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Single-impurity Anderson model out of equilibrium: A two-particle semianalytic approach
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We apply a two-particle semianalytic approach to a single Anderson impurity attached to two biased metallic
leads. The theory is based on reduced parquet equations justified in critical regions of singularities in the Bethe-
Salpeter equations. It offers a way to treat one-particle and two-particle thermodynamic and spectral quantities
on the same footing. The two-particle vertices are appropriately renormalized so that spurious transitions into
the magnetic state of the weak-coupling approximations are suppressed. The unphysical hysteresis loop in the
current-voltage characteristics is thereby eliminated. Furthermore, in the linear response regime, we qualitatively
reproduce the three transport regimes with the increasing temperature: from the Kondo resonant tunneling
through the Coulomb-blockade regime up to a sequential tunneling regime. Far from equilibrium, we find that
the bias plays a similar role as the temperature in destroying the Kondo resonant peak when the corresponding
energy scale is comparable with the Kondo temperature. Aside from that, the applied voltage in low bias is
shown to develop spectral peaks around the lead chemical potentials as observed in previous theoretical and
experimental studies.
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I. INTRODUCTION

Finding the full solutions of the single-impurity Anderson
model (SIAM) of a magnetic impurity coupled to a metallic
reservoir has been an enduring problem in condensed matter
physics since the model was first proposed by Anderson [1].
The physics behind this model involves competition between
formation of the local magnetic moment in strong coupling
and local Fermi liquid in weak coupling at low temperatures.
The boundary between the two regimes is characterized by an
exponentially small Kondo temperature TK [2,3].

Despite the simple form of the Anderson Hamiltonian the
solution of the SIAM plays a crucial role in the development
of modern theoretical methods for strongly correlated systems
since (i) it is one of the few many-body quantum problems
that is exactly solvable under some specific conditions [4] and
(ii) it offers an impurity solver for the dynamical mean-field
theory (DMFT) of the Hubbard model [5]. The SIAM then
serves as a benchmark on which many-body computational
methods are tested. The dynamical mean-field theory built
upon the SIAM combined with the density functional theory
(DFT) has become one of the most effective ways to imple-
ment strong electron correlations into realistic calculations of
the electronic structure of solids [6]. Due to wide applicability
of the SIAM, generalizations of the standard SIAM have been
proposed for modeling quantum dots in different conditions
such as (i) impurity with s-wave superconducting leads, rep-
resenting 0-π junctions [7], (ii) complex of quantum dots [8],
(iii) in the presence of spin-orbit coupling [9], etc. All these
impurity problems cannot be solved exactly due to the onsite
Coulomb repulsion.
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The focus shifted in the last two decades from equilibrium
to nonequilibrium situations [10–12]. The problem becomes
even more complex and adaptations of the equilibrium meth-
ods are necessary. The numerically exact quantum Monte
Carlo (QMC) [13,14] sampling Feynman diagrams without
bias giving a direct access to thermodynamic quantities at
nonzero temperatures, the numerical renormalization group
(NRG) [15], the functional renormalization group (fRG)
[16,17], as well as the time-dependent density-matrix renor-
malization group (tDMRG) [18–20] generically based on RG
flows towards fixed points reproducing thus well the ex-
act low-temperature spectra, were already extended beyond
equilibrium.

It is generally demanding to reach numerically exact
solutions even in simple impurity models out of equilib-
rium. That is why analytic and semianalytic approaches have
also been extended to assess nonequilibrium low-temperature
behavior of impurity models. Many-body Green functions
proved to become the most suitable tools to achieve this
goal. They may be treated and approximated in various
ways. The equation-of-motion (EOM) scheme truncates the
hierarchy of equations for many-body Green function at a
certain particle level [12,21]. The standard many-body per-
turbation theory (MBPT) in the interaction strength with
Feynman diagrams is mostly cut in weak coupling at sec-
ond order [22–24]. Extensions to intermediate coupling
in nonequilibrium was achieved by the GW scheme [25]
or by the T matrix [26]. A strong-coupling (infinite in-
teraction) approach was also applied out of equilibrium
[10]. Besides, quantum master-equation approach truncat-
ing the infinite dimension of the leads by a coupling to
the bath governed by Lindbladian dynamics was used to
simulate nonequilibrium situations [27,28]. Recently, signif-
icant efforts have also been made in time-dependent density
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functional theory (TD-DFT) to the nonequilibrium SIAM,
which have potential application for realistic material calcu-
lations [29–31]. Nevertheless, none of the standard methods
are applicable in all situations, hence, new approximate
schemes have been introduced in many-body models in recent
years [32–34].

