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Photon-modulated linear and nonlinear anomalous Hall effects in type-II semi-Dirac semimetals
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Two-dimensional semi-Dirac materials, with quadratic dispersion in one direction and linear dispersion in the
orthogonal direction, provide a route to formation of the Chern-insulating states in solids. Within the framework
of the Floquet theory, we investigate the photon-modulated linear and nonlinear anomalous Hall effect (AHE)
in type-II semi-Dirac semimetals and find that rich topological phases, as well as interesting phenomena related
to the topological transitions, can be realized and manipulated by circularly polarized light (CPL). By tuning the
CPL parameters, we can control the local inverted gaps independently and switch the system between different
topological phases optionally. We also demonstrate that, when the Fermi level locates outside the gap, the Drude
component of the conductivity can contribute to the AHE as well, because of the anisotropy of the electronic
structure. Besides, the nonlinear Hall effect due to the Berry curvature dipole can be observable when the
inversion symmetry between opposite valleys is broken. Our findings are helpful to understand the topological
properties of the emergent type-II semi-Dirac semimetals.
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I. INTRODUCTION

The anomalous Hall effect (AHE), discovered a century
ago, where current flows orthogonal to an applied electric
field without an external magnetic field, is one of the most
fundamental and extensively studied phenomena in physics
[1]. The AHE in solids with spontaneous broken time-reversal
(TR) symmetry, typically in a ferromagnetic phase, can arise
from intrinsic and extrinsic mechanisms [2–5]. The intrinsic
AHE is an intrinsic quantum-mechanical property of a perfect
crystal [6–9], governed by the electronic structure of a mate-
rial that causes an electron to acquire a transverse velocity as
it travels in-between scattering events. The extrinsic mecha-
nisms depend on electrons scattering off sudden changes in
the periodic potential of crystals, e.g., side jump or skew scat-
tering from disorder caused by structural defects or chemical
and magnetic impurities [3,4,10–16]. Recently, there has been
a surge of interest in the exploration of nonspontaneous AHEs,
in which the TR symmetry is broken by an external magnetic
field, while the resulting Hall response is not commensurate
with the magnitude of the applied field, making it distinct from
the ordinary Hall effect [17,18]. The great theoretical and ex-
perimental advances of the AHE in varied systems, especially
in topological materials [19–21], have led to an explosion of
activities in the field of condensed matter [22–35].

Topological insulators are novel quantum states of matter,
which appear as conductors in the boundaries but as insulators
in the bulk. The boundary states are protected by the topo-
logical invariants of bulk states [19,20] and manifest in the
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transport as a quantized anomalous Hall (QAH) conductivity
σxy = Ce2/h when the Fermi level lies in the bulk band gap,
where C is an integer topological index known as the Chern
number [36,37]. The QAH state can be realized in several
materials, such as in the magnetically doped topological in-
sulators [22,23,38], honeycomb [39–42], or square lattices
[43–45] formed by transition-metal and heavy-metal ions.

Recently, a class of two-dimensional systems, named the
semi-Dirac semimetals (SDSMs) [46–50], has been proposed,
in which the bands disperse differently in two orthogonal
directions, i.e., linearly in one direction and quadratically in
the other. The strained black phosphorus [51], organic con-
ductor α-(BEDT − TTF)2I3 [52], dielectric photonic systems
[53] and hexagonal lattices in the presence of a magnetic
field [54] were demonstrated to be of the SDSM dispersion.
The semi-Dirac structures can be divided into two qualita-
tively different types, namely, type-I and type-II SDSMs. The
former, proposed in Refs. [47–50], cannot lead to the QAH
state. The latter, as discussed in Ref. [50], is a QAH insulator
with the spin-orbit coupling included, which can be realized
in the TiO2/VO2 nanostructure [47–50]. The type-II SDSMs
provide a route to formation of the Chern-insulating states.

Different from type-I SDSMs and conventional Dirac ma-
terials, the Dirac mass of type-II SDSMs is momentum
dependent. As a result, their topological properties depend
strongly on location of the Dirac points in momentum space,
because the Berry curvatures can change sign as the Dirac
points move in momentum space. On the other hand, there
can be multiple Dirac points around a single subvalley of the
type-II SDSMs, the interplay between which could induce
interesting physical phenomena. Accordingly, by manipula-
tion of the location of the Dirac points and interplay between
them, rich topological phases could be expected. However,
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since the inverted gaps around the local Dirac points are the
same in magnitude for a constant Dirac mass, the closing and
reopening of them are always synchronously. Thus, the total
Chern number is either positive or negative 2, which depends
only on the sign of the Dirac mass, and as a result, the varied
topological phases cannot be well distinguished.

One of the powerful approaches to manipulate the elec-
tronic structure is by utilization of polarized light. The
laser-induced AHE was theorized by Oka and Aoki in
graphene [55], followed by which considerable attentions
have been paid to the light-induced topological transitions in
solid states [56–68], as well as the dissipative effects [69,70]
and validity of the bulk-boundary correspondence [71,72] in
a Floquet system. Recently, the laser-induced AHE predicted
in graphene has been experimentally probed by McIver et al.
[73], which confirms that the topological phase transitions
can be modulated by circularly polarized light (CPL). Ad-
ditionally, when the Fermi level is out of the gap, the Berry
curvature dipole could contribute a Hall current ∝E2, which
is named the nonlinear Hall effect [74–80], where E denotes
the external electric field. The nonlinear Hall effect is quite
sensitive to the electronic structure and it can exist in systems
with TR symmetry, but generally requires breaking the in-
version symmetry. With the electronic structure driven by the
polarized light, both the linear and nonlinear Hall effect would
exhibit new characters, the study of which is beneficial to
understand the topological properties of the emergent type-II
SDSMs.

