
PHYSICAL REVIEW B 105, 085123 (2022)

Phononic real Chern insulator with protected corner modes in graphynes
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Higher-order topological insulators have attracted great research interest recently. Different from conventional
topological insulators, higher-order topological insulators do not necessarily require spin-orbit coupling, which
makes it possible to realize them in spinless systems. Here, we study phonons in 2D graphyne family materials.
By using first-principle calculations and topology/symmetry analysis, we find that phonons in both graphdiyne
and γ -graphyne exhibit a second-order topology, which belongs to the specific case known as real Chern
insulator. We identify the nontrivial phononic band gaps, which are characterized by nontrivial real Chern
numbers enabled by the spacetime inversion symmetry. The protected phonon corner modes are verified by the
calculation on a finite-size nanodisk. In addition, we show that a 3D real Chern insulator state can be realized for
phonons in 3D graphdiyne. Our study extends the scope of higher-order topology to phonons in real materials.
The spatially localized phonon modes could be useful for novel phononic applications.
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I. INTRODUCTION

The study of topological insulators has developed into
a vast research field [1–4]. A conventional d-dimensional
topological insulator features a nontrivial bulk topological in-
variant defined for the valence states below the bulk band gap,
and it has protected gapless states at its (d − 1)-dimensional
boundaries. Later on, it was realized that with certain spatial
symmetries, there could exist a class of higher-order topolog-
ical insulators (HOTIs), in which the gapless states appear
not at (d − 1)- but at (d − n)-dimensional boundaries with
n > 1 [5–10]. For example, a two-dimensional (2D) second-
order topological insulator would have gapped bulk and edge
spectra, meanwhile, gapless excitations occur at its 0D cor-
ners. The concept of HOTI has attracted great interest
[11–16]. Unlike the conventional topological insulator, a
HOTI does not necessarily require the spin-orbit coupling.
In other words, HOTI can be realized in spinless systems.
Thus, its impact is not limited to electronic systems but
also spreads into bosonic and even classical systems, such
as photonic/acoustic metamaterials [17–21], electric circuit
arrays [22,23], and mechanical networks [24,25].
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Phonons are the fundamental bosonic excitations in a crys-
tal material, describing the collective vibrations of atomic
lattice. Phonons play a crucial role in the material’s ther-
mal properties, interact closely with other quasiparticles or
collective excitations, such as electrons, photons, magnons,
etc., and underly remarkable effects such as superconductiv-
ity. Recently, there is a surge of interest in transferring the
topological physics to phonons [26–37]. However, so far, most
studies are focusing on the gapless phonon states, such as
nodal points and nodal lines in the phonon spectrum, which
are analogues of topological semimetals in the electronic con-
text. Meanwhile, gapped topological phonon states receive
less attention. Particularly, to our knowledge, there is no pro-
posal of a realistic material which exhibits a HOTI state in
phonons.

In this work, we fill this gap by showing that phonons in the
2D graphyne family materials exhibit the second-order topol-
ogy. This study is motivated by our recent proposal of these
materials as the first example of 2D electronic HOTIs [15,38].
We have shown that their HOTI state belongs to the specific
case known as real Chern insulator [39], which is character-
ized by a nontrivial real Chern number νR and enabled by the
spacetime inversion symmetry PT . Here, we show that the
discussion can be naturally extended to phonons. Phonons are
spinless, obey bosonic statistics, and respect the same crystal
symmetries including PT . Hence, each phononic band gap
in the spectrum can be characterized by a real Chern number
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νR ∈ Z2. When νR = 1, it indicates that the corresponding
phononic gap is topologically nontrivial, and there will be pro-
tected phonon modes localized at corners for a finite sample
that preserves PT . Taking graphdiyne and graphyne from the
family as examples and using first-principles calculations, we
compute the real Chern numbers for their phononic band gaps
via the parity eigenvalue approach. The phonon corner modes
are explicitly verified by the calculation on a disk geometry.
Our approach can be readily applied to other materials to
reveal possible higher-order topology in phonons. In addition
to the fundamental interest, the results here also open a new
route to realize localized phonons, which might be useful for
novel device applications.

