definition
of the canonical angular-momentum operator in the LLL (see
Appendix A). Alternatively, we can say that the spin of the
quasiparticle is a subleading contribution to the angular mo-
mentum of the state that includes the quasiparticle. We refer
to Refs. [40–42] for previous studies of the second moment of
the FQHE quasiparticles.

Moreover, J is a measurable quantity: The definition shows
that it is a function of the net total charge and of the
quadrupole moment of the depletion density of the quasipar-
ticle,

dη(z) = ρη(z) − ρ̄. (2)

As we have mentioned in the introduction, this can in principle
be measured with an experimental platform able to reconstruct
the density profile of the quantum system in the vicinity of η.

B. The quasiholes of the Laughlin state

The spin of a quasiparticle has already been computed
for several FQHE states defined on a sphere. Our definition
is different, and as a first consistency check it is important
to compare it with the existing results, mainly related to the
Laughlin state. We consider the filling factor 1

m and the wave
function with quasiparticle composed of q quasiholes centered
in η:

�m,q(zi, η) ∝
∏

i

(zi − η)q ×
∏
i< j

(zi − z j )
me

−
∑

i |zi |2
4�2

B . (3)

The spin of this quasiparticle presented in Ref. [27] is

sm,q = − q2

2m
; (4)

This value is the one associated to the standard formulation
of the spin-statistics theorem, as we are going to discuss here
below.

The authors of Refs. [22,25,26] compute the spin of the
q = 1 quasihole (“qh”) and quasielectron (“qe”, wave func-
tion not shown here) by moving adiabatically a quasiparticle
on the surface, and obtain

J∗
m,qh = − 1

2m
+ 1

2
; J∗

m,qe = − 1

2m
− 1

2
. (5)

The discussion in Ref. [26] explain in an enlightening way that
these results are consistent with sm,1 in Eq. (4) because sm,1 =
1
2 (J∗

m,qh + J∗
m,qe), which is the only quantity that is relevant for

establishing a spin-statistics relation. We will address these
problems in the next subsection II C; we devote the rest of this
subsection to the calculation of our spin.

In order to compute the spin of the Laughlin quasihole
according to our definition and to compare it to Eqs. (4)
and (5), we reconstruct the density profile of the state �m,q

using the plasma analogy. We consider the values m = 2, 3, 4,
and we perform a Monte Carlo sampling of |�m,q|2 using
the Metropolis algorithm with either one quasihole (q = 1)
or two quasiholes (q = 2) placed at the center of the disk

TABLE I. Fractional spin and exchange phase of the quasiholes
of a Laughlin state computed with different techniques. For the
calculation of Jm,q according to the definition in Eq. (1), we give the
rational number compatible with the simulation (horizontal dashed
line in Fig. 1), while sm,q and J∗

m,qh are defined in Eqs. (4) and (5) and
taken respectively from Refs. [27] and [26].

m Jm,1 sm,1 J∗
m,qh Jm,2 sm,2 ei�ex eiϕex

2 1
4 − 1

4
1
4 0 −1 ei π

2 ei π
2

3 1
3 − 1

6
1
3

1
3 − 2

3 ei π
3 ei π

3

4 3
8 − 1

8
3
8

1
2 − 1

2 ei π
4 ei π

4

(η = 0). We then reconstruct the density profile ρ0(z) and
the associated depletion density d0(z) = ρ0(z) − 1/(2πm�2

B),
which only depends on the distance r = |z| from the center of
the disk. We study the integral

Jm,q(R) = 2π

∫ R

0

(
r2

2�2
B

− 1

)
d0(r)rdr, (6)

up to a cut-off radius R; in the absence of the boundary, we
expect this quantity to converge to the spin of the particle Jm,q

in Eq. (1), for large R.
Our results are shown in Fig. 1. The calculation of the

second moment of d0(r) is particularly demanding, and even
with our high-precision numerical data (obtained with up to
≈1010 global Monte Carlo moves) the estimate of Jm,q(R) be-
comes unreliable at large R. Nevertheless, we clearly identify
a saturation value Jm,q at R/�B ≈ 10 − 20, reached after a few
damped oscillations. The fractional spin Jm,q that we extract
are compatible with simple rational numbers, as summarized
in Table I, where we also compare them with Eqs. (4) and (5).

It is easy to see that sm,q and Jm,q are different; if we
consider q = 1, we observe that Jm,1 − sm,1 = 1/2: our spin
has a systematic shift with respect to Eq. (4). On the other
hand, Jm,1 = J∗

m,qh; in our case, however, with the numerical
tools at our disposal we cannot compute the spin of Laughlin
quasielectron and check the consistency relation proposed in
Ref. [26].

Moving to the case q = 2, we observe that Jm,2 = 4Jm,1

mod 1. This is an interesting relation that parallels the analo-
gous cluster property satisfied by the spin defined in Eq. (4),
namely the scaling as q2 [16]. In fact, the general theory
of Abelian anyons predicts that when grouping together n
anyons, one obtains an anyon whose spin has been multiplied
by a factor n2. The fact that in our case the equality is satisfied
modulus 1 can be accepted once we observe that in order
to establish a generalized spin-statistics relation (our ultimate
goal) we are only interested in 2π rotations, so that unity terms
are inessential.

1. An analytical calculation of Jm,q

Starting from a few simple considerations, it is possible to
extend our numerical results and to show in an analytical way
that

Jm,q = − q2

2m
+ q

2
. (7)
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FIG. 1. Fractional spin of q quasiholes of a Laughlin state. Panels in first (second) row show Jm,q(R) for q = 1 (q = 2), computed via
Monte Carlo sampling and Eq. (6) (blue-solid lines), for Laughlin states with filling 1/m (see column titles) and N = 200. Horizontal-dashed
lines represent the saturation values Jm,q reported in Table I. Error bars are statistical uncertainties, and data are only shown for cutoff radii R
where boundary effects are negligible and Monte Carlo sampling is reliable.

Let us consider the radial density profile of the Laughlin
state, ρ(r), which is flat in the bulk, with value ρ̄ = 1

2πm�2
B
,

and decreases to zero in the vicinity of the classical radius
of the droplet, r0 = √

N/(πρ̄ ), defined by
∫ r0

0 ρ̄ 2πrdr = N .
In the large-N limit, the profile of the gas is universal (see
Appendix B), apart from negligible corrections, and it is thus
possible to express it as

ρ(r) = ρρ̄,r0 (r) (8)

where the universal function ρρ̄,r0 only depends on the bulk
value ρ̄ and on the classical radius r0.