In this paper, we investigate the photon-modulated linear
and nonlinear AHE in type-II SDSMs by using the Floquet
theory. It is found that the rich topological phases within the
type-II SDSMs can be well distinguished and controllable by
the CPL. Since the Dirac points in the x and y axes respond
differently to the CPL, we can manipulate the local inverted
gaps independently, and so switch the system between dif-
ferent topological phases optionally. As a result, the QAH
plateau within the bulk band gap can be tunable from −6e2/h
to 6e2/h. Moreover, the interplay between the multiple Dirac
points can be regulated by the CPL, leading to anomalous
behaviors in the anomalous Hall conductivity. While the
Berry-curvature-induced AHE is strongly suppressed as the
Fermi level locates outside the gap, the Drude component
of the conductivity can also contribute to the AHE, which is
modulated by the incident direction of the CPL. Besides, we
predict the existence of the nonlinear Hall effect in type-II
SDSMs, because of the nonvanishing Berry curvature dipole.
The nonlinear Hall effect can be observable when the inver-
sion symmetry between opposite valleys is broken. The rest of
this paper is organized as follows. In Sec. II, we introduce the
model and method. The CPL-modulated linear and nonlinear
AHE are discussed respectively in Secs. III and IV, and the
last section contains a summary.

II. MODEL AND METHOD

We begin with a model for type-II SDSMs, whose Hamil-
tonian is given by

H (k) = (
βk2

x − vF ky − δ0
)
σx + αkxkyσy + mzσz, (1)

FIG. 1. (a), (b) The energy dispersion with the filled colors indi-
cating the value of the Berry curvature, (c) top view of the conduction
band below εk,+ = EF , and (d), (e) Hall conductivity (right axis)
in the absence of the CPL for mz > 0. The dispersion (left axis) in
(d) and (e) is plotted along the parabola ky = (βk2

x − δ0)/vF . For
comparing, we set δ0 < 0 in (a) and (d), while δ0 > 0 in (b), (c),
and (e).

where σ = (σx, σy, σz ) is the vector of Pauli matrix, h̄2/(2β )
corresponds to the Newtonian mass of the quasiparticle along
the x direction, and mz accounts for the Dirac mass. The type-
II semi-Dirac model can be used to describe the low-energy
electronic structure of the TiO2/VO2 nanostructure [47–50].
In Eq. (1), we present only one of the four valleys, as they are
related to each other by fourfold rotations [50]. Diagonalizing
H (k) yields the dispersion

εk,s = s
√(

βk2
x − vF ky − δ0

)2 + (αkxky)2 + m2
z (2)

with s = ± for the conduction/valence band. For conve-
nience, we assume α, β > 0. In Figs. 1(a) and 1(b), we display
the numerical results for the energy spectrum. In the absence
of the Dirac mass, i.e., mz = 0, the conduction and valence
bands touch at a Dirac point Y = (0,−δ0/vF ) in the y axis and
a pair of Dirac points X± = (±√

δ0/β, 0) in the x axis when
δ0 > 0. As δ0 < 0, the Dirac points X± will be gapped out. For
a finite constant mz, no Dirac points survive. The gap closing
and reopening are usually related to a topological transition.
Accordingly, by tuning the Dirac mass and δ0, abundant topo-
logical phases and interesting phenomena associated with the
topological transitions could be expected in this system.

In practice, a feasible way to regulate the electronic
structure is by means of light. As the sample is driven
by a beam of CPL, the behavior of the quasiparticles can
be described by a time-dependent Hamiltonian H(k, t ) =
H (k + eA/h̄), where A(t ) = A0[sin(ωt )e1 − sin(ωt + ϕ)e2]
is the vector potential for the light of amplitude A0

and frequency ω. The phase ϕ is adopted to character-
ize the polarization, for instance, ϕ = 0 and ϕ = ±π/2
correspond respectively to the linearly and right/left po-
larization. Here, e1 = (cos θ cos φ, cos θ sin φ,− sin θ ) and
e2 = (sin φ,− cos φ, 0), satisfying e1 · e2 = 0, are two unit
vectors perpendicular to the incident direction ein =
(sin θ cos φ, sin θ sin φ, cos θ ) of the light. Following the
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FIG. 2. Relation between the dispersion (left axis) and Hall
conductivity (right axis) for (a) ϕ = π/2, kA = 0.02, (b) ϕ = π/2,
kA = 0.05, (c) ϕ = −π/2, kA = 0.03, and (d) ϕ = −π/2, kA = 0.04,
where the dispersion is plotted along ky = (βk2

x − δ1)/vF . The filled
colors of the dispersion represent the value of the Berry curvatures.
The blue and purple dashed lines indicate the magnitude of the local
energy gaps �X and �Y , respectively. The rest of the parameters
are set as vF = 10, α = 2, β = 0.2, δ0 = 0.3, h̄ω = 0.25, and mz =
0.005, where the energy is in unit of eV.