II. CALCULATION METHOD

Density functional theory (DFT) calculations were con-
ducted by using the Vienna ab initio simulation package
(VASP) [40,41]. The projector augmented wave (PAW)
pseudopotentials were adopted in the calculation [42,43].
Generalized gradient approximation (GGA) in the form of
Perdew-Burke-Ernzerhof (PBE) realization was adopted for
the exchange-correlation potential [44]. The valence electrons
treated in the calculations include C (2s22p2). The kinetic
energy cutoff was fixed to 520 eV. �-centered 10 × 10 × 1 k
point mesh was adopted for the self-consistent calculations.
The energy and force convergence criteria were set to be
10−7 eV and 0.001 eV/Å, respectively. We used density func-
tional perturbation theory (DFPT) [45] in combination with
the Phonopy package [46] to obtain the force constants and
phonon spectra. A supercell of 3 × 3 × 1 is adopted for the
calculation of force constants. For computing the phonons
for the nanodisk geometry, we first calculated the second
rank tensor of force constants in Cartesian coordinates from
DFPT, from which we extracted the parameters for construct-
ing the phononic tight-binding model. The spatial distribution
of phonon modes was calculated by using the Pybinding
package [47].

III. STRUCTURE AND PHONON SPECTRUM

Graphynes represent a family of 2D carbon allotropes
composed of sp and sp2 hybridized carbon atoms [48–51].
They can be derived from the graphene structure by insert-
ing acetylenic linkages in different manners. Their structural
models were first proposed by Baughman et al. in 1987 [48].
Some members of this family have been successfully realized
in experiment. The most prominent example is graphdiyne,
which was first synthesized in 2010 by Li et al. via a
cross-coupling reaction method [50]. Meanwhile, as the rep-
resentative of the family, γ -graphyne (often simply referred
to as graphyne) has been realized in experiment in the form
of small fragments [49,52]. Hence, in this work, we will
focus on these two examples. We will first discuss the re-
sults of graphdiyne in the following sections. The results for
γ -graphyne are similar and will be briefly summarized in
Sec. V.

The structure of graphdiyne is illustrated in Fig. 1(a).
The lattice is completely flat with single-atom thickness. It
can be viewed as formed by inserting one diacetylenic link-
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FIG. 1. (a) Crystal structure of graphdiyne. The shaded region
indicates the unit cell. (b) Brillouin zone with high symmetry points
labeled. (c) Calculated phonon spectrum of graphdiyne. The arrows
indicate three of the five global phononic band gaps. Other two gaps
are small hence are not indicated here.

age between two neighboring benzene rings in the graphene
structure while maintaining its p6m symmetry. Graphdiyne
exhibits a high π conjugation, which helps to stabilize the 2D
planar structure and lower the energy. In fact, it was shown
that graphdiyne is the most stable among 2D carbon allotropes
that contain diacetylenic linkages [53]. Each unit cell of the
structure contains 18 carbon atoms. The optimized lattice con-
stant from our first-principles calculations is 9.460 Å, which
is consistent with previous results.

The calculated phonon spectrum of graphdiyne is plotted
in Fig. 1(c). One observes that the spectrum spans a range
up to about 70 THz, which is comparable to that of graphene
(∼50 THz), implying its relatively strong bonding. There are
totally 54 phonon branches (three acoustic branches plus 51
optical branches), corresponding to the 18 atoms in a unit
cell. Among the three acoustic branches, two have a linear
dispersion approaching the � point, whereas the remaining
out-of-plane (ZA) acoustic branch has a quadratic dispersion,
which is a characteristic feature of 2D materials [54,55]. The
sound speed for the longitudinal acoustic phonons is about
18.2 km/s, which is much larger than that of the MoS2

(∼6.5 km/s) [56] and close to graphene (∼21.2 km/s) [57].
Notably, we can observe several phononic band gaps in the

spectrum, which are labeled from Gap 1 to Gap 5 in Fig. 1(c)
with increasing energy. Each gap separates the whole phonon
spectrum into two groups: the phonon bands below the gap
and the bands above, analogous to the valence and conduction
bands in the electronic context. Thus, for each gap, we can
define a real Chern number based on the bands below the
gap (i.e., the “valence” bands) to characterize the topology of
the gap.
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TABLE I. Topological characterization of the phononic band gaps in graphdiyne. Here, N is the number of bands below the gap. n�
− and

nM
− are the number of bands (out of the N bands) with negative parity eigenvalues at � and M, respectively. νR gives the corresponding real

Chern number.