We know that
∫ ∞

0 ρ(r)2πrdr = N and that∫ ∞
0

r2

2�2
B
ρ(r)2πrdr = N + L, where L is the angular

momentum of the state (see for instance Appendix A);
for a Laughlin state L = m N (N−1)

2 . We can conclude that∫ ∞

0
ρρ̄,r0 (r)2πrdr = N (9a)

∫ ∞

0

r2

2
ρρ̄,r0 (r)2πrdr = N + m

N (N − 1)

2
. (9b)

In fact, we can say more than this. The profile ρρ̄,r0 (r) is
only a function of ρ̄ and r0. As such, we expect the integral
to depend only on the two parameters ρ̄ and r0. Using the
explicit expressions for these parameters given above, we can
thus conclude the two following important properties of the
universal part of the density profile of a Laughlin state:∫ ∞

0
ρρ̄,r0 (r)2πrdr = π ρ̄ r2

0 ; (10a)

∫ ∞

0

r2

2
ρρ̄,r0 (r)2πrdr = π ρ̄ r2

0 + 1

2

r2
0

2�2
B

(
π ρ̄ r2

0 − 1
)
. (10b)

Equipped with these results, we can now characterize the
depletion density of the quasihole. We assume that when we

add q quasiholes in the center, the density profile of the system
becomes

ρ(r) = d0(r) + ρρ̄,rq (r). (11)

The depletion density d0(r) has a charge −q/m, and it
describes the deviations of the density profile from the homo-
geneous case; note that d0(r) ∼ e−r/r0 for large r. Concerning
the boundary, we just assume that it maintain the same uni-
versal form of the homogeneous gas, but that it is slightly
shifted: the new classical radius rq is chosen to accommodate
the particles that have been pushed away from the bulk and it
is defined by the conservation of charge:

πρ̄ r2
q = N + q

m
. (12)

Concerning the second moment:∫ ∞

0

r2

2
ρρ̄,rq (r)2πrdr =

= N + q

m
+ 1

2
(Nm + q)

(
N + q

m
− 1

)
. (13)

The relation
∫

r2

2�2
B
ρ(r)2πrdr = N + L is still valid, and for

a state with q quasiholes the angular momentum is L =
m N (N−1)

2 + qN , so that the integral in Eq. (13) should be equal
to

N + m
N (N − 1)

2
+ qN −

∫ ∞

0

r2

2�2
B

d0(r)2πrdr. (14)

With little algebra, we obtain

Jm,q =
∫ (

r2

2�2
B

− 1

)
d (r)2πrdr = − q2

2m
+ q

2
. (15)

The values extracted from our numerical simulations are com-
patible with this general result that only assumes the existence
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of a universal density profile, the exponential localisation of
the quasihole, and the rigid shift of the boundary of the gas
once the quasiholes are inserted.

In an early paper, Sondhi and Kivelson have proposed our
definition for the quasiparticle spin but dismissed it on the
basis of the constant-screening sum rule, according to which
they computed its value to be zero [39]; similar statements are
presented in Ref. [26]. The present explicit calculation shows
a value that is different from zero; a better understanding of
the reasons of the disagreement is planned for a future work.

C. Spin-statistics relation

Notwithstanding the numerical differences with sm,q, our
expression Jm,q satisfies the correct generalized spin-statistics
relations. Let us first define what we are speaking about. We
consider two quasiparticles of kind a and b, that fuse together
in a quasiparticle of type c; each of them is characterized by a
fractional spin Jα , with α = a, b, c. We define the topological
braiding phase ei�br that is acquired by the system when the
particle a encircles in a counter-clockwise way the quasipar-
ticle b and they are in the fusion channel c: the spin-statistics
relation states that

ei�br = e−2π i(Jc−Ja−Jb). (16)

If the particles are of the same type, i.e., a = b, we can define
the topological exchange phase that is picked up when the two
particles are exchanged in a counterclockwise way:

ei�ex = e−iπ (Jc−2Ja ). (17)

The braiding phase and the exchange phase are related by
a factor 2 because an encircling process is topologically
equivalent to two exchanges, �ex = �br/2. The standard spin
statistics relation is typically obtained by assuming the cluster
relation, Jc = 4Ja so that the statistical parameter θ = −�ex

satisfies Ja = θ/(2π ) + Z [47].
The spin values that are reported in Table I are sufficient

to compute the exchange phase for two identical quasiholes
q = 1 using Eq. (17). Depending on whether we use our spin
definition or the one in Eq. (4), the exchange phases ei�ex and
eiϕex respectively, read:

ei�ex = e−iπ (Jm,2−2Jm,1 ), eiϕex = e−iπ (sm,2−2sm,1 ). (18)

Remarkably, as summarized in Table I, we obtain ei�ex =
eiϕex = ei π

m : this the known value computed with the explicit
and independent calculations of the Berry phase via the
plasma analogy [20].

By explicit inspection, the spin Jq,m is generally compatible
with the spin-statistics relation (17) even if it does not satisfy
the cluster property because the added term is proportional
to q. It is interesting to observe that the prefactor 1/2 grants
an interesting property, namely that Jm,2q = 4Jm,q mod 1, so
that we can speak of a generalized cluster property.

In summary, when we apply the definition of quasiparticle
spin proposed in Eq. (1) to the quasiholes of the Laughlin
state, we do not reproduce the values obtained in Ref. [27];
our values, obtained with analytical and numerical means,
match exactly with the Berry-phase calculations performed on
a sphere in Refs. [22,26]. We have also shown that the spin

Jm,q satisfies a generalized cluster property (since it scales as
q2) and the generalized spin-statistics relation.

D. Gauge invariance

Looking at the spin defined in Eq. (1), a natural question
is whether the observable that we are proposing is a gauge-
invariant quantity. So far, all our derivations have been carried
out in the symmetric gauge exploiting rotational symmetry;
moreover, we have shown that calculating the spin J amounts
to computing the excess of angular momentum with respect
to the ground state. Whereas this has the physical meaning of
linking the quasiparticle spin to the generator of rotations, it
has the problem that the canonical angular momentum is not
a gauge invariant quantity; the generality of our result might
thus be questionable. In this paragraph we show (i) that it is
possible to define a gauge-invariant generator of rotations, and
(ii) that in our specific case it coincides with the canonical
momentum.

We consider a particle with charge q, and we consider
the position and gauge invariant mechanical momentum op-
erators, x, y, πx and πy, which satisfy the well-known
commutation relations (we list here only those that are not
zero, and we restore h̄ for clarity):

[x, πx] = ih̄, [y, πy] = ih̄, [πx, πy] = iqh̄B(x, y). (19)

The current discussion is general and includes the case of
an inhomogeneous magnetic field. We introduce the gauge-
invariant generator of rotations J and we require that it
satisfies:

[J, x] = ih̄y, [J, y] = −ih̄x; (20a)

[J, πx] = ih̄πy, [J, πy] = −ih̄πx. (20b)

A first possibility would be to use the mechanical angular
momentum, xπy − yπx, which is gauge invariant; however, a
simple check shows that it does not satisfy the Eqs. (20b).
We thus set J = xπy − yπx + R and try to derive the appro-
priate gauge-invariant operator R. Application of (19) yields
[x, R] = [y, R] = 0 and

[πx, R] = iqh̄B(x, y)x, [πy, R] = iqh̄B(x, y)y. (21)

The vanishing commutators with x and y imply that R is a
function of x and y only. The last two commutators imply

∂R

∂x
= −qB(x, y)x,

∂R

∂y
= −qB(x, y)y. (22)

Two main conclusions can now be drawn. The first follows
from the consistency relation ∂x∂yR = ∂y∂xR. We obtain

x∂yB − y∂xB = 0. (23)

Thus, a gauge invariant generator of rotations can be defined
only when the magnetic field is rotationally invariant. The
second conclusion follows from the integration of Eqs. (22):

R(x, y) = −q�(r) + C with �(r) =
∫ r

0
B(r)rdr. (24)

That is, �(r) is the magnetic flux inside a disk of radius
r measured in units of flux quanta 2π . C is an arbitrary
constant, which can always be added to the two-dimensional
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angular momentum. We fix it to C = 0 such that, for B = 0,
J becomes the standard orbital angular momentum. Note that
�(r) depends on B, and thus is a gauge-invariant quantity, as
desired. Altogether, we obtain

J = xpy − ypx − qxAy + qyAx − q�(r). (25)

Concluding, the operator J as defined above is a gauge-
invariant generator of rotations.