The equilibrium Kondo effect plays an important role in
the description of all the transport regimes through a strongly
correlated quantum dot. It is hence mandatory for any ap-
proximate theory of nonequilibrium phenomena to cover at
least qualitatively correctly the Kondo strong-coupling equi-
librium regime. Apart from pure numerical simulations it
is the Fermi-liquid theory extended to out of equilibrium
[35–38]. This approach uses the input from the equilibrium
NRG calculations of the correlations-induced enhancements
of the Fermi-liquid parameters reaching thereby rather pre-
cise description of the low-temperature Kondo regime in the
leading order of the voltage bias. Another approach that
can qualitatively correctly describe the equilibrium strong-
coupling Kondo regime was introduced by one of the present
authors [39–43]. It is a mean-field-like theory with a two-
particle self-consistency replacing the bare interaction with
a screened one. It is based on the parquet construction of
the two-particle irreducible vertex and interpolates reliably
between weak and strong couplings of impurity and extended
lattice models. The approximation is rather simple. It re-
produces qualitatively correctly the Kondo regime and it is
in overall agreement with more advanced numerical meth-
ods in the whole parameter space [42]. Although it cannot
predict the Kondo strong-coupling asymptotics with logarith-
mic corrections numerically as precisely as the Fermi-liquid
approach using NRG input, it can be extended, unlike the
Fermi-liquid approach, consistently to the whole region of
the input parameters of the impurity models, including the
voltage bias. Motivated by these facts, we extend here the
reduced parquet equations for the two-particle irreducible ver-
tex from Ref. [42] to systems out of equilibrium that will
allow us to study transport properties available experimentally
[44–46].

The reduced parquet equations in their static approxi-
mation introduce a renormalization of the bare interaction
suppressing the spurious transition to a magnetically ordered
state, the magnetic susceptibility remains positive, and the
solution is free of the unphysical hysteresis loop in the
current-voltage characteristics of the weak-coupling approx-
imations without a two-particle self-consistency for out-of-
equilibrium systems. Additionally, the three-peak structure
of the equilibrium spectral function is maintained with the
correct logarithmic Kondo scaling of the width of the central
quasiparticle peak with the interaction strength. We further re-
veal three transport stages with the increasing of temperature
in the linear response regime of this approximation. They are
the Kondo resonant tunneling, the Coulomb-blockade regime,
and a sequential tunneling [22,47]. Farther from equilibrium,
we find that the biased voltage inducing the nonequilibrium
quantum statistics plays a similar role as temperature in equi-
librium in that it destroys the Kondo peak when its value
is comparable with the Kondo temperature TK . Aside from
that, the bias also develops a local spectral peak around the
chemical potential of each lead [10,44]. These local peaks

εLkσ, μL εRkσ, μR
tLk tRk

Left lead QD Right lead

εd, h, U

FIG. 1. Sketch of the transport model, whose Hamiltonian is
given by Eq.(1).

vanish quickly with the increase of the voltage and finally
become unrecognizable.

The paper is organized as follows. We introduce the model
Hamiltonian as well as the Keldysh-Schwinger nonequilib-
rium Green function (NEGF) perturbation theory in Sec. II.
The two-particle approach with the reduced parquet equa-
tions formulated in the Keldysh space is introduced in Sec. III.
The real-time formulation to study the steady-state quan-
tum transport problem is presented in Sec. IV. Results are
discussed in Sec. V followed by the concluding Sec. VI.
Important technical details of the derivations are moved to the
Appendices.

II. MODEL HAMILTONIAN AND NEGF THEORY

A. Generic model Hamiltonian

We describe a single quantum dot (QD) attached to two
biased semi-infinite metallic leads, as shown in Fig. 1, by the
following Hamiltonian:

H =
∑

s

(
H ld

s + Hhyb
s

) + Hdot, s ∈ {L, R} (1)

where H ld
s , Hdot, and Hhyb

s correspond respectively to the
Hamiltonian of the s lead, the QD, and the hybridization
between them. The explicit forms of the partial Hamiltonians
are

H ld
s =

∑
kσ

(εskσ − μs)c†
skσ

cskσ , (2)

Hhyb
s = −

∑
kσ

(tskd†
σ cskσ + t∗

skc†
skσ

dσ ), (3)

Hdot =
∑

σ

(εd − σh)d†
σ dσ + Ud†

↑d↑d†
↓d↓ (4)

with c(†)
skσ

and d (†)
σ the annihilation (creation) operators of

the lead and QD electrons, respectively. We denoted εskσ the
dispersion relation of the lead electrons, μs is the chemical
potential of the s lead, and εd is the atomic level of the
QD. The Zeeman magnetic field h splits the spin orientation
σ = ±1 corresponding to up and down spin projection. The
hybridization between the QD and the s lead is tsk and U is
the charging energy on the QD. The left and right semi-infinite
leads are assumed to be in local equilibrium and their chem-
ical potentials are equal, μL = μR = μ, in the absence of the
bias voltage. They are shifted by a factor qV when applying a
bias voltage V > 0, as μL = μ − qV/2 and μR = μ + qV/2,
where q = −e (e > 0) is the unity charge of an electron.
Therefore, the electrons always flow from left to the right.
Hereinafter, natural units are taken, i.e., e = 1, h̄ = 1.
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B. Many-body perturbation expansion

The Hamiltonian in Eq. (1) cannot be straightforwardly
diagonalized and neither equilibrium nor nonequilibrium
properties can be obtained exactly in a full extent. We
hence use the many-body perturbation theory with Green
functions extended to nonequilibrium situations within the
Schwinger-Keldysh formalism. Instead of the linear one-
way time ordering of equilibrium we have to introduce an
ordering along a Keldysh contour C in the plane of com-
plex times consisting generally from three branches out of
equilibrium [24,48].