Floquet theory [32,60–62], the time-period-dependent Hamil-
tonian H(k, t ) in the off-resonant regime, i.e., αk2

A/(h̄ω) � 1,
where the electronic structure is modified through virtual pho-
ton processes, can be reduced to an effective static form

Heff(k) � H (k) +
∞∑

n=1

1

nh̄ω
[Hn(k), H−n(k)], (3)

with Hn(k) = 1
T

∫ T
0 H(k, t )e−inωt dt and T = 2π/ω. Subse-

quently, we can obtain the effective Hamiltonian

Heff(k) = n(k) · σ, (4)

in which n(k) = (βk2
x − vF ky − δ1, αkxky − ακ, mk),

δ1 = δ0 − 4λβ , and mk = γ (2βk2
x + vF ky + λβ ) + mz. For

the sake of brevity, we noted κ = k2
A
4 sin2 θ sin 2φ, γ =

αk2
A sin ϕ cos θ/(h̄ω), and λβ = βk2

A(1 − sin2 θ cos2 φ)/8,
in which kA = eA0/h̄ captures the light intensity. The
effective Hamiltonian for the rest of the three valleys can
be obtained from Eq. (4) directly by the replacements
kx → kx cos ϑn − ky sin ϑn, ky → kx sin ϑn + ky cos ϑn, and
φ → φ + ϑn, with ϑn = nπ/2 and n = 1, 2, 3. The Fermi
surface is outlined by the boundaries of the color-filled
regions in Fig. 1(c).

As can be seen, for θ = 0, the CPL, incident in the z
direction, will renormalize the parameters δ0 → δ1 and mz →
mk. Importantly, the Dirac mass for the driven fermions be-
comes momentum dependent. As a result, the local energy
gaps around the Dirac points, characterized by �Y = mz −
γ (δ0 − 5λβ ) and �X = mz + γ (2δ0 − 7λβ ), are different in
magnitude, which is also visible in Fig. 2. This is distinct from
the case of constant Dirac mass and enables us to control the
inverted gaps around Y and X± separately, so as to realize

rich topological phases. For θ �= 0, the renormalization of
kxky → kxky − κ would move the Dirac points away from the
axis and break the rotation symmetry.

Upon application of an external electric field E = Ejê j , the
charge current density is given by [37,81]

Ji = − e

(2π )2

∑
s=±

∫
d2k

(
υs

k,i + e

h̄
εi jE j�

s
k,i j

)
fk,s, (5)

with ê j the electric field’s unit vector and εi j the two-
dimensional Levi-Cività antisymmetric tensor. υs

k = ∇kεk,s/h̄
is the group velocity, fk,s represents the nonequilibrium elec-
tron distribution function, and

�s
k,i j ≡ −s

n(k)

2|n(k)|3 ·
[
∂n(k)

∂ki
× ∂n(k)

∂k j

]
(6)

defines the Berry curvature. For a relatively weak electric
field, the nonequilibrium electron distribution function can be
expanded as fk,s = ∑∞

m=0 fm, where the subscript m marks the
order of the electric field. Within the framework of the Boltz-
mann theory [37], it is easy to obtain the recurrence relation
f0 = f (εk) and fn�1 = eτk h̄−1E · ∇k fn−1, with τk being the
electron relaxation time due to the impurity scattering and
f (εk) = [1 + e(εk−EF )/kBT ]−1 is the Fermi-Dirac distribution
function.

III. CPL-MODULATED LINEAR AHE

According to Eq. (5), we can define the linear conductivity
tensor σi j = σD,i j + σB,i j , where

σD,i j = −e2
∑
s=±

∫
d2k

(2π )2
υs

k,iυ
s
k, j

∂ f (εk,s)

∂εk,s
τk, (7)

σB,i j = −e2

h̄

∑
s=±

∫
d2k

(2π )2
εi j�

s
k,i j f (εk,s), (8)

represent respectively the Drude component of the conductiv-
ity and the linear Hall conductivity due to the Berry curvature.
It should be noted that Eq. (8) is most valid for equilibrium dc
Hall conductivity. In nonequilibrium, due to the nonuniversal
nature of the Fermi-Dirac distribution, the Hall conductivity
depends on the details of the system and its environment
[69–72]. Here, we neglect the dissipative effects and con-
sider the limit of high-frequency driving, where the effective
Hamiltonian approach fully captures the topological features
of Floquent-Bloch bands. In this case, the existence of topo-
logical edge states at sample boundaries could be inferred
by computing the standard nondriven system invariants for
the Floquet bands and the Chern number of the effective
Hamiltonian can be interpreted as the Hall conductivity [64].
Strong drive amplitudes may lead to new topological transi-
tions, which are not captured by the perturbative arguments
discussed here.

The different topological phases can be distinguished by
the Chern number of the valence band C = 1

2π

∫
BZ �−

k,xyd2k,
which manifests in the AHE as the quantized Hall conductiv-
ity σxy = Ce2/h when the Fermi level is within the bulk band
gap. By the expression of n(k) below Eq. (4), we can derive

�s
k,xy = −sα

mzξk + γ [(λβ + 2δ1)ξk + 3vF kyζk + βκ ]

2
[
(ζk − vF ky)2 + α2(kxky − κ )2 + m2

k

]3/2 , (9)
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in which ξk = 2βk2
x + vF ky, ζk = βk2

x − δ1, and βκ =
6vF βκkx. The distribution of the Berry curvature is plotted in
Figs. 1(a)–1(c), which is indicated by the filled colors in the
dispersion. Here, as different from conventional semimetals,
the Dirac mass in the numerator of the right hand side of
Eq. (9), even in the absence of the CPL, is always tied to a
momentum-dependent factor ξk. Consequently, the topologi-
cal properties of the system depend strongly on location of
the Dirac valleys in momentum space, because the sign of the
Berry curvatures is determined jointly by the signs of mz and
ξk. For linearly polarized light, the term tied to γ in Eq. (9)
vanishes, since γ ∝ sin ϕ = 0, which implies that the linearly
polarized light cannot modulate the topological transitions.
Below, we would mainly discuss the case for the CPL, i.e.,
ϕ = ±π/2.