Gap no. Frequency range (THz) Bands below the gap (N) n�
− nM

− νR

1 15.0–15.2 28 16 14 1
2 15.6–17.6 30 16 14 1
3 23.2–24.4 36 18 18 0
4 39.8–40.1 43 22 22 0
5 44.2–64.4 48 24 24 0

Before proceeding, we should comment on the important
differences between phonons and electrons. First, electrons
are fermions, whereas phonons are bosons. They follow dis-
tinct statistics. For electrons, there is the concept of Fermi
level, and the meaningful band gap to analyze is the one that
near the Fermi level; but for phonons, all the band gaps are
meaningful to discuss. Second, the phonon energy scale (few
tens of THz) is much smaller than the electron’s. This makes
the whole phonon spectrum detectable in experiment, e.g., by
optical or neutron scattering. For example, it is demonstrated
in recent experiment with inelastic x-ray scattering technique,
which can achieve the meV resolution [58–60]. Third, the real
HOTI topology discussed in this work requires the system to
be spinless, i.e., without spin-orbit coupling. For electronic
systems, this is a stringent condition, typically requiring that
the material is composed of only very light elements. In con-
trast, phonons are intrinsically free of spin-orbit coupling. In
this sense, it should be easier to realize real HOTI states in
phononic systems.

The graphdiyne system preserves the PT symmetry.
PT operates locally at every k point of the Brillouin zone
(BZ). For a spinless system like phonons, we have (PT )2 =
1. Up to a possible unitary transformation, it can always be
represented as PT = K, where K is the complex conjuga-
tion. This means that with PT symmetry, all the phonon
eigenmodes un(k) can be made real, i.e., un(k) = u∗

n(k). In
Ref. [39], it has been shown that the real bands in 2D are
characterized by a Z2 invariant, the real Chern number νR,
which is analogous to the conventional Chern number for
complex bands. When there are only two bands below the
gap, νR has a integral expression in terms of the real Berry
curvature of these bands, as shown in Ref. [39]. However,
when there are more than two bands, an integral expression
for νR is not available. Nevertheless, for systems that also
preserve the inversion symmetry P (which is the case here),
νR can be evaluated by using the parity analysis approach [61].

In this approach, one needs to analyze the parity eigen-
values of phonon modes at the four inversion-invariant
momentum points �i (i = 1, . . . , 4) of the BZ, which include
� and the three M points [see Fig. 1(b)]. For each phononic
band gap, at point �i, one counts the number of phonon bands
below the gap that have the negative parity eigenvalue. Denote
this number by n�i− . Then, νR can be obtained as [61]

(−1)νR =
4∏

i=1

(−1)�(n
�i− /2)�, (1)

where �. . .� is the floor function.

We apply this approach to analyze the five phononic band
gaps in graphdiyne. The obtained results are listed in Table I.
One can see that Gap 1 and Gap 2 have a nontrivial real Chern
number νR = 1, so these gaps correspond to a phononic real
Chern insulator state.

Let’s consider Gap 2, which is the gap between 15.6 THz
and 17.6 THz. Below this gap, there are 30 phonon branches.
At �, there are 14 branches with positive parity eigenvalues
and 16 branches with negative parity eigenvalues, i.e., n�

+ =
14 and n�

− = 16. In comparison, at the three M points, we
find nM

+ = 16 and nM
− = 14. This mismatch signals a double

band inversion between � and M, which is captured by the
nontrivial real Chern number. Meanwhile, Gap 1 has a smaller
size from 15.00 THz to 15.25 THz. The analysis is similar, so
we will not elaborate here.

IV. CORNER PHONON MODE

It has been shown that a real Chern insulator has a second-
order topology [38], i.e., there must exist 0 D corner modes
for any sample that preserves the PT symmetry. Since we
have identified phononic band gaps in graphdiyne that feature
nontrivial real Chern numbers, it means that in a graphdiyne
nanodisk, we should have localized corner phonon modes in
these gaps.