We can now determine the form of J in the case of a ro-
tationally invariant magnetic field in the symmetric gauge. In
this gauge, �A is purely azimuthal and rotationally symmetric,
so xAy − yAx = �r × �A = rAθ So the magnetic flux is

2π�(r) =
∮

�A · d�r = 2πrAθ . (26)

Therefore, the �A and � terms on (25) cancel and we conclude
that

J = xpy − ypx. (27)

In our case we have a homogeneous, and therefore rota-
tionally invariant magnetic field, and we use the symmetric
gauge, so J is as above. This is the operator that we used in
the definition of Eq. (1). If instead we worked with a different
gauge, such as, e.g., the Landau gauge, �(r) would be the
same but the gauge field terms would differ, and we would
have to use the new form of the operator J . Since the result
must be gauge invariant, we expect that for states restricted to
the LLL it will always hold that

J =
∫ (

r2

2�2
B

− 1

)
�

†
LLL(r)�LLL(r)dr, (28)

where �LLL(r) is the field of the particles composing the
FQHE state restricted to the LLL.

III. HALPERIN 221 STATE

We now consider a Halperin 221 state [32,48], that de-
scribes the quantum Hall effect of two-component bosonic
systems, such as particles with an effective spin 1

2 or bilayer
setups. For simplicity, we consider a bilayer setup and we
call the two components with the conventional names A and
B; particles on layer A are labeled by a latin index whereas
particles on layer B are labeled by a greek index. The wave
function that we study reads:

�221(zi, zα ) ∝
∏
i< j

(zi − z j )
2 ×

∏
α<β

(zα − zβ )2×

×
∏
i,α

(zi − zα ) e
−

∑
i |zi |2+∑

α |zα |2
4�2

B . (29)

This state is amenable to a study employing the plasma
analogy [49–52]. Our goal is to characterize the spin of
its quasiholes and assess that it satisfies a generalized spin-
statistics relation. Note that although in some situations the A
and B indexes are interpreted as an effective spin-1/2 system,
the spin J is completely unrelated to the SU(2) pseudo-spin of
the elementary constituents (and indeed we found it also for
spinless particles, in the previous section).
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FIG. 2. Fractional spin of quasiholes of the Halperin 221 state,
J
,q(R) for q = 1 (q = 2), as computed via Monte Carlo sampling
and Eq. (6), for the Halperin 221 states with NA = NB = 150 particles
in each layer and for selected values of (
, q). Note that some
properties in Table II (e.g., for the exchange A ↔ B) are obtained
by a combination of JA,1 and JAB,1, or by the fact that JA,q = JB,q.
The bulk density reads ρ̄ = (2/3)/(2π�2

B). Error bars are statistical
uncertainties, and data are only shown in a range of cutoff radii R
where boundary effects are negligible and Monte Carlo sampling is
reliable.

In the case of a multicomponent state, there are several
possibilities concerning the quasiholes; if we think at the
quasihole as an approximation for the adiabatic insertion of
a flux quantum at η, the latter can be thread (i) only in the
layer A, (ii) only in the layer B, or (iii) in both layers. The
quasihole wave functions that correspond to these situations
are:

�A,q(zi, zα, η) ∝
∏

i

(zi − η)q × �221; (30a)

�B,q(zi, zα, η) ∝
∏
α

(zα − η)q × �221; (30b)

�AB,q(zi, zα, η) ∝
∏

i

(zi − η)q
∏
α

(zα − η)q × �221. (30c)

With reasonings similar to those presented in Sec. II B 1 we
can compute the spin of q quasiholes of type AB, which reads:

Jq,AB = −q2

3
+ 2q

3
. (31)

Note that this calculation fails for the 
 = A quasiholes, be-
cause the density profile at the boundary does not shift rigidly
when the q quasiholes are inserted, see Appendix B.

We compute the spin J
,q of the quasiholes for 
 = A
and AB and for q = 1, 2, through a Monte Carlo sampling
of |�
,q|2 and by applying the definition in Eq. (1). Our
numerical results are presented in Fig. 2 and in Appendix C,
where we show the depletion density profile of the quasiholes.
Similarly to the Laughlin case, the integral J
,q(R) displays
damped oscillations at low values of R and then saturates
towards a constant value J
,q, which we find to be compatible
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TABLE II. Fractional properties of the quasiholes of a Halperin
221 state. (Left): Fractional spin according to the definition in
Eq. (1). (Right): Exchange phase. (Bottom): Braiding phase and
comparison with the numerical results in Ref. [46]. The spin J

′

is the spin of two overlapping quasiholes of type 
 and 
′. For the
sake of clarity: JAA = JA,2, JAB = JAB,1, and JABAB = JAB,2.


 J
,1 J
,2 
 ↔ 
 e−π i(J

−2J
,1 )

A 0 − 2
3 A ↔ A ei 2π

3

B 0 − 2
3 AB ↔ AB ei 2π

3

AB 1
3 0


 � 
′ e−2π i(J

′ −J
,1−J
′ ,1 ) Ref. [46]

A � A ei 4π
3 ei 4π

3

A � B ei 4π
3 ei 4π

3

AB � AB ei 4π
3 ei 4π

3

with a simple rational number—as summarized in Table II.
To the best of our knowledge, the calculation of the spin
of these quasiholes according to existing definitions has not
been performed yet. The results for 
 = AB coincide with the
analytical formula in Eq. (31).

Differently from Laughlin’s quasiholes, in this case it is
not true that J
,2 = 4J
,1 mod 1. Violations of the cluster re-
lation are common in models of non-Abelian anyons, but here
we are dealing with Abelian anyons. A similar situation will
be discussed in the next section. The violation of the cluster
relation is considered acceptable as long as the spin-statistics
relation is valid.

When discussing the statistics of the quasiholes of the
Halperin 221 state, several possible counter-clockwise ex-
changes can be envisioned. Here, we consider the following
two cases: (i) the exchange of two A quasiholes, and (ii)
the exchange of two AB quasiholes. In Ref. [46] the authors
compute the braiding phase of these two processes and of an
additional one, (iii) the encircling of a A quasihole around a B
quasihole.

We compute the exchange phases for the two processes
(i) and (ii) using the spin-statistics relation in Eq. (16) and
report the obtained values in Table II. By doubling the ob-
tained phase we obtain the braiding phase for processes (i)
and (ii); for process (iii), we can only compute the braiding
phase; our results correspond to the results in Ref. [46]. We
can thus conclude that also in the case of the Halperin 221
state the definition of fractional spin in Eq. (1) satisfies the
spin-statistics relation.