The numerical results for the anomalous Hall conductivity
in the absence of the CPL are displayed in Figs. 1(d) and
1(e). Without the Dirac mass, the spectrum is gapless and the
Berry curvature is vanishing, so that σxy = 0. For a finite Dirac
mass, the spectrum will open a gap around the Dirac points
and then the Hall conductivity exhibits a quantized plateau
when the Fermi level is within the gap. If δ0 < 0, the system
possesses only one inverted gap locating around Dirac point
Y , as shown by Fig. 1(a), which results in a 2e2/h Hall plateau;
see Fig. 1(d). As δ0 is varied from negative to positive, one
would expect the system to experience a topological transi-
tion, because another two inverted gaps around Dirac points
X± will be included; see Fig. 1(b) and the dispersion (left axis)
in Fig. 1(e). However, curiously, the Hall conductivity remains
unchanged during this procedure, as comparing Fig. 1(e) with
Fig. 1(d).

To understand this anomalous phenomenon, let us
focus on the neighborhood of the Dirac points, around
which the Hamiltonian can be linearly approximated
as HY (q) = −vF qyσx − α δ1

vF
qxσy + �Y σz and HX,±(q) =

±√
δ1/β(2βqxσx + αqyσy) + �X σz, where the wave vector q

is measured from the Dirac points. The corresponding Chern
numbers can be easily determined as CY = − 1

2 sgn(δ1)sgn
(�Y ) and CX,± = 1

2θ (δ1)sgn(�X ), in which θ (x) is the unit
step function. The Chern number for the present valley
is C = CX + CY with CX = CX,+ + CX,−. The total Chern
number C4 of the system with four fourfold-rotation-related
valleys can be obtained immediately through multiplying C
by 4 [50]. Without the CPL, δ1 = δ0 and �X = �Y = mz. For
δ0 < 0, CX,± = 0 and thus only the inverted gap around Y
contributes to the Chern number, i.e., C = CY = sgn(mz )/2.
For δ0 > 0, the inverted gaps around X± contribute an addi-
tional Chern number CX = sgn(mz ). Besides, as δ0 changes
sign, CY reverses its sign as well, i.e., CY = −sgn(mz )/2,
demonstrated by Fig. 1(b) where the Berry curvatures around
Y possess opposite sign with respect to Fig. 1(a). As a
consequence, C = sgn(mz )/2 remains unchanged with δ0

changing sign. Therefore, in the absence of the CPL, the
two situations for δ0 < 0 and δ0 > 0, though belonging to
different topological phases, cannot be distinguished by
evolution of the Chern number with respect to δ0.

Additionally, since the local inverted gaps around differ-
ent Dirac points are the same in magnitude for constant
Dirac mass, the closing and reopening of them are always

FIG. 3. Evolution of the total Chern number C4 of the system
in mz-δ0 parameter space, with (a), (b) kA = 0.01, (c) kA = 0, and
(d) ϕ = π/2, kA = 0.05, where mz was magnified a thousand times.
Other parameters are the same as in Fig. 2.

synchronous. As a result, the total Chern number C4 =
4θ (δ1)sgn(�X ) − 2sgn(δ1)sgn(�Y ), in spite of many topolog-
ical phases in the mz-δ0 parameter space, is either positive
or negative 2 depending only on the sign of mz; see the nu-
merical results in Fig. 3(c). Interestingly, upon application of
the CPL, �X can be unequal to �Y , so that we can control
the inverted gaps around Y and X± independently. By tun-
ing the CPL parameters, we can modulate the Hall plateau
ranging from σxy = −6e2/h to σxy = 6e2/h, illustrated by
Figs. 2 and 3.

Furthermore, from Fig. 2(a), we observe that the CPL-
modulated AHE exhibits an anomalous behavior, namely, as
the Fermi level is tuned away from the gap, the Hall con-
ductivity, instead of monotonically decreasing that occurs in
static systems, will increase first to a maximum before de-
creasing. This nonmonotonic behavior can be understood as
follows. The Hall conductivity within the bulk band gap is
contributed by the valence band, which includes contribution
of the inverted gaps around both Dirac points X± and Y . For
δ0 > 0 and mz > 0 in Fig. 2(a), the Berry curvatures of the
valence band are positive around X± but negative around Y .
Hence, the net Hall conductivity is positive 2e2/h when EF

is within the gap. For a finite kA and ϕ = π/2, �Y reduces
while �X increases, such that the bulk band gap is determined
by �Y and the Hall plateau σxy = 2e2/h is of width 2|�Y |.
For EF > |�Y |, the conduction band around Y , with positive
Berry curvatures [see Fig. 2(a)], will be included first and con-
tribute a positive Hall conductivity. So, the Hall conductivity
increases. When EF > |�X |, the conduction band around X±,
where the Berry curvatures are negative, is included as well,
making the Hall conductivity decrease. Therefore, the Hall
conductivity reaches its maximum at |EF | = |�X |.

As kA further increases, the gap around Y is closed when
�Y = 0 and reopened for �Y < 0; after that CY changes
sign again, as demonstrated in Fig. 2(b) where the Berry
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curvatures around Y change sign with respect to Fig. 2(a).
Then, the Berry curvatures of the valence band are positive
for all the Dirac subvalleys and thus the Hall conductivity
plateau turns out to be σxy = 6e2/h when EF is within the
bulk band gap. With the bulk band gap narrowing, the Berry
curvatures, indicated by Fig. 2(b), distribute sharply at the
edge of the conduction/valence band. As a result, in Fig. 2(b),
the Hall conductivity changes slowly when |EF | is in the
vicinity of �X but increases rapidly for |EF | → �Y , forming
a step-shaped structure around σxy = 4e2/h. Consequently, we
can observe a three-plateau structure of the Hall conductivity
for some suitable parameters. If we reverse the polarization of
the CPL, e.g., ϕ = −π/2 in Figs. 2(c) and 2(d), the behavior
of �X and �Y will interchange, namely, �X decreases and
�Y increases with the increment on kA. As kA increase, the
gaps around X± will, simultaneously, be closed (�X = 0) and
reopened (�X < 0); after that the Berry curvatures change
sign around X±, leading to a change of 8e2/h in the Hall
conductivity plateau, as compared in Figs. 2(c) and 2(d), also
shown by Figs. 3(a) and 3(b).