Since we are interested only in the physics on the dot, the
nonlocal degrees of freedom of the leads can be projected
(integrated) out and to a problem with only local dynamical
degrees of freedom. We define the local Keldysh contour-
ordered Green function on the quantum dot as

Gσ (z, z′) = −i〈TC{dσ (z), d†
σ (z′)}〉, (5)

where the thermal average of operator O is given by 〈O〉 =
Tr[ρO], where ρ is the equilibrium density operator at an
initial time ti. Further, dσ (z) and d†

σ (z′) are the operators in
the Heisenberg picture evolving along the Keldysh contour C.
The first forward branch of the Keldysh contour goes from ti
to t f , the second one returns back from t f to ti, and the third
one is purely imaginary from ti to ti − iβ. We used a symbol
TC for the contour-ordering operator which put the operators
along the contour in the ascending order according to complex
time z ∈ C.

Although we will derive the formulas in the general
Keldysh formalism, we will finally be interested only in long
times with ti → −∞ and the Hubbard interaction U switched
on adiabatically. The initial state at ti has then only little
impact on the observed time evolution. We can hence can cut
off the imaginary leg of the Keldysh contour and replace it
with thermal averaging with the noninteracting Hamiltonian
[23,24,49–51]. The Green function from Eq. (5) can then be
represented as

Gσ (z, z′) = −i〈T⊃{dσ (z), d†
σ (z′)}〉, (6)

where the angular brackets denote now the thermodynamic
averaging with the noninteracting Hamiltonian and the T⊃ is
the time ordering along the two-leg Keldysh real-time contour.
One can derive various real-time Green functions from the
contour-ordered one Gσ (z, z′), depending on which branch the
time arguments z and z′ reside (see Appendix A).

We first resolve the nonequilibrium Green function from
Eq. (6) for the noninteracting dot, that is, for U = 0, ex-
actly. Their impact on the physics of the dot reduces to a
hybridization self-energy �ld

σ (z, z′) = ∑
s∈L,R �ld

sσ (z, z′) after
integrating their degrees of freedom. We further use a wide-
band limit (WBL) where the density of states of the lead
electrons is approximated by its value at the chemical po-
tential [52]. This approximation works well if the density of
states of the leads only slowly varies around the Fermi level
(see Appendix B).

The hybridization self-energy from the leads enters
the following left and right Dyson equations for

the two time variables of the nonequilibrium Green
function [23,24](

+i

−→
d

dz
− εd + σh

)
G0

σ (z, z′)

= δ(z − z′) +
∫

⊃
dz̄ �ld

σ (z, z̄)G0
σ (z̄, z′), (7a)

G0
σ (z, z′)

(
−i

←−
d

dz′ − εd + σh

)

= δ(z − z′) +
∫

⊃
dz̄ G0

σ (z, z̄)�ld
σ (z̄, z′). (7b)

Notice that δ(z − z′) is a contour delta function so that∫
C dz δ(z − z′) = 1. It means that δ( − i(τ − τ ′)) = iδ(τ −

τ ′) for τ, τ ′ ∈ (0, β ) on the imaginary leg of the Keldysh
contour.

The impact of the Coulomb interaction is contained in
the interaction self-energy �int

σ (z, z′) that will be deter-
mined from the many-body perturbation theory [22–24]. The
interaction self-energy �int

σ (z, z′) determines the full nonequi-
librium Green function from Eq. (6) via Dyson integral
equation

Gσ (z, z′) = G0
σ (z, z′) +

∫
⊃

dz1̄dz2̄G0
σ (z, z1̄ )

×�int
σ (z1̄, z2̄ )Gσ (z2̄, z′). (8)

The interacting self-energy should be calculated from
the renormalized perturbation expansion in the interaction
strength. A consistent scheme for introducing renormaliza-
tions in the equilibrium perturbation theory was introduced by
Baym and Kadanoff [53–55]. This scheme was later extended
to nonequilibrium quantum transport [23–25]. The interacting
self-energy is directly related to the two-particle vertex 
σσ̄

in the Baym-Kadanoff approach via the Schwinger-Dyson
equation. Its nonequilibrium form for the quantum dot is

�int
σ (z, z′) = Unσ̄ (z)δ(z − z′)

− iU
∫

⊃
dz1̄dz2̄dz4̄Gσ (z, z1̄ )
σσ̄ (z1̄, z2̄, z′, z4̄ )