To confirm this prediction, we calculate the phonon spec-
trum for the graphdiyne nanodisk geometry. The calculation is
based on an ab initio tight-binding model extracted from the
first-principles calculations. In Fig. 2(a), we plot the phonon
spectrum close to Gap 2. One observes that at 17.02 THz
inside Gap 2, there are six degenerate phonon modes. We have
checked the spatial distribution of these modes and found that
they are localized at the six corners of the disk, as illustrated
in Fig. 2(c). As a comparison, in Fig. 2(d), we also plot the
spatial distribution of the nearby modes at 15.59 THz, and one
can easily see that the conventional modes is not localized but
spread throughout the sample. In Fig. 2(b), we plot the local
density of states at one corner (taking the mode weight within
one unit cell of the corner). One can clearly observe the sharp
peak due to the localized corner modes.

In the above calculation, we have taken a hexagonal shaped
disk geometry. This is the natural sample geometry that is
obtained from the bottom-up synthesis approach [62]. Hence,
our results here can be directly tested in experiment. More-
over, it must be emphasized that the existence of the corner
modes is general and does not depend on the specific sample
geometry. As demonstrated in Ref. [38], such modes must
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FIG. 2. (a) Phonon spectrum for the graphdiyne nanodisk in
(c). The disk has a side length of 10a with a the lattice constant,
and the disk contains 5958 carbon atoms in total. Here, we focus
on the part of frequency range close to the bulk Gap 2. (b) Corner
projection spectrum, which is the phonon local density of states at
one corner of the disk. The arrow indicates the peak due to the corner
modes. (c) Spatial distribution of the phonon modes at 17.02 THz,
i.e., the red colored modes inside Gap 2 in (a), which are localized at
the corners of the disk. For comparison, (d) shows the distribution
of phonon modes at a nearby frequencies (15.59 THz), which is
extended in the bulk of the disk. The calculated nanodisk includes
5958 atoms.

exist when the sample geometry preserves PT . In Fig. 3, we
show the result for a diamond shaped sample. Again, localized
corner modes in Gap 2 can be observed.

V. DISCUSSION AND CONCLUSION

We have demonstrated the phononic HOTI state in
graphdiyne. More specifically, it is the real Chern insulator
state. In the bulk, there exist phononic band gaps that are
characterized by nontrivial real Chern numbers. At the bound-
ary, the nontrivial invariant dictates the existence of corner
phonon modes.

The results for γ -graphyne is similar. The structure of
γ -graphyne is shown in Fig. 4(a), where the benzene rings
are connected by acetylenic rather than diacetylenic bond.
There are five phononic band gaps in its phonon spectrum,
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FIG. 3. (a) Phonon spectrum for a diamond shaped graphdiyne
nanodisk in (b). The disk has a side length of 9a and contains 1800
carbon atoms in total. Again, we focus on the frequency range close
to Gap 2. (b) shows the distribution of the two red colored modes at
16.54 THz, which are localized at corners. The calculated nanodisk
includes 1800 atoms.
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FIG. 4. (a) Crystal structure of γ -graphyne. The unit cell is
marked by the shaded region. (b) Phonon spectrum of γ -graphyne.
The arrows indicate three global gaps.

of which Gap 1 and Gap 5 are identified to be nontriv-
ial and feature νR = 1 (see Supplemental Material [63] for
more details). Here, let us consider Gap 1. In Fig. 5(c), we
show the corner phonon modes correspond to the gap around
20.42 THz for a graphyne nanodisk. Clearly, our approach can
be applied to study other members of the graphyne family as
well, as all typical members of the family possess both the
P and T symmetries. Particularly, we expect that the
phononic real Chern insulator states can appear in the
graphyne-n structures [50,51], which are generalizations of
γ -graphyne and graphdiyne with extended linkage containing
n − C ≡ C− bonds.

The robustness of the real Chern insulator state and the
corner modes against perturbations from defects/impurities
have been discussed in previous works [15,38]. The state
is protected by the band gap featuring the nontrivial 2D
invariant—the real Chern number. Like in conventional topo-
logical insulators, unless the defects/impurities are strong
enough to either break the defining symmetry (PT here) or
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FIG. 5. (a) Phonon spectrum for the γ -graphyne nanodisk shown
in (c). The disk has a side length of 15a and contains 8652 carbon
atoms in total. Here, we focus on the frequency range close to Gap
1 in Fig. 4(b). (b) Projection spectra at one corner of the disk. The
arrow indicate the peak due to the corner modes. (c) Distribution for
the red-colored phonon modes at 20.42 THz in (a). For comparison,
(d) shows the distribution for bulk modes at 20.05 THz. The calcu-
lated nanodisk includes 8652 atoms.
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FIG. 6. (a) Schematic figure showing the 3D real Chern insulator
state. Each 2D kz slice in the BZ has a nontrivial real Chern number.
(b) Crystal structure of 3D graphdiyne. The three primitive lattice
vectors are indicated. (c) Calculated phonon spectrum and density
of states around the nontrivial gap (marked by the shaded region) at
∼16 THz, which corresponds to the 3D real Chern insulator state.