As analyzed above, for constant Dirac mass, the Hall con-
ductivity is δ0 independent. However, as the CPL is turned
on, the parameter δ0 will enter �X and �Y , making the Hall
plateau tunable by δ0. As a consequence, in the presence
of the CPL, varied topological phases can be observable in
the mz-δ0 parameter space, as shown by Fig. 3(d). If mz ∈
γ (7λβ − 2δ0, δ0 − 5λβ ), |C4| = 6, otherwise |C4| = 2. The
phase boundaries mz = γ (δ0 − 5λβ ) and mz = γ (7λβ − 2δ0),
corresponding to �Y = 0 and �X = 0, are consistent with the
analytical results. As the parameter moves across �Y = 0,
only one inverted gap is closed and reopened, so that C4

changes to 4, while if the parameter passes through �X = 0,
two inverted gaps are simultaneously closed and reopened,
and therefore, C4 changes to 8.

As the Fermi level is out of the gap, the Drude com-
ponent of the conductivity, shown by Figs. 4(a) and 4(b),
could also contribute to the transverse conductivity. The
Drude component of the transverse conductivity comes from
the anisotropy, which follows the general relation σD,xy =
(σD,xx − σD,yy) sin φ cos φ, as indicated by Fig. 4(b). Although
the valleys with a banana-shaped Fermi surface exhibits the
anisotropy, the net Drude component of the transverse con-
ductivity, in the absence of the CPL or even with the CPL
incident in the z direction (θ = 0), vanishes because of the
fourfold rotation symmetry, which is illustrated by the dark
dashed lines in Figs. 4(a) and 4(b). When the incident di-
rection of the CPL is tilted away from the z axis (θ �= 0),
the fourfold rotation symmetry is broken and then nonzero
σD,xy can emerge, whose profile resembles the density of states
(DOS) plotted in Fig. 4(d). The Drude component of the Hall
conductivity exhibits a 2π -periodic oscillation with respect to
φ, which is nonvanishing when the CPL is out of the x-z and
y-z planes.

In Fig. 4(c), we also display the numerical results for the
longitudinal conductivity. It is well known that the longitu-
dinal conductivity relates closely to the DOSs at the Fermi
level. As expected, the longitudinal conductivity is totally
suppressed when the Fermi level is within the gap. As the
Fermi energy is tuned away from the gap, the longitudinal
conductivity increases linearly for relatively small EF , due
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FIG. 4. The Drude component of the transverse conductivity vs
the (a) Fermi energy for φ = π/4, kA = 0.05, and (b) azimuthal
angle φ of the CPL for θ = π/4. (c) The longitudinal conductivity
and (d) DOSs as functions of the Fermi energy. The parameters are
the same as in Fig. 2.

to the linear dispersion around the Dirac points. For constant
Dirac mass, the local gaps for different Dirac points are the
same in magnitude and the conductivity increases smoothly,
as shown by the green dashed-dotted line. With the CPL
turned on, these local gaps will be separated in magnitude.
Then, the Fermi level first crosses only one Dirac cone when
�Y < |EF | < �X , and the other two Dirac cones are included
when |EF | > �X . As a result, the conductivity exhibits a ver-
tex at |EF | = �X , as seen from the blue-solid line in Fig. 4(c).

IV. CPL-MODULATED NONLINEAR AHE

While the linear AHE due to the Berry curvature decays
rapidly when the Fermi level is away from the bulk band gap,
the Berry curvature dipole would contribute to the nonlinear
Hall effect as the Fermi level is out of the gap. Usually, the
nonlinear Hall effect can exist in systems with TR symmetry,
but requires breaking the inversion symmetry [74–80] . In the
constant relaxation time approximation, the nonlinear charge
current density, according to Eq. (5), can be written as JN

i =
JN

D,i + e3τ
h̄ εi jD

i j
b E jEb, where

Di j
b = −

∑
s=±

∫
d2k

(2π )2
�s

k,i jυ
s
k,b

∂ f (εk,s)

∂εk,s
(10)

is the Berry curvature dipole and

JN
D,i = e3τ 2

h̄

∑
s=±

∫
d2k

(2π )2

∂υs
k,i

∂k j
υs

k,b

∂ f (εk,s)

∂εk,s
E jEb (11)

contributes the Drude component of the nonlinear conduc-
tivity. We have used the Einstein summation convention for
convenience. In the following, we focus only on the contri-
bution from the Berry curvature dipole. After integration by
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FIG. 5. Derivative of the Berry curvature �+
k,xy with respect to

(a) kx and (b) ky. (c), (d) Evolution of the Berry curvature dipole with
(c) kA = 0, δ0 = −0.3, 0.3 and (d) δ0 = 0.3, kA = 0, 0.03, 0.05, for
the valley described by Eq. (4). The rest of the parameters are the
same as in Fig. 2.