IV. SOME ADDITIONAL OBSERVATIONS

We now consider a different model of quasiholes obtained
from the rigid shift of the occupation numbers of angular
momentum levels; the possibility of characterising exactly
their spin J according to Eq. (1) will allow us to present some
further considerations also for some quasielectron states and
to compare with the “standard” definition of topological spin.

TABLE III. Fractional spin of the quasiparticle obtained by shift-
ing rigidly the occupation numbers of angular momentum states.

number of flux quanta 0 +1 −1 +2 −2 q

Jq 0 0 −ν −ν −3ν − q(q−1)
2 ν

A. Quasiholes

We consider a disk geometry where a generic FQHE in-
compressible fluid with filling factor ν is realized; in the
absence of quasiholes, and in a large-enough system, the
occupation number of the lowest angular momentum states
is ν (see Refs. [53,54] for an early remark on this point,
which follows from the assumption that the density-profile of
the gas is homogeneous). We introduce the operator â(†)

l that
annihilates (creates) a particle in the LLL state with angular
momentum l , so that for small l we have 〈â†

l âl〉0 = ν.
We create a quasihole by shifting rigidly the angular-

momentum occupation numbers by one, and we obtain that
the angular momentum occupation number of the state with
one quasihole is 〈â†

l âl〉1 = ν for l > 0, whereas 〈â†
0â0〉1 = 0.

More generally, if q quasiholes are created the angular mo-
mentum profile at small l reads:

〈â†
l âl〉q =

{
0, for l ∈ {0, 1, . . . q − 1};
ν, for l � q.

(32)

If we consider the Laughlin state ν = 1
m , the obtained

quasihole does not coincide with the quasihole wave function
proposed by Laughlin [19]; we elaborate on this point in Ap-
pendix D. On the other hand, several properties are discussed
in Refs. [53,54]. It is interesting in the following to compare
the properties of the two quasiholes and to see in what they
are similar, and in what they are different.

We can re-express our spin definition for the quasihole
obtained by inserting q flux quanta [39] as

Jq(R) =
∑

l

l × cl (〈â†
l âl〉q − 〈â†

l âl〉0), (33)

where cl = ∫ R
0 |φl |22πrdr and φl is the LLL single-particle

wave function with angular momentum l in the symmetric
gauge, see Appendix A. We consider R large enough to ensure
that cl ∼ 1 for all values of l such that 〈â†

l âl〉q − 〈â†
l âl〉0 is

significantly different from zero. In practice, our calculation
amounts to computing the sum in (33) up to a cutoff angular
momentum � with all cl = 1 for l � �.

When only one rigid shift is performed, the obtained quasi-
hole has spin J1 = 0. With similar reasoning, for two rigid
shifts the spin is J2 = −ν. Again, we violate the generalized
cluster relation J2 = 4J1 mod 1, even if we are dealing with
Abelian anyons. With a simple calculation we obtain

Jq = −q(q − 1)

2
ν; (34)

the spin scales as ∼q2, as desired, but a linear correction is
present. Some explicit values are reported in Table III.

Using the fractional spins described above, we obtain the
correct exchange phase of two one-flux quasiholes:

ei�ex,1 = e−π i(J2−2J1 ) = eiπν. (35)
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If we consider a Laughlin state with ν = 1/m, we recover the
correct value ei π

m . If we consider the Halperin 221 state, for
which ν = 2

3 , we recover the case of the quasihole of type AB,
which is the only one in which the flux is felt by all particles
(and thus is amenable to a comparison).

We can also compute the exchange phase of two anyons
obtained from q rigids shifts:

ei�ex,q = e−π i(J2q−2Jq ) = eiπq2ν . (36)

Note that the computed exchange phase has the expected
scaling as q2.

B. Quasielectrons and the “standard” definition
of topological spin

An interesting feature of anyons obtained from rigid shifts
is the fact that we can also discuss the properties of a specific
kind of quasielectron excitations. As originally observed by
Laughlin [55,56], removing a flux quantum moves the m = 0
state of the LLL to an excited-Landau-level state with angular
momentum −1; if a further flux quantum is removed, the
shift continues and the excited-Landau-level state with angu-
lar momentum −2 is reached. With this prescription, we can
compute the spin Jq of the quasielectrons that is obtained by
removing n flux quanta by generalising the definition (33) to
the angular momentum of higher Landau levels. Results are
summarized in Table III; if we use the label q > 0 for the
quasiholes and q < 0 for the quasielectrons, the expression
for Jq in Eq. (34) has a general validity for q ∈ Z. Note that
this quasielectron is not confined in the LLL, and therefore it
differs from the one that is typically studied.

On top of the previous calculation concerning the exchange
of two quasiholes, we can now compute the exchange of two
quasielectrons:

ei�ex,−1 = e−iπ (J−2−2J−1 ) = eiπν. (37)

The result, that shows that �ex,−1 = �ex,1, is perfectly con-
sistent with the theory of anyons identifying the quasielectron
with the antiparticle of the quasihole.

We can now consider different quasiparticles and the braid-
ing phase associated to the encircling of one quasielectron
around one quasihole, and of a quasiparticle composed of
q rigid shifts around one composed of q′ rigid shifts, with
q, q′ ∈ Z:

ei�br,1,−1 = e−2π i(J0−J−1−J1 ) = e−2π iν ; (38a)

ei�br,q,q′ = e−2π i(Jq+q′−Jq−Jq′ ) = e2π iqq′ν . (38b)

The result is consistent with the standard expectation for
the statistical phase of Abelian anyons upon identification of
the quasielectron as the anti-particle of the quasihole.

The characterization of the quasielectrons opens the pos-
sibility for the direct comparison with the standard definition
of topological spin of an anyon. According to this definition,
the topological spin of an anyon is associated to the action
of the monodromy operator that exchanges an anyon and its
anti-anyon when they are in the identity fusion channel. With
the previous considerations, we can now compute the spin s1

of the quasihole and s−1 of the quasielectron by linking it to

half the braiding phase �br,1,−1:

e2π is1 = e2π is−1 = ei
�br,1,−1

2 . (39)

Usually, the phase �br,1,−1/2 is called the statistical angle of
the anyon, θ ; we obtain here the standard formulation of the
spin-statistics relation s1 = θ/2π + Z. In our case, J1 does
not coincide with s1:

s1 = s−1 = J1 + J−1

2
; (40)

for this reason the authors of Ref. [26] propose to speak of a
generalized spin-statistics relation

θ

2π
= J1 + J−1

2
+ Z = −ν

2
+ Z. (41)

We can generalize this discussion to the case of anyons
obtained by q rigid shifts:

sq = s−q = Jq + J−q

2
. (42)

Our fractional spin Jq allows to reconstruct the spin sq accord-
ing to the standard definition; as it was already noticed, sq only
depends on the even part (with respect to q) of Jq, which leaves
the value of the odd part unconstrained and thus explains the
difference between Jq and sq. The statistical parameter reads:

θq = Jq + J−q

2
+ Z = −q2ν

2
+ Z = q2θ1 + Z. (43)

The comparison between the data obtained on the Laughlin
state in Sec. II and the angular-momentum rigid shift at ν = 1

m
shows that quasiholes with the same statistical properties are
characterized by the same sq but by different Jq; it thus appears
that sq is an invariant, whereas Jq is not. In fact, any spin of

the form Jq = − q2

2m + qc, where c is a constant, would give
the correct sq.