× Gσ̄ (z4̄, z)Gσ̄ (z, z2̄ ), (9)

where σ̄ = −σ .
The self-energy is the irreducible part of the one-electron

propagator. We can also introduce a two-particle irreducible
vertex from which the full vertex is obtained via a Bethe-
Salpeter equation in analogy with the Dyson equation. Unlike
the one-particle irreducibility, the two-particle irreducibility is
not uniquely defined [56–59]. If we choose the electron-hole
irreducibility and introduce the electron-hole irreducible ver-
tex �eh, the nonequilibrium Bethe-Salpeter equation for the
two-particle vertex reads as


σσ̄ (z1, z2, z3, z4)=�eh
σ σ̄ (z1, z2, z3, z4)

+
∫

⊃
dz1̄dz2̄dz3̄dz4̄
σσ̄ (z1̄, z2, z3, z4̄ )

× Gσ (z3̄, z1̄ )Gσ̄ (z4̄, z2̄ )�eh
σ σ̄ (z1, z2̄, z3̄, z4).

(10)
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z4

Γ

σ

σ̄

= Λeh + Γ Λeh

σ

σ̄

FIG. 2. Diagrammatic representation of the Bethe-Salpeter equa-
tion in the electron-hole channel with the notation of the vertex and
the spin variables.

Its diagrammatic representation is plotted in Fig. 2.
The two-particle irreducible vertices are not the integral

part of the Baym-Kadanoff approach where only one-particle
functions are used. They are, however, important for check-
ing whether the solution with the two-particle vertex 
 from
the Schwinger-Dyson equation (9) and obeying the Bethe-
Salpeter equation (10) is conserving. It is the case if the
self-energy � and the two-particle irreducible vertex �eh obey
a functional Ward identity [54] that in our notation and the
selection of the variables of the two-particle vertex (see Fig. 2)
reads as

�eh
σ σ̄ (z1, z2, z3, z4) = −δ�σ (z1, z3)

δGσ̄ (z4, z2)
. (11)

It was shown, however, that no approximate solution can obey
simultaneously the Schwinger-Dyson equation and the Ward
identity with a single self-energy and a single two-particle
vertex [42,57]. We show in the next section how to qualita-
tively reconcile the Ward identity and the Schwinger-Dyson
equation.

III. TWO-PARTICLE SELF-CONSISTENCY

A. Generating two-particle vertex and self-energies

The Baym-Kadanoff approach is based on the existence of
a generating Luttinger-Ward functional �[G,U ] from which
all quantities are derived via functional derivatives with re-
spect to G. The first derivative of this functional leads to
the Schwinger-Dyson equation for the self-energy that is
uniquely defined. Its second derivatives lead to two-particle
irreducible vertices. Since we cannot obey Ward identity (11)
and the Schwinger-Dyson equation (9) simultaneously in any
approximation with a single self-energy, two-particle ver-
tices are then defined ambiguously. It does not matter much
if the difference between the two-particle vertices from the
Schwinger-Dyson equation and from the Bethe-Salpeter equa-
tion with the irreducible vertex from the Ward identity is only
quantitative. We come into trouble, however, if we approach a
critical point of a continuous phase transition. The phase tran-
sition remains continuous only if the Ward identity is obeyed
at least in the linear order of the symmetry-breaking field,
conjugate to the order parameter. The uniqueness of the crit-
ical behavior demands the existence of a unique two-particle
vertex. That is why one of the authors proposed an alterna-
tive construction of the renormalized perturbation expansion.
The basic idea of this construction is to use the two-particle
irreducible vertex from the critical Bethe-Salpeter equation as
the generating functional of the perturbation theory [39–43].

This construction can be straightforwardly extended beyond
equilibrium.

We assume here that the potential critical behavior is a
transition to a magnetically ordered phase with the order
parameter conjugate to the magnetic field. The potentially
divergent Bethe-Salpeter equation in equilibrium is that with
multiple electron-hole scatterings, Eq. (10). We hence choose
�eh

↑↓ as the generating functional. It is sufficient to resolve
the Ward identity only in the linear order in the magnetic
field to maintain consistency between the order parameter
and the singular two-particle vertex. To do so, we separate
one-particle functions to those with odd and even symmetry
with respect to the magnetic field. We denote

G(z, z′) = 1
2 [Gσ (z, z′) − Gσ̄ (z, z′)], (12a)

Ḡ(z, z′) = 1
2 [Gσ (z, z′) + Gσ̄ (z, z′)]. (12b)

The self-energy resolved from Ward identity (11) for a
given two-particle irreducible vertex �eh has odd symmetry
and in the the linear order it reads as

�int (z1, z3) =
∫

⊃
dz2dz4�

eh
s (z1, z2, z3, z4)G(z4, z2),

(13)

where �eh
s = (�eh

↓↑ + �eh
↑↓)/2 is the symmetric spin-singlet

electron-hole irreducible vertex. We do not need to consider
odd two-particle functions since the order parameter of the
ordered phase is a one-particle quantity.