parts, the nonvanishing Berry curvature dipole can be reex-
pressed as

Di j
b =

∑
s=±

∫
d2k

(2π )2

∂�s
k,i j

∂kb
f (εk,s). (12)

It shows that the Berry curvature dipole relies crucially on
the symmetry of the Berry curvature. For Eq. (4), correspond-
ing to the top banana-shaped region in Figs. 5(a) and 5(b),
the Berry curvature dipole Dyx

x , in the absence of the CPL
or with the CPL incident perpendicularly, can be expected to
be vanishing, since �s

k,xy, indicated by Eq. (9), is even with
respect to kx. In other words, ∂�s

k,xy/∂kx is an odd function of
kx, as shown by Fig. 5(a), whose integral over the wave vector
vanishes. However, Dxy

y is nonvanishing, because ∂�s
k,xy/∂ky

is even vs kx within the banana-shaped Fermi surface; see
Fig. 5(b). This can be verified by the numerical results in
Figs. 5(c) and 5(d). It means that, when the electric field
is applied along direction y, one can observe charge current
flowing along the x direction, while there is no transverse
current when the electric field is along the x direction. The
situation is the same for the bottom banana-shaped region
of Figs. 5(a) and 5(b), but the Berry curvature dipole is of
opposite sign. For the left and right banana-shaped regions,
the cases are reversed, namely, there is (no) transverse current
if the electric field is along the x (y) direction.

The Berry curvature dipole has a topological origin and
also can witness the topological phase transition process. As
seen from Fig. 5(d), with kA varied from zero to 0.05, Dxy

y

changes its sign in the vicinity of the boundary of the bands,
as a response to the gap closing and reopening around the

Dirac point Y , indicating the topological transition. This is
consistent with the results presented in Figs. 2(a) and 2(b).
Although the banana-shaped Fermi surface of a single valley
is asymmetric in the kx or ky direction, it should be noted that
the Berry curvature dipoles between different valleys possess
the symmetry Dxy

y = −Dxy
y |ϑn→ϑn+π , as reflected by the distri-

bution of ∂�s
k,xy/∂kx,y in Figs. 5(a) and 5(b). Consequently,

the Berry curvature dipoles from opposite valleys may cancel
each other out. Nevertheless, the Berry curvature dipole is
sensitive to inversion-broken perturbations and we can pre-
dict that the Berry-curvature-dipole-induced nonlinear Hall
effect can be observable in type-II SDSMs, if the inversion
symmetry is, for example, further broken by strain or other
perturbations.

V. CONCLUSIONS AND REMARKS

In summary, we have studied the photon-modulated lin-
ear and nonlinear AHE in type-II SDSMs and found that
rich topological phases and interesting transport phenomena
associated with the topological phase transitions can be real-
ized and manipulated by the CPL. Because the local inverted
gaps around different Dirac points respond differently to the
CPL, we can modulate the topological phase transition con-
veniently. By tuning the CPL parameters, the QAH plateau
within the bulk band gap can be modulated ranging −6e2/h to
6e2/h. The interplay between the Dirac points also can be reg-
ulated by the CPL,which results in anomalous behaviors in the
anomalous Hall conductivity. Due to the strong anisotropy of
the electronic structure, we demonstrate that, while the Berry-
curvature-induced AHE is strongly suppressed as the Fermi
level is away from the bulk band gap, the Drude component
of the conductivity would contribute to the AHE. Besides, the
nonlinear Hall effect because of the Berry curvature dipole
can be observable when the inversion symmetry is broken.
In experiments, in order not to destroy the material while
still providing measurable signal, by the recently developed
ultrafast laser pulse driving and on-chip detecting techniques
[73], our proposal could be realizable with the midinfrared
light, the photon energy of which can be large compared
with the higher-energy cutoff for the present 2D semi-Dirac
cone [50].

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China under Grants No. 11904107
(M.-X.D), No. 12174121 (R.-Q.W.) and No. 12104167
(H.-J.D.), the Guangdong NSF of China under Grant No.
2020A1515011566 (M.-X.D), the Key Program for Guang-
dong NSF of China under Grant No. 2017B030311003, No.
2021A1515010369 (R.-Q.W.), GDUPS(2017), the Science
and Technology Program of Guangzhou under Grant No.
2019050001, and the projects funded by South China Normal
University.

J.-N.C. and Y.-Y.Y. contributed equally to this work.

[1] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Rev. Mod. Phys. 82, 1539 (2010).

[2] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154
(1954).

085124-6

https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRev.95.1154


PHOTON-MODULATED LINEAR AND NONLINEAR … PHYSICAL REVIEW B 105, 085124 (2022)

[3] J. Smit, Physica 21, 877 (1955).
[4] J. Smit, Physica 24, 39 (1958).
[5] E. M. Pugh and N. Rostoker, Rev. Mod. Phys. 25, 151 (1953).
[6] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[7] M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002).
[8] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett.

88, 207208 (2002).
[9] D. Culcer, A. MacDonald, and Q. Niu, Phys. Rev. B 68, 045327

(2003).
[10] L. Berger, Phys. Rev. B 2, 4559 (1970).
[11] L. Berger, Physica 30, 1141 (1964).
[12] P. N. Dheer, Phys. Rev. 156, 637 (1967).
[13] Y. Tian, L. Ye, and X. Jin, Phys. Rev. Lett. 103, 087206 (2009).
[14] T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose,

N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 99, 086602 (2007).
[15] H. Ishizuka and N. Nagaosa, Sci. Adv. 4, eaap9962 (2018).
[16] S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E.

Derunova, R. Gonzalez-Hernandez, L. Šmejkal, Y. Chen,
S. S. P. Parkin, S. D. Wilson, E. S. Toberer, T. McQueen, and
M. N. Ali, Sci. Adv. 6, eabb6003 (2020).