V. ADIABATIC ROTATION OF QUASIHOLES

The results in the previous sections, and in particular the
systematic spin-statistics relation (16) satisfied by our spin,
demand for a general interpretation. In this section we present
a theoretical framework that explains their origin; this discus-
sion is a generalization of the analysis in Refs. [43–45], which
was limited to the derivation of the braiding phase.

A. General theoretical framework

We consider a circularly-symmetric FQHE state composed
of N quantum particles with complex coordinates z = x + iy
in the LLL; they can be bosons or fermions and we consider
in both cases a positive charge +e (e > 0 is the fundamental
electric charge); this is the convention used also in Ref. [26].
We consider some external pinning potentials that are placed
at the positions ημ ∈ C far from the boundary and such that
|ημ − ηλ| is much larger than any physical length character-
ising the problem; we assume that one quasiparticle binds to
each pinning potential.

In order to reveal the rotational properties of the particles,
and hence their spin, we propose to move the pinning-
potential coordinates of an angle ϑ f around the center of the
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FIG. 3. (Left) Sketch of a FQHE state defined on a disk with two quasiholes located at ημ, μ = 1, 2. The red lines indicate the trajectories
of the quasiholes, which are rigidly rotated of an angle θ f = 2π at fixed distance |ηi| from the center of the disk (×). (Center and right)
Two different ways of moving quasiparticles: without self-rotation, as in the left panel, or with self-rotation, as in the right panel. The former
approach is the standard one, while the latter is the one considered in this article; in order to study it, we keep the quasiparticles fixed in the
reference frame that rotates at angular frequency ϑ f /T .

disk in time T in a counter-clockwise fashion, see Fig. 3 (left):

ημ(t ) = ηi(0)e+iϑ (t ), ϑ (t ) = t

T
ϑ f , t ∈ [0, T ]. (44)

As it was already observed [27,57], this rotation does not
necessarily rotate the quasiparticles around themselves. How-
ever, rotational properties can be studied once we define the
problem in the reference frame R2 that is corotating with the
pinning potentials at angular frequency ϑ f /T . If the quasipar-
ticle is held fixed in this reference frame, then it rotates around
itself in the laboratory reference frame. Fig. 3 (center and
right) provides a pictorial sketch of this intuition. The study
of the Berry phase due to the quasiparticles obtained within
this scheme will allow us to define the quasiparticle spin.

We place ourselves in R2 and write the generator of the
time-evolution in this reference frame. The FQHE Hamilto-
nian ĤFQHE written in the symmetric gauge is rotationally
invariant: it is thus the same in the laboratory and in R2; if
a confining potential is present, we assume for simplicity that
it is rotationally invariant. Concerning the pinning potentials,
we have to assume the potential responsible for the pinning,
V̂pinning(zi, ημ(t )), is not rotationally invariant because of an
infinitesimal rotational asymmetry, so that no confusion be-
tween the two sketches in Fig. 3 (center and right) is possible.
Under these assumptions, the generator of the time evolution
in R2 in the time interval [0, T ] reads

Ĥ2 = ĤFQHE + V̂pinning( zi, ημ(0) ) − ϑ f

T
L̂z, (45)

which is manifestly time independent. The last term, propor-
tional to the rotation frequency, represents (i) a centrifugal
potential due to the fact that R2 is a noninertial reference
frame, and (ii) the scalar potential associated to the radial
electric field that appears in a rotating reference frame when
there is a homogeneous magnetic field in the laboratory—see
Appendix E. Since we are interested in an adiabatic process
with T → ∞, and since the bulk of the FQHE system is
gapped, we will treat this term perturbatively. A problem
remains because our system has gapless edge modes. We can
safely disregard this issue because we are interested in bulk
properties, and the dynamics in the bulk effectively decou-
ples from the edges. Thus, provided we do not focus on the

edges, we can employ the adiabatic theorem and consider
the centrifugal potential in Eq. (45) as a small perturbation,
and use time-dependent perturbation theory restricted to the
ground-state subspace.

To describe the dynamics in R2, we consider an initial
state |�2(0)〉 belonging to the k-fold degenerate ground-
state subspace HE0 of ĤFQHE + V̂pinning, spanned by the basis
{|ψα〉}α=1,...,k , with energy E0 and 〈ψα|ψβ〉 = δαβ . If the dy-
namics is slow enough, we can use the adiabatic theorem to
state that the dynamics is restricted to HE0 , and make the
following ansatz:

|�2(t )〉 = e−iE0t
k∑

α=1

γα (t )|ψα〉, γα (0) = 〈ψα|�2(0)〉.
(46)

By applying the Schrödinger equation, we recover the time-
evolution equation of the γαs:

i
dγα (t )

dt
= −ϑ f

T

k∑
β=1

Lαβ γβ (t ), (47a)

Lαβ = 〈ψα|L̂z|ψβ〉. (47b)

The solution reads |�2(T )〉 = e−iE0T eiϑ f L|�2(0)〉, where
exp[iϑ f L] is the matrix exponential of iϑ f L.

In order to find the state |�1(T )〉 in the laboratory frame,
we need to rotate back |�2(T )〉 by an angle ϑ f :

|�1(T )〉 = e−iϑ f L̂z |�2(T )〉 =
= e−iE0T e−iϑ f L̂z eiϑ f L|�2(0)〉. (48)

Note that |�1(0)〉 = |�2(0)〉. The state in Eq. (48) is the
exact result for the rotation by an angle ϑ f performed in-
cluding the self-rotation of the quasiholes. We recognize a
dynamical phase proportional to T , that is unessential to our
discussion and therefore neglected from now on. Moreover,
when ϑ f = 2π a further simplification is possible because
e2π iL̂z = 1. In this case, L encodes the full geometric contri-
bution to the time evolution, which for a nondegenerate state
reads:

|�1(T )〉 ∝ e2π i 〈�1(0)|L̂z |�1(0)〉 |�1(0)〉. (49)
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A
η

FIG. 4. FQHE state with one quasiparticle located at η. Red:
Adiabatic motion of one quasiparticle around a circumference with
radius |η|. Black: region A used to perform the integral in Eq. (51)
and to avoid boundary effects.

The study of the geometric phase associated to
〈�1(0)|L̂z|�1(0)〉 in various configurations of the pinning
potentials will give us information about the spin and statistics
of the quasiholes.

B. No quasiparticles as a regularisation

In this article we are interested in understanding how the
quasiparticles, that are localized objects, affect the geometric
phase. We thus take the state |ψ〉 without quasiparticles, for
which the geometric phase is trivial, as a reference for any
further calculation: it will act as a regularising background.
When studying the state |ϕ〉 characterized by the presence of
quasiparticles, we will thus focus on the quantity:

�Lz,ϕ = 〈ϕ|L̂z|ϕ〉 − 〈ψ |L̂z|ψ〉. (50)

and identify the contribution to the geometric phase that can
be uniquely ascribed to the quasiparticle.