close the band gap, the state should remain stable. The corner
modes are exponentially localized, so defects/impurities away
from the corners should have negligible effect on these modes.
For defects/impurities close to the corners, they may shift the
energy of the modes, even out of the band gap. However,
the existence of these corner modes is ensured by the bulk
invariant and they should still be detectable in the local density
of states profile.

We also comment that the concept of real Chern insulator
can be extended to 3D. As illustrated in Fig. 6(a), a 3D real
Chern insulator can be regarded as obtained by stacking 2D
real Chern insulators along the z direction, such that each kz

slice in the 3D BZ features a nontrivial νR. As a result, such
a state should have topological hinge modes for a sample
that respects the PT symmetry [see Fig. 6(a)]. We consider
the possibility to realize this state in 3D graphdiyne with
ABC type stacking, which has been synthesized in experiment
[62,64–68]. The structure is shown in Fig. 6(b). A recent
study revealed that electronic state of this material is a second-
order real nodal-line semimetal, i.e., the electronic spectrum
is gapless [69]. Here, we calculate its phonon spectrum and
find that there is a nontrivial global phononic band gap in the
range from 15.4 to 17.6 THz [see Fig. 6(c)]. In this gap, the
phonon system is a 3D real Chern insulator, as in Fig. 6(a)
(see Ref. [63] for more details).

Experimentally, graphdiyne has been successfully syn-
thesized in experiment [50,51,64] and samples with the
hexagonal disk geometry can be naturally realized via the
bottom-up growth method [62]. To probe the corner phonon
modes, one can excite them with an infrared light in reso-
nance with their frequency. As the corner modes are spatially

localized at the corners, they can manifest in spatially resolved
fluorescence pattern, or they can be detected via local probes
such as scanning tunneling microscopy, by comparing the
measurements at the center and at the corner of the disk.

The localized phonon mode in a spectral gap could be use-
ful for studying many interesting effects. For example, it may
offer a new platform to realize the phonon laser effect, which
was previously demonstrated in trapped ions/nanosphere and
micro-cavities [70–74]. The population of coherent THz
phonons corresponding to the corner modes can be co-
herently generated by optical pumping. As suggested by
Han et al. [71], the emission of phonon laser can be achieved
by applying a tunable reversible strain to shift the frequency
of the corner mode. It may be emitted through bulk modes
once the frequency is shifted out of the gap and overlaps with
some bulk modes, or it can emit through a waveguide, if a
phononic waveguide is evanescently coupled to the corner
mode and has its propagating mode in resonance with the
strain-shifted frequency (similar to the topological optical
lasing [75]). Since phonons have much shorter wavelength
than photons at the same frequency, they allow improve reso-
lution in imaging techniques. In principle, they may enable
the detection of microscopic subsurface structures down to
atomic scale. The phonon lasers may facilitate applications
such as surgery with focused ultra- and hypersound. The high
sensitivity of resonance frequency to the applied strain also
enables applications, such as detectors or sensors of atomic
scale displacement [71]. In addition, as corners are often ac-
tive sites for catalysis, the localized phonon modes at corners
may in some cases further enhance the catalytic performance.

In conclusion, we have reported the phononic HOTI state,
more specifically, the real Chern insulator state, in the gra-
phyne family materials. Taking graphdiyne and γ -graphyne as
examples, we show that their phonon spectra have nontrivial
phononic band gaps characterized by the real Chern numbers
enabled by the PT symmetry. We evaluate the real Chern
numbers by the parity analysis approach. The topological
corner phonon modes associated with the nontrivial gaps are
explicitly demonstrated via calculation on a disk geometry.
We also show that a 3D real Chern insulator state can be
realized in the phonon spectrum of 3D graphdiyne. Our study
extends the scope of higher-order topology to phonons in
real material systems. The spatially localized corner phonon
modes could be useful for novel phononic applications and
phonon-photon coupling at nanoscale.
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