The Ward identity affects only the odd self-energy being
nonzero only in the ordered phase. The even self-energy is
untouched by the Ward identity and is determined separately
from the Schwinger-Dyson equation. We must, however, use
the symmetrized one-particle propagator Ḡ not to change the
thermodynamic consistency, that is, the critical behavior of the
vertex from the Schwinger-Dyson equation is that determined
from the derivative of the odd self-energy. The Schwinger-
Dyson equation (9) changes to

�̄int (z, z′) = U

2
n(z)δ(z − z′)

− iU
∫

⊃
dz1̄dz2̄dz4̄Ḡ(z, z1̄ )
s(z1̄, z2̄, z′, z4̄ )

× Ḡ(z4̄, z)Ḡ(z, z2̄ ), (14)

where n(z) = n↑(z) + n↓(z) is the total charge density and the
Bethe-Salpeter equation (10) changes to


s(z1, z2, z3, z4) = �eh
s (z1, z2, z3, z4) +

∫
⊃

dz1̄dz2̄dz3̄dz4̄

×
s(z1̄, z2, z3, z4̄ )Ḡ(z3̄, z1̄ )

× Ḡ(z4̄, z2̄ )�eh
s (z1, z2̄, z3̄, z4). (15)

The full interaction spin-dependent self-energy is then a sum
of the even and the odd self-energies, that is [42],

�int
σ (z, z′) = �̄int (z, z′) + σ�int (z, z′). (16)

The unique two-particle vertex determines the self-energy that
obeys the Ward identity in the linear order of the symmetry-
breaking field and thereby guarantees that the order parameter
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develops continuously from zero below the critical point of
the phase transition to a magnetically ordered phase.

B. Reduced parquet equations

The two-particle approach guarantees thermodynamic
qualitative consistency between the susceptibility and the
order parameter. The quality of the approximation de-
pends on the selection of the symmetric singlet electron-
hole irreducible vertex �eh

s . If we choose the sim-
plest approximation �eh

s (z1, z2, z3, z4) = iUδ(z1 − z2)δ(z2 −
z3)δ(z3 − z4), then the symmetric self-energy leads either
to FLEX or RPA spin-symmetric solutions in the high-
temperature phase, depending on whether the one-particle
propagators are renormalized or not. These approximations
fail in the strong-coupling limit and an improved two-particle
vertex should be selected. We introduce a two-particle self-
consistency to suppress the spurious transition to the magnetic
state of the weak-coupling approximations. The most straight-
forward way to introduce a two-particle self-consistency is to
use the parquet construction of the two-particle vertex.

It is sufficient to use only two Bethe-Salpeter equations to
provide a reliable transition from weak to strong coupling. We
choose the Bethe-Salpeter equation in the electron-hole (eh)
channel in this case which becomes singular at the magnetic
transition. The other equation must attenuate the tendency
towards the critical point. It is the Bethe-Salpeter equation in
the electron-electron (ee) channel for the magnetic transition.
Its symmetric version out of equilibrium reads as


s(z1, z2, z3, z4) = �ee
s (z1, z2, z3, z4)

+
∫

⊃
dz1̄dz2̄dz3̄dz4̄�

ee
s (z1, z2, z3̄, z4̄ )

× Ḡ(z3̄, z1̄ )Ḡ(z4̄, z2̄ )
s(z1̄, z2̄, z3, z4).
(17)

The fundamental idea of the parquet approach is to use the
fact that the reducible diagrams in one channel are irreducible
in the other scattering channels. We denote Kα the reducible
vertex in channel α, that is 
 = �α + Kα . The fundamental
parquet equation in the two-channel scheme can be written in
either of the following two forms:


s(z1, z2, z3, z4) = �eh
s (z1, z2, z3, z4) + �ee

s (z1, z2, z3, z4)

− Is(z1, z2, z3, z4), (18a)


s(z1, z2, z3, z4) = Keh
s (z1, z2, z3, z4) + Kee

s (z1, z2, z3, z4)

+ Is(z1, z2, z3, z4). (18b)

We introduced the fully two-particle irreducible vertex
Is(z1, z2, z3, z4) that becomes the generator of the perturbation
theory in the parquet approach. Using one of these represen-
tations of the full two-particle vertex in the Bethe-Salpeter
equations (15) and (17) we obtain a set of coupled equa-
tions determining self-consistently either irreducible �eh

s , �ee
s

or reducible Keh
s , Kee

s vertices.
The full solution of the parquet equations with

Is(z1, z2, z3, z4) = iUδ(z1 − z2)δ(z2 − z3)δ(z3 − z4) and with
two or three channels, suppresses the critical behavior [60].
One has either to go beyond the bare interaction for the fully
irreducible vertex or one can modify the parquet equations so

z3

z2

z1

z4
σ̄

σ

Λeh = + Λeh Keh

σ̄

σ

z3

z2

z1

z4

Keh

σ

σ̄

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λeh + Keh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λeh