C. Spin of the quasiparticles

We consider the nondegenerate quantum state |ψη〉 with
one quasiparticle located at η, see Fig. 4; our first goal is to
compute �Lz,ψη

defined in Eq. (50). We introduce the radial
density profile of |ψ〉, which we call ρ(|z|), and the density
profile ρη(z) of |ψη〉. By using the properties of the angular
momentum operator L̂z in the LLL recalled in Appendix A,
we obtain

�Lz,ψη
=

∫ ( |z|2
2�2

B

− 1

)
[ρη(z) − ρ(|z|)]d2z. (51)

The quasiparticles are localized objects, thus the two density
profiles differ significantly only in two regions of space: (i)
around the quasiparticle located at η, and (ii) at the boundary.
Since we want to characterize the properties of the quasiparti-
cle, we are not interested in the boundary contribution, which
will be from now on neglected. In a numerical calculation, the
boundary can be discarded by restricting the integral in (51)
to a region A with radius much smaller than the droplet size
and centered around η, see for instance Fig. 4.

For the sake of simplicity, we now assume to have an
infinite system and work with the depletion density dη(z) =
ρη(z) − ρ̄ induced by the quasiparticle, where we use the fact
that the density profile of |ψ〉 is uniform and equal to ρ̄,
in the absence of boundary. The depletion density goes to
zero for |z| → ∞ and, in the case of a circularly symmetric
quasiparticle, it only depends on the distance |z − η|.

We shift the origin to η introducing the new variable z′ =
z − η and reformulate one part of the integral in Eq. (51) as
follows:∫ |z|2

2�2
B

dη(|z − η|)d2z =
∫ |z′ + η|2

2�2
B

d0(|z′|)d2z′. (52)

where d0(z) is the depletion density of the quasiparticle when
it is placed at the origin. This integral can be simplified by
using the polar representation z′ = r′eiφ′

and expanding it into
three parts:∫

r′2 + 2r′|η| cos φ′ + |η|2
2�2

B

d0(r′) r′dr′dφ′. (53)

By performing the integral over φ′ we can disregard the term
proportional to |η|; we finally obtain

�Lz,ψη
= 2π

∫ ∞

0

(
r2

2�2
B

− 1

)
d0(r)rdr + Q1

e

|η|2
2�2

B

. (54)

where the charge of one quasiparticle reads

Q1 = e
∫

d0(|z|)d2z = 2πe
∫ ∞

0
d0(r)rdr. (55)

The result in Eq. (54) includes two terms, one of which de-
pends on the quasiparticle position via |η|2. It is a well-known
result in the theory of FQHE that the geometric phase picked
up by a quasiparticle moving in the plane should contain a
term proportional to the area enclosed by the rotation, which
in our case is Aη = π |η|2. This phase reads exp[+i Q1

e
Aη

�2
B

].

Note that Aη/�
2
B = 2π�η/�0 with �η the magnetic flux en-

closed in the circle with radius |η| and �0 the magnetic flux
quantum, so that the phase reads exp[+iQ1�η]; this is the
Aharonov-Bohm phase picked up by the charge, a term, which
is expected from standard textbook considerations and is not
linked to the self-rotation of the quasiparticle, but only to its
translation in the plane.

Concerning the rest of the geometric phase, the term

�z,1 = 2π

∫ ∞

0

(
r2

2�2
B

− 1

)
d0(r)rdr (56)

describes the difference in angular momentum due to one
quasiparticle and it appears in the geometric phase because
during the adiabatic motion the quasiparticle has rotated
around itself. This term does not appear in the standard dis-
cussions on the geometric phase associated to the motion of a
single quasiparticle on a disk because one typically studies a
purely translational motion. The peculiarity of the approach
that we are suggesting is that the quasihole rotates while
moving, and this explains a posteriori the appearance of the
new term.
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η1

η2

FIG. 5. LLL state with two quasiparticles located at η1 and η2.
Red: Adiabatic motion of one quasihole around a circumference with
radius |ημ|.

In summary, the geometric phase associated to the motion
of one quasiparticle that we just computed,

eiφη = e2π i�z,1 eiQ1�η, (57)

has two contributions, which are amenable to simple physical
interpretation. Our scheme has the remarkable property that
in the limit |η| → 0 the system still picks up a geometric
phase, because the quasiparticle rotates around itself. We thus
propose to interpret this term as the spin of the quasiparticle:

J1 = �z,1 (58)

so that a counter-clockwise rotation of the quasiparticle by 2π

is associated to the phase e+i2πJ1 . This is the definition that we
have presented at the beginning of the article in Eq. (1).

D. Statistics of the quasiparticles

We now move to the discussion of the spin-statistics re-
lation and consider the state |ψη1,η2〉 with two quasiparticles
at positions ημ, and by convention we set |η2| � |η1|. We
further assume that the state is not degenerate; this assumption
does not preclude the study of quasiparticles with non-Abelian
statistics, because we are simply assuming that they are in a
well-defined fusion channel.

We introduce the density profile ρη1,η2 (z) and address the
geometric phase picked up by the system when the two quasi-
particles are rigidly rotated at fixed distance from the center,
as sketched in Fig. 5. To this goal, we compute:

�Lz,ψη1 ,η2
=

∫ ( |z|2
2�2

B

− 1

)
(ρη1,η2 (z) − ρ(|z|))d2z. (59)

This time, the quantity ρη1,η2 (z) − ρ(|z|) differs from zero in
three regions of space: (i) around the quasiparticle η1, (ii)
around the quasiparticle η2, and (iii) at the boundary. We
neglect this latter contribution as our focus is on quasiparticles
and we effectively consider an infinite system.

In general, we expect the geometric phase to have a de-
pendence on the position of the two quasiholes, ϕη1,η2 , and in
particular on the distance |η1 − η2|. The two limiting cases
|η1 − η2| � lB and |η1 − η2| = 0 are easy to treat. If the

two quasiholes are put sufficiently far apart, the approximate
equality

ρη1,η2 (z) − ρ(|z|) ≈ dη1 (z) + dη2 (z) (60)

allows us to use the results of the previous section and to write

eiφη1 ,η2 ≈ eiφη1 eiφη2 for |η1 − η2| � lB. (61)

where eiφη1 is defined in Eq. (57).
The situation of two overlapping quasiholes is studied by

putting both of them at the origin and introducing the associ-
ated depletion density:

d0,0(z) = ρ0,0(z) − ρ̄. (62)

With steps similar to those of the previous section, we obtain

eiφη,η = e2π i�z,2 e
+i Q2

e
Aη

�2
B for η1 = η2 = η, (63)

where

Q2 = 2πe
∫ ∞

0
d0,0(r)rdr; (64a)

�z,2 = 2π

∫ ∞

0

( |z|2
2�2

B

− 1

)
d0,0(z)rdr. (64b)

Note that Q2 = 2Q1 whereas in general �z,2 �= 2�z,1.
It easy to identify in Eq. (63) a term that is an Aharonov-

Bohm phase; in fact, it is possible to give an expression of the
Aharonov-Bohm phase for a generic set of positions of the
two quasiholes, η1 and η2,

e+iQ1�η1 e+iQ1�η2 , (65)

and to observe that the two expressions appearing in Eqs. (61)
and (63) are just two specific cases.

The remaining term �φ is also a function of the position of
the quasiholes and of their distance. The two limiting values
are known:

�φ = 2π ×
{

2�z,1, |η1 − η2| � lB
�z,2, |η1 − η2| = 0.