[17] N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young, and
Z. Fisk, Nat. Mater. 3, 255 (2004).

[18] T. Liang, J. Lin, Q. Gibson, S. Kushwaha, M. Liu, W. Wang,
H. Xiong, J. A. Sobota, M. Hashimoto, P. S. Kirchmann, Z.-X.
Shen, R. J. Cava, and N. P. Ong, Nat. Phys. 14, 451 (2018).

[19] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[20] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[21] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.

90, 015001 (2018).
[22] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z.

Fang, Science 329, 61 (2010).
[23] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo,

K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X.
Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang
et al., Science 340, 167 (2013).

[24] C.-Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf,
D. Heiman, S.-C. Zhang, C. Liu, M. H. W. Chan, and J. S.
Moodera, Nat. Mater. 14, 473 (2015).

[25] S. Nakatsuji, N. Kiyohara, and T. Higo, Nature (London) 527,
212 (2015).

[26] A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D.
Goldhaber-Gordon, Phys. Rev. Lett. 114, 187201 (2015).

[27] C.-X. Liu, S.-C. Zhang, and X.-L. Qi, Annu. Rev. Condens.
Matter Phys. 7, 301 (2016).

[28] M.-X. Deng, W. Luo, W. Y. Deng, M. N. Chen, L. Sheng, and
D. Y. Xing, Phys. Rev. B 94, 235116 (2016).

[29] D. Maryenko, A. S. Mishchenko, M. S. Bahramy, A. Ernst,
J. Falson, Y. Kozuka, A. Tsukazaki, N. Nagaosa, and M.
Kawasaki, Nat. Commun. 8, 14777 (2017).

[30] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H.
Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018).

[31] S. N. Guin, K. Manna, J. Noky, S. J. Watzman, C. Fu, N. Kumar,
W. Schnelle, C. Shekhar, Y. Sun, J. Gooth, and C. Felser, NPG
Asia Mater. 11, 16 (2019).

[32] X.-S. Li, C. Wang, M.-X. Deng, H.-J. Duan, P.-H. Fu, R.-Q.
Wang, L. Sheng, and D. Y. Xing, Phys. Rev. Lett. 123, 206601
(2019).

[33] D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan, and S.-L. Zhu,
Adv. Phys. 67, 253 (2018).

[34] M.-X. Deng, G. Y. Qi, R. Ma, R. Shen, R.-Q. Wang, L. Sheng,
and D. Y. Xing, Phys. Rev. Lett. 122, 036601 (2019).

[35] X.-D. Hu, L.-Y. Li, Z.-X. Guo, and Z. Li, New J. Phys. 23,
073031 (2021).

[36] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[37] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[38] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys.

Rev. Lett. 101, 146802 (2008).
[39] Z. Qiao, S. A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J.

Wang, and Q. Niu, Phys. Rev. B 82, 161414(R) (2010).
[40] H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov,

Phys. Rev. Lett. 108, 056802 (2012).
[41] K. F. Garrity and D. Vanderbilt, Phys. Rev. Lett. 110, 116802

(2013).
[42] Z. F. Wang, Z. Liu, and F. Liu, Phys. Rev. Lett. 110, 196801

(2013).
[43] H. Zhang, J. Wang, G. Xu, Y. Xu, and S.-C. Zhang, Phys. Rev.

Lett. 112, 096804 (2014).
[44] K. F. Garrity and D. Vanderbilt, Phys. Rev. B 90, 121103(R)

(2014).
[45] H. Zhang, H. Huang, K. Haule, and D. Vanderbilt, Phys. Rev. B

90, 165143 (2014).
[46] K. Saha, Phys. Rev. B 94, 081103(R) (2016).
[47] V. Pardo and W. E. Pickett, Phys. Rev. Lett. 102, 166803 (2009).
[48] V. Pardo and W. E. Pickett, Phys. Rev. B 81, 035111 (2010).
[49] S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, Phys.

Rev. Lett. 103, 016402 (2009).
[50] H. Huang, Z. Liu, H. Zhang, W. Duan, and D. Vanderbilt, Phys.

Rev. B 92, 161115(R) (2015).
[51] A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev.

Lett. 112, 176801 (2014).
[52] A. Kobayashi, Y. Suzumura, F. Piéchon, and G. Montambaux,

Phys. Rev. B 84, 075450 (2011).
[53] Y. Wu, Opt. Express 22, 1906 (2014).
[54] P. Dietl, F. Piéchon, and G. Montambaux, Phys. Rev. Lett. 100,

236405 (2008).
[55] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[56] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.

Rev. B 84, 235108 (2011).
[57] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,

Science 342, 453 (2013).
[58] E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and N. Gedik,

Nat. Mater. 14, 290 (2015).
[59] F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee,

P. A. Lee, and N. Gedik, Nat. Phys. 12, 306 (2016).
[60] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev.

X 3, 031005 (2013).
[61] P. Titum, N. H. Lindner, M. C. Rechtsman, and G. Refael, Phys.

Rev. Lett. 114, 056801 (2015).
[62] A. Farrell and T. Pereg-Barnea, Phys. Rev. Lett. 115, 106403

(2015).
[63] T. Oka and S. Kitamura, Annu. Rev. Condens. Matter Phys. 10,

387 (2019).
[64] M. S. Rudner and N. H. Lindner, Nat. Rev. Phys. 2, 229 (2020).
[65] A. Kumar, M. Rodriguez-Vega, T. Pereg-Barnea, and B.