σ

σ̄

FIG. 3. Diagrammatic representation of the reduced Parquet
equations in electron-electron (first row) and electron-hole channels
(second row). The vertex diagrams in the brackets are connected to
the left propagators by the appropriate multiplication rules.

that the critical behavior of the weak-coupling approximations
is not completely destroyed. One of the authors proposed to
get rid of the terms in the parquet equations that suppress the
critical behavior in the electron-hole channel and replaced the
full set of the two-channel parquet equations with a couple of
the so-called reduced parquet equations [42]. The equation for
the regular irreducible vertex in the electron-hole channel is
then reduced to

�eh
s (z1, z2, z3, z4) = iUδ(z1 − z3)δ(z2 − z4)δ(z1 − z4)

+
∫

⊃
dz1̄dz2̄dz3̄dz4̄�

eh
s (z1̄, z2̄, z3, z4)

× Ḡ(z3̄, z1̄ )Ḡ(z4̄, z2̄ )Keh
s (z1, z2, z3̄, z4̄ ).

(19)

The equation for the reducible vertex in the electron-hole
channel remains unchanged:

Keh
s (z1, z2, z3, z4) =

∫
⊃

dz1̄dz2̄dz3̄dz4̄

× [
Keh

s (z1̄, z2, z3, z4̄ )

+�eh
s (z1̄, z2, z3, z4̄ )

]
Ḡ(z3̄, z1̄ )

× Ḡ(z4̄, z2̄ )�eh
s (z1, z2̄, z3̄, z4). (20)

The diagrammatic representation of these equations is given
in Fig. 3. We showed that the reduced parquet equa-
tions correctly reproduce the Kondo regime of SIAM at
equilibrium [3,40,42].

C. Instantaneous effective interaction

The reduced parquet equations do not simplify the com-
plexity of the full set of parquet equations. They cannot be
solved easily due to the unrestricted four-time dependence
of the two-particle vertices. To simplify the problem, we
resort to an instantaneous effective interaction or the local
time approximation (LTA), which assumes that the irreducible
vertex �eh

s (z1, z2, z3, z4) reduces to an instantaneous effec-
tive interaction i�̃eh

s (z4)δ(z1 − z3)δ(z2 − z4)δ(z1 − z4). The
reducible vertex Keh

s (z1, z2, z3, z4) thus is partially diagonal-
ized, having nonzero values only when z1 = z4 and z2 = z3,
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thus, one can define Keh
s (z1, z2, z3, z4) = iK̃eh

s (z1, z2)δ(z1 −
z4)δ(z2 − z3). As a result, the reduced parquet equations (19)
and (20) simplify to[

�̃eh
s (z4) − U

]
δ(z1 − z4)δ(z2 − z4)

= i�̃eh
s (z4)K̃eh

s (z1, z2)Ḡ(z2, z4)Ḡ(z1, z4), (21)

−[
�̃eh

s (z4)
]2

φs(z1, z2) = K̃eh
s (z1, z2) + �̃eh

s (z4)

×
∫

⊃
dz4̄φs(z1, z4̄ )K̃eh

s (z4̄, z2), (22)

where we introduced the singlet electron-hole bubble

φs(z1, z2) = −iḠ(z1, z2)Ḡ(z2, z1). (23)

Equation (22) can be resolved for the reducible vertex
K̃eh

s (z1, z2). If we insert its solution into Eq. (21) its right-hand
side maintains a nontrivial dependence on complex times z1

and z2. Since the left-hand side does not depend on z1, z2,
we have to resign on point-wise equality in Eq. (21) when
the irreducible vertex is approximated via an instantaneous
effective interaction. Instead, we replace then Eq. (21) with
an equality where both sides are averaged over the redundant
time variables. Various averaging schemes can be applied
(see [42,61,62]). Different schemes only quantitatively affect
the physical behavior far away from the critical region but
do qualitatively change the critical behavior itself. Here we
multiply both sides of Eq. (21) by Ḡ(z4, z+

2 )Ḡ(z4, z+
1 ) and in-

tegrate over the redundant time variables z1 and z2. Notice that
z+ = z + 0+ indicates an infinitesimally positive time shift of
the variable z. As a result, �̃eh

s can be consistently determined
from the following alternative (mean-field) equation

�̃eh
s (z) = Un(z)n(z)

n(z)n(z) − 4Reh
s (z)

, (24)

with the screening integral

Reh
s (z) = i

∫
⊃

dz1dz2φs(z, z1)K̃eh
s (z1, z2)φs(z2, z).

(25)

Equations (22), (24), and (25) form a closed set determining
the two-particle vertices within local-time approximation.