(66)

The fact that �ϕ depends on |η1 − η2| can be explained once
we observe that when the two quasiparticles are far apart they
are braiding; instead, when the two quasiparticles are on top
of each other, they are not braiding. We thus pose that the
braiding phase is the only responsible for this phase difference
and write that

ei�br = e2π i(2�z,1−�z,2 ). (67)

If we parallel the definition in Eq. (58) and define the spin of
the quasiholes composed of two elementary quasiholes as

J2 = +�z,2 (68)

we obtain

ei�br = e−2π i(J2−2J1 ). (69)

This result can be read as a spin-statistics relation for the
quasiparticle. Although the discussion has been carried out
assuming that the two quasiparticles are of the same kind, it
is not difficult to repeat the derivation for a quantum state
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composed of two different quasiholes, say a and b, which
compose into a quasihole of type c. In that case:

ei�br = e−2π i(Jc−Ja−Jb), (70)

which is the most general form in which the spin-statistics
theorem is typically enunciated for an anyon model [see
Eq. (17)].

In order to consider the exchange phase of two quasiparti-
cles of type a, we simply divide by two the phase and obtain
the spin-statistics relation in Eq. (16):

ei�ex = e−iπ (Jc−2Ja ). (71)

This concludes our discussion and shows in very general
terms that our spin is compatible with a generalized spin-
statistics theorem. The several numerical results reported in
Secs. II, III, and IV are not a coincidence, but originate from
deep reasons related to the rotational properties of the quasi-
particles.

VI. CONCLUSIONS

The theory of anyons is deeply rooted in the spin-statistics
theorem. Quasiparticle excitations of incompressible FQHE
states have been widely studied and several fractional prop-
erties have been pointed out, notably their charge and their
statistics. It is a reasonable expectation that these particles
should also have a fractional spin; yet, this was assessed only
for systems defined on a spherical surface. In this article we
have proposed a measurable spin for such quasiparticles and
we have shown with numerical and analytical methods that it
satisfies a generalized spin-statistics relation.

Two important remarks are in order. The first one is that
the fractional spin discussed in the article is not related to
the SU(2) spin-1/2 that characterizes electrons. We are here
speaking of an emergent property of a many-body quantum
state, and indeed we also applied the formula to model wave
functions for spinless particles. The second remark is that
even if in all examples discussed so far we have only con-
sidered Abelian anyons, nothing precludes the application of
our formula to non-Abelian anyons [44]. Once a given fusion
channel is chosen, Eq. (16) for the spin-statistics relation
applies.

The possible implications of our result are copious. From
an experimental viewpoint, it opens a new path towards the
assessment of the anyonic properties of the FQHE quasiparti-
cles. Recent experimental advances in the realisation of FQHE
states with photonic and atomic gases [33–38,58], also by
means of synthetic dimensions [59–61], make it possible to
envision the study of strongly-correlated liquids using observ-
ables that are radically different from those that are standard
in solid-state setups; in particular, a characterisation of the
system in real space is possible [62–71]. Our paper fits well
in this endeavour and shows that the study of the charge and
of the quadrupole moment of the quasiparticle is sufficient
to assess its fractional spin. By also studying small clusters
of quasiparticles, it is then possible to infer the fractional
statistics without using any interferometry [43–45].

Additionally, one could look at our result from a different
perspective, and observe that we have shown that the quasi-
particles of the FQHE fractionalize the canonical angular

momentum of the gas (the gauge-invariant meaning of this
observable has been discussed). Since it does not coincide
with the mechanical angular momentum, it is not related to
the currents flowing in the system nor to its magnetization
[72]. Yet, it is an intriguing perspective to speculate on the
possible experimental consequences of this fact, which could
be observed, for instance, probing the rotational properties of
the gas.

On the theoretical side, the possibility of defining the
fractional spin on a noncurved surface motivates further in-
vestigations in the context of FQHE liquids defined on a
cylinder, a setup that is amenable to a natural matrix-product-
state description [73,74]. It would be extremely interesting to
apply our spin definition to several quasiparticles that have
been characterized thanks to matrix-product states. As a first
example, let us mention the quasielectron of the Laughlin state
[75,76]; a characterisation of its fractional spin would allow us
to assess the topological spin of the quasihole according to the
standard definition, S = 1

4π
(Jqh + Jqe). As a second example,

let us mention the study of the quasiparticles of the ν = 12
5

and 13
5 states that are expected to be a good candidate for Fi-

bonacci anyons [77]. Since several quasiparticles excitations
with Abelian or non-Abelian statistics can be distinguished
by their quadrupole moment, it is interesting to link this ob-
servation to our definition of fractional spin. A first step in
this direction has already been performed in Ref. [44], while
discussing the link between the quadrupole moment and the
braiding phase of the non-Abelian anyons of the Moore-Read
wave function.

In some situations, we have been able to compute the
spin of the quasiparticle analytically; for the quasihole of
the Laughlin state, for instance, we have shown that Jm,q =
− q2

2m + q
2 . This opens the interesting perspective of generalis-

ing this formula to other FQHE quasiparticles and, ideally, to
other quasiparticles that have fractional spin.

Finally, we would like to stress that a microscopic un-
derstanding of the proposed spin-statistics relation is still
missing. According to our discussion, the statistics of the
quasiparticles is written in the quadrupole moment of clus-
ters of quasiholes, but, as it was early noticed in Ref. [39],
the quadrupole moment of the fractional charge depends on
the specific form of the model, on the particular form of
the interparticle interaction, and no quantisation is expected.
This effect was really tangible when we have compared the
quasiholes of a Laughlin state with the anyons obtained by
angular-momentum rigid shift. Although the statistical prop-
erties of these quasiparticles are the same, their spins J are
different. This calls for a microscopic explanation, that is left
for future work.
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APPENDIX A: LOWEST LANDAU LEVEL AND ANGULAR
MOMENTUM IN THE SYMMETRIC GAUGE

For the sake of clarity, we report explicitly a few useful
formulas for the angular momentum Lz = xpy − ypx in the
LLL. We start from the LLL normalized single-particle wave
functions written in the symmetric gauge,

φm(z) = im√
2π�2

Bm!

(
z√
2�B

)m

e−|z|2/4�2
B , m ∈ N. (A1)

Using the polar-coordinate parametrisation of the complex
plane, z = reiθ , we can write Lz = −i∂θ , from which we ob-
tain Lzφm = mφm. We now use the following fundamental
integral, which is simply derived from the properties of the
Euler’s 
(x) function:

2π

∫ ∞

0
|φm|2 r2

2�2
B

r dr = m + 1 (A2)

to deduce that∫
φ∗

mLzφmrdrdθ = m =
∫

|φm|2
(

r2

2�2
B

− 1

)
rdrdθ. (A3)

This expression explains the connection between the angular
momentum operator restricted to the LLL and the spatial pro-
file of the wave function. In a second-quantisation description
of the problem, we introduce the LLL field,

�LLL(z) =
∞∑

m=0

φm(z)am, (A4)

in order to write the angular momentum operator as

Lz =
∑

m

ma†
mam =

∫
�

†
LLL

( |z|2
2�2

B

− 1

)
�LLLd2z. (A5)

This expression is used in the definition of the fractional
spin—Eq. (1).