Seradjeh, Phys. Rev. B 101, 174314 (2020).
[66] F. Giustino, J. H. Lee, F. Trier, M. Bibes, S. M. Winter, R.

Valentí, Y.-W. Son, L. Taillefer, C. Heil, A. I. Figueroa, B.
Plaçais, Q. Wu, O. V. Yazyev, E. P. A. M. Bakkers, J. Nygård,

085124-7

https://doi.org/10.1016/S0031-8914(55)92596-9
https://doi.org/10.1016/S0031-8914(58)93541-9
https://doi.org/10.1103/RevModPhys.25.151
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1103/PhysRevB.68.045327
https://doi.org/10.1103/PhysRevB.2.4559
https://doi.org/10.1016/0031-8914(64)90105-3
https://doi.org/10.1103/PhysRev.156.637
https://doi.org/10.1103/PhysRevLett.103.087206
https://doi.org/10.1103/PhysRevLett.99.086602
https://doi.org/10.1126/sciadv.aap9962
https://doi.org/10.1126/sciadv.abb6003
https://doi.org/10.1038/nmat1103
https://doi.org/10.1038/s41567-018-0078-z
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1234414
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nature15723
https://doi.org/10.1103/PhysRevLett.114.187201
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1103/PhysRevB.94.235116
https://doi.org/10.1038/ncomms14777
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1038/s41427-019-0116-z
https://doi.org/10.1103/PhysRevLett.123.206601
https://doi.org/10.1080/00018732.2019.1594094
https://doi.org/10.1103/PhysRevLett.122.036601
https://doi.org/10.1088/1367-2630/ac10fc
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevB.82.161414
https://doi.org/10.1103/PhysRevLett.108.056802
https://doi.org/10.1103/PhysRevLett.110.116802
https://doi.org/10.1103/PhysRevLett.110.196801
https://doi.org/10.1103/PhysRevLett.112.096804
https://doi.org/10.1103/PhysRevB.90.121103
https://doi.org/10.1103/PhysRevB.90.165143
https://doi.org/10.1103/PhysRevB.94.081103
https://doi.org/10.1103/PhysRevLett.102.166803
https://doi.org/10.1103/PhysRevB.81.035111
https://doi.org/10.1103/PhysRevLett.103.016402
https://doi.org/10.1103/PhysRevB.92.161115
https://doi.org/10.1103/PhysRevLett.112.176801
https://doi.org/10.1103/PhysRevB.84.075450
https://doi.org/10.1364/OE.22.001906
https://doi.org/10.1103/PhysRevLett.100.236405
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1126/science.1239834
https://doi.org/10.1038/nmat4156
https://doi.org/10.1038/nphys3609
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevLett.114.056801
https://doi.org/10.1103/PhysRevLett.115.106403
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1103/PhysRevB.101.174314


JIN-NA CHEN et al. PHYSICAL REVIEW B 105, 085124 (2022)

P. Forn-Díaz, S. D. Franceschi, J. W. McIver, L. E. F. F. Torres,
T. Low et al., J. Phys.: Mater. 3, 042006 (2021).

[67] L. Du, Q. Chen, A. D. Barr, A. R. Barr, and G. A. Fiete, Phys.
Rev. B 98, 245145 (2018).

[68] A. Huamán, L. E. F. Foa Torres, C. A. Balseiro, and G. Usaj,
Phys. Rev. Research 3, 013201 (2021).

[69] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 90, 195429
(2014).

[70] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 91, 155422
(2015).

[71] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and
G. Usaj, Phys. Rev. Lett. 113, 266801 (2014).

[72] A. Kundu, H. A. Fertig, and B. Seradjeh, Phys. Rev. Lett. 113,
236803 (2014).

[73] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Nat. Phys. 16, 38 (2020).

[74] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
[75] Z. Z. Du, C. M. Wang, H.-Z. Lu, and X. C. Xie, Phys. Rev. Lett.

121, 266601 (2018).
[76] P. A. Pantaleón, T. Low, and F. Guinea, Phys. Rev. B 103,

205403 (2021).
[77] M.-X. Deng, W. Y. Deng, D. X. Shao, R.-Q. Wang, R. Shen, L.

Sheng, and D. Y. Xing, Phys. Rev. B 95, 115102 (2017).
[78] W. Rao, Y.-L. Zhou, Y.-j. Wu, H.-J. Duan, M.-X. Deng, and

R.-Q. Wang, Phys. Rev. B 103, 155415 (2021).
[79] J. I. Facio, D. Efremov, K. Koepernik, J.-S. You, I. Sodemann,

and J. van den Brink, Phys. Rev. Lett. 121, 246403
(2018).

[80] P. Bhalla, M.-X. Deng, R.-Q. Wang, L. Wang, and D. Culcer,
Phys. Rev. Lett. 127, 206801 (2021).

[81] Y.-H. Lei, Y.-L. Zhou, H.-J. Duan, M.-X. Deng, Z.-E. Lu, and
R.-Q. Wang, Phys. Rev. B 104, L121117 (2021).

085124-8

https://doi.org/10.1088/2515-7639/abb74e
https://doi.org/10.1103/PhysRevB.98.245145
https://doi.org/10.1103/PhysRevResearch.3.013201
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1103/PhysRevLett.113.236803
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.121.266601
https://doi.org/10.1103/PhysRevB.103.205403
https://doi.org/10.1103/PhysRevB.95.115102
https://doi.org/10.1103/PhysRevB.103.155415
https://doi.org/10.1103/PhysRevLett.121.246403
https://doi.org/10.1103/PhysRevLett.127.206801
https://doi.org/10.1103/PhysRevB.104.L121117