The symmetric two-particle vertex simplifies to

s(z1, z2, z3, z4) = i
̃s(z1, z2)δ(z1 − z4)δ(z2 − z3) where

̃s(z1, z2) = K̃s(z1, z2) + �̃eh

s (z1)δ(z1 − z2). As result,
Schwinger-Dyson equation (14) turns to

�̄int (z, z′) = U

2
n(z)δ(z − z′)

+ iUḠ(z, z′)
∫

⊃
dz̄ φs(z, z̄)
̃s(z̄, z′), (26)

and the Ward identity (13) becomes

�(z, z′) = i�̃eh
s (z)G(z, z+)δ(z − z′). (27)

Notice that the electron-hole bubble satisfies a symmetry re-
lation φs(z1, z2) = φs(z2, z1) and, consequently, K̃eh

s (z1, z2) =
K̃eh

s (z2, z1) and 
̃s(z1, z2) = 
̃s(z2, z1). We drop the super-
script “eh” and subscript “s” in the following sections, since
both irreducible and reducible vertices are from the same
channel.

IV. STEADY-STATE QUANTUM TRANSPORT

We now apply our two-particle construction with the re-
duced parquet equations and the instantaneous interaction to
the steady-state quantum transport where the system is as-
sumed to be evolved for a sufficiently long time in which
it reaches a steady state with time-independent densities and
currents [23].

A. Real-time steady-state formalism

The steady-state equations formulated on the Keldysh con-
tour with complex times can be transformed to real times via
Langreth rules [23]. We can then use a Fourier transform from
time to real frequencies making the defining equations out of
equilibrium close to those from equilibrium. Equation (24)
becomes time independent,

�̃ = Un2

n2 − 4R
, (28)

since the irreducible vertex and the electron density become
time independent in the steady-state case. The screening inte-
gral in Eq. (28) is (we refer to Appendix C for details)

R = − 1

4π

∫ ∞

−∞
dx Im{[φ<(x) + φ>(x)]K̃a(x)φa(x)

+ φr (x)[K̃<(x) + K̃>(x)]φa(x)

+ φr (x)K̃r (x)[φ<(x) + φ>(x)]}, (29)

where superscripts r, a, <, and > denote the retarded,
advanced, lesser, and greater counterparts of the real-time
quantities, respectively (see Appendix A). Note that in de-
riving Eq. (29), we used the fact that R is a real number
since [X r (w)]∗ = X a(w) and [X k (w)]∗ = −X k (w) where
X ∈ {φ, K̃}. Additionally, X r/a(x) = X a/r (−x) and X≶(x) =
X≷(−x). Explicitly, we have from Eq. (23)

φr/a(w) = −i

2π

∫ ∞

−∞
dx[Ḡ<(x)Ḡa/r (x − w)

+ Ḡr/a(x)Ḡ<(x − w)], (30a)

φ≶(w) = −i

2π

∫ ∞

−∞
dx Ḡ≶(x)Ḡ≷(x − w).

(30b)

We further obtain from Eq. (22)

K̃r/a(w) + �̃ = �̃

1 + �̃φr/a(w)
, (31a)

K̃≶(w) = −[�̃ + K̃r (w)]φ≶(w)[�̃ + K̃a(w)].

(31b)

With the above equations, one can self-consistently calculate
the two-particle vertices with the given one-particle Green
functions.

Once the two-particle vertices are determined, the even
and odd parts of the self-energies can be calculated
from the Schwinger-Dyson equation and Ward identity, re-
spectively. In particular, the real-time even self-energies
read as �̄int,r/a(w) = Un/2 + �̄cor,r/a(w) and �̄int,≶(w) =
�̄cor,≶(w), where, from Eq. (26), we have
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�̄cor,r/a(w) = iU �̃

4π

∫ ∞

−∞
dx

Ḡr/a(x)[φ<(w − x) + φ>(w − x)] + [Ḡ<(x) + Ḡ>(x)]φr/a(w − x)[1 + �̃φa/r (w − x)]

[1 + �̃φr (w − x)][1 + �̃φa(w − x)]
,

(32a)

�̄cor,≶(w) = iU �̃

2π

∫ ∞

−∞
dx

Ḡ≶(x)φ≶(w − x)

[1 + �̃φr (w − x)][1 + �̃φa(w − x)]
. (32b)

The real-time odd self-energies, from Eq. (27), become

�int,r/a(w) = i�̃

2π

∫ ∞

−∞
dx G<(x) = −m

2
�̃, (33a)

�int,≶(w) = 0. (33b)

The total self-energies are given by �int,x
σ (w) =

�̄int,x(w) + σ�int,x(w) where x = r, a,>,<. The
spin-dependent renormalized one-particle Green functions
are

Gr/a
σ (w) = 1

w + σh� − εU − �
ld,r/a
σ (w) − �̄cor,r/a(w)

,

(34a)

G≶
σ (w) = Gr

σ (w)
[
�ld,≶

σ (w) + �̄cor,≶(w)
]
Ga

σ (w), (34b)

where εU = εd + Un/2, h� = h + �̃m/2. The second equa-
tion is also well known as the Keldysh formula [23].1

The renormalized spin-dependent propagator determines
the physical quantities. For example, the spin-resolved elec-
tron density reads as

nσ = − i

2π

∫ ∞

−∞
G<

σ (x)dx. (35)

The total electron density and the magnetization are then
given by n = n↑ + n↓ and m = n↑ − n↓. The spin-resolved
current going through s lead is given by [23]

Jsσ = q

2π

∫ ∞

−∞
dw

[
�ld,>

sσ (w)G<
σ (w) − �ld,<

sσ (w)G>
σ (w)

]
.