APPENDIX B: BOUNDARY PROPERTIES OF DENSITY
PROFILES

In Sec. II B 1, we proved the expression in Eq. (15) for the
spin of the Laughlin quasiholes; a similar result is presented
in Eq. (31) for the 
 = AB quasiholes of the Halperin 221
state. A crucial assumption of this proof is that the den-
sity profile shifts in a rigid way upon increasing either the
system size N or the number q of quasiholes in the ori-
gin. Here we verify whether these assumptions by means of
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FIG. 6. Laughlin density profile at the boundary, obtained by
Monte Carlo sampling: (a) Density profiles for different sizes N ,
in the absence of quasiholes (q = 0); (c) same data as in (a), after
subtracting the curve for N = 300; (b) density profiles for different
numbers q of quasiholes in the origin (for N = 100); (d) same data
as in (b), after subtracting the curve for q = 0.

Monte Carlo simulations for the Laughlin and Halperin 221
states.

For the Laughlin state, panels (a) and (c) of Fig. 6 show
the density profile at the boundary of the system, for different
values of N . This profile is not fully universal (as a function of
the shifted radius r/�B − √

2mN), due to nonuniversal finite-
size corrections that disappear for large systems and that thus
have not been included in the proof. In the same figure, panels
(b) and (d) show that the density profile at the boundary is
fully universal when adding q quasiholes in the origin [after a
shift of the radius by �B

√
2m(N + q/m)]. This shows that the

assumptions on the rigid shift of the density profile are valid.
For the Halperin state, a similar finite-N correction is

present (not shown), while the evolution of the density pro-
file at the boundary upon increasing q shows a peculiar
dependence on 
. As shown in Fig. 7, only in the 
 = AB
case we observe a rigid shift of the density profile, while for

 = A the shift is not rigid. For this reason, we are able to
derive Eq. (31) for the 
 = AB quasiholes, but the procedure
fails when it is applied to 
 = A.
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FIG. 7. (a) Halperin 221 density profile at the boundaries for
different numbers q of 
 = A quasiholes in the origin (for N = 100),
after subtracting the q = 0 curve; (b) same as in (a), for 
 = AB.
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FIG. 8. Depletion density profile on the A and B layers, obtained
by Monte Carlo sampling of the Halperin 221 state with 
 = A, AB
and q = 1, 2. The depletion profile on each layer is the difference
between the corresponding density profile and the layer bulk density
(1/3)/(2π l2

B ). For q = 1, we observe a full agreement with data from
Ref. [46] (black-dashed lines, labeled JRL2019).

APPENDIX C: PLASMA ANALOGY FOR THE HALPERIN
221 STATE

In Fig. 8 we show the depletion profiles for the Halperin
state �221 in Eq. (29), which are the ones used to produce
Fig 2. Upon adding q = 1 or q = 2 quasiholes on layer A,
the corresponding density decreases (close to the quasihole
position), while the density on layer B becomes larger; this
is a consequence of the anticorrelations between particles
in the two layers, encoded in �221. If the quasihole is of
the type 
 = AB, full A ↔ B symmetry of the density pro-
file is restored–as we correctly observe in our numerical
data.

For a single quasihole (q = 1) with 
 = A or AB, we com-
pare our depletion profiles with the ones of Ref. [46]; those are
obtained by exact diagonalization of a microscopic model for
a bilayer system of particles on the torus, with contact inter-
actions and in the presence of a magnetic field. By adding the
appropriate number of flux quanta, and by including a zero-
range external potential that pins the quasihole, the authors
are able to identify states corresponding to (
, q) = (A, 1)
and (AB, 1). The corresponding depletion profiles are in per-
fect agreement with the ones that we obtain for the Halperin
state.

APPENDIX D: LAUGHLIN QUASIHOLE AND THE
ANGULAR-MOMENTUM RIGID SHIFT

In Sec. IV of the main text we showed that the Laughlin
quasihole state in Eq. (3) and the state obtained angular-
momentum rigid shift have the same statistical properties, but
different values for the spin J . This is a direct consequence
of the difference in their depletion profiles, which thus have
different quadrupole moments.
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FIG. 9. Depletion profiles for the Laughlin state with filling 1/m,
for quasiholes with q = 1, 2, as obtained by sampling �m,q or by
Eq. (D1).

The depletion profile due to q rigid shifts of the angular-
momentum occupation numbers reads

d0(z) = −ρ̄e
− r2

2l2B

[
q−1∑
l=0

1

l!

(
r2

2l2
B

)l
]
, (D1)

where ρ̄ = 1/(2πml2
B) is the bulk density of the Laughlin

state. This expression follows from the combination of the
wave functions for different angular momentum states in the
LLL, and from the angular-momentum occupation numbers
in Eq. (32). In Fig. 9 we compare this rigid-shift depletion
profile with the depletion profile of �m,q obtained by Monte
Carlo sampling (that is, the one used to produce Fig. 1).
Both for q = 1 and q = 2 we notice a clear difference be-
tween the two states, and for instance this rigid-shift depletion
profile decays monotonously towards 0, without the damped
oscillations, which are present for the Laughlin quasihole
state.

APPENDIX E: FICTITIOUS FORCES AND
ELECTROMAGNETIC FIELD IN A ROTATING

REFERENCE FRAME

The study of a Hall setup in a rotating frame, dubbed R2,
plays a crucial role in Sec. V. The dynamics in R2 is sum-
marized by Eq. (45) and the goal of this Appendix is to show
that the term −ϑ f

T L̂z added according to standard prescriptions
correctly describes the electromagnetic field in the rotating
frame. For simplicity, in this Appendix we define � = ϑ f /T .

Consider first an inertial reference frame with electric and
magnetic fields E(r) and B(r), and a noninertial frame that
is rotating with constant angular frequency �. In the rotating
frame the electric and magnetic fields read (we assume that all
relativistic effects can be neglected):

E′ = E + (� ∧ r) ∧ B; (E1a)

B′ = B − (� ∧ r) ∧ E. (E1b)

Let us specify these formulas to our problem. In the iner-
tial frame we only have a static and homogeneous magnetic
field B0; thus, in the rotating frame we have the same ho-
mogeneous magnetic field B′ = B0 and an additional radial
electric field. In the case that is relevant for the present article,
the angular frequency � is (i) constant, (ii) parallel to B0,
and (iii) aligned perpendicularly to the two-dimensional plane
where the particles are located; we obtain E′(r) = �B0rêr .
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The scalar potential reads V ′(r) = −�B0
2 r2 and the potential

energy for a particle with charge +e is U ′(r) = −� r2

2�2
B
.

Let us now get back to Eq. (45). As far as the magnetic
field is concerned, ĤFQHE is the same and thus the magnetic
field has not changed. Let us now consider the term −�L̂z. We
reintroduce for simplicity the notation of classical analytical
mechanics and recall that L is the canonical angular momen-

tum, to be expressed as L = r ∧ (mv + eA) = l + er ∧ A,
where l is the mechanical angular momentum. The term −� ·
l is responsible for the mechanical fictious forces that appear
in the rotating reference frame. The term −e� · (r ∧ A) is
instead responsible for the appearance of the radial electric
field. With little algebra:

−e�(r ∧ A)z = −�
eB

2
r2 = −�

r2

2�2
B

. (E2)
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