(36)

B. Thermodynamic and spectral calculations

The two-particle scheme contains two sets of self-
consistent equations. One set is used to determine the
two-particle vertex, or the effective interaction. The other set
is used to determine the self-energies from the two-particle
vertex. One-particle propagators are used in both sets. They
are an input in the parquet equations. The vertex function
from the parquet equations determines the thermodynamic
response and controls the critical behavior of the equilibrium
solution. The only consistency condition between the one-
particle propagators and the two-particle vertex there is that
the odd self-energy of the propagators is determined from the
irreducible vertex via the Ward identity. There is no restriction
on the even self-energy in the parquet equations. We can hence

1We neglected the bound-state contributions which are irrelevant to
the steady-state transport.

separate the one- and two-particle self-consistencies. We in-
troduce thermodynamic Green functions when we use only
the static (HF mean-field) even self-energy in the one-particle
propagators determining the two-particle vertex. We will call
the Green functions with the full even self-energy from the
Schwinger-Dyson equation spectral propagators.

Hereinafter, we denote the quantities calculated with
thermodynamic (spectral) calculation by superscript T (S),
respectively. The thermodynamic Green functions are

GT,r/a
σ (w) = 1

w + σhT
� − εT

U − �
ld,r/a
σ (w)

, (37a)

GT,≶
σ (w) = GT,r

σ (w)�ld,≶
σ (w)GT,a

σ (w), (37b)

where hT
U = h + �̃mT /2 and εT

U = εd + UnT /2. Here, nT

and mT are calculated from the spin-resolved thermodynamic
Green functions. Furthermore, the thermodynamic suscepti-
bility can be derived by taking the derivative with respect to
the magnetic field

χT = −∑
σ φT,r

σσ (0)

1 + 1
2 �̃

∑
σ φT,r

σσ (0)
, (38)

where

φT,r
σσ (0) = −i

2π

∫ ∞

−∞
dx[GT,<

σ (x)GT,a
σ (x) + GT,r

σ (x)GT,<
σ (x)].

(39)

The one-particle quantities reduce to the Hartree ones.
The dynamical corrections are added after determining

the two-particle vertex via the spectral symmetric self-energy
from the Schwinger-Dyson equation. The spectral Green
functions read as

GS,r/a
σ (w) = 1

w + σhT
� − εS

U − �
ld,r/a
σ (w) − �̄cor,r/a(w)

,

(40a)

GS,≶
σ (w) = GS,r

σ (w)[�ld,≶
σ (w) + �̄cor,≶(w)]GS,a

σ (w),

(40b)

where εS
U = εd + UnS/2. Here, εS

U is iterated during the spec-
tral calculation while hT

� = h + �̃mT /2 is taken from the
thermodynamic calculation of the two-particle vertex. In such
a way the magnetic response remains qualitatively unchanged
in the spectral calculations. We stress again that the physical
and measurable quantities are determined from the spectral
calculations that include the dynamic correlations.

We present in Fig. 4 a flowchart of our two schemes of
calculating thermodynamic and spectral quantities. One starts
with the initial guess of the thermodynamic charge density nT ,
magnetization mT , and the (irreducible) vertex function �̃, as
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inputs: nT , mT , Σld, Λ̃

ΣT

GT , φT , Λ̃

nT , mT

converged?(no)
(yes)

outputs: mT , φT , GT , Λ̃

inputs: nS , mT , Λ̃, Σld, φT

ΣS

GS

nS

converged?(no)
(yes)

outputs: nS , GS

(a) thermodynamic calculation (b) spectral calculation

FIG. 4. Flowchart of (a) thermodynamic and (b) spectral
calculations.

well as the precalculated lead self-energy �ld (by default, �ld

refers to all the real-time components). With these quantities,
we calculate �T and GT from Eq. (37). The electron-hole
bubble φT and the vertex function �̃ are then calculated from
Eqs. (28)–(31) with GT . With the newly calculated GT , we
update nT and mT , and repeat the above iteration process
until convergence is reached for all quantities. After the ther-
modynamic calculation, we proceed to dynamical corrections
to the static mean field by evaluating �S and GS from the
Schwinger-Dyson equation (32) and the Dyson equation (34),
respectively. The spectral charge density nS is then updated
from GS and it is iterated until the iterations converge. Notice
that the quantities in the odd sector of the spectral calculation
acquire their values from the thermodynamic calculation in
order to make magnetic response qualitatively unchanged.

V. RESULTS AND DISCUSSIONS

The reduced parquet equations can be solved in full
generality only numerically. However, they can be solved
analytically in the Kondo strong-coupling limit at half-filling
where the equilibrium solution approaches a critical point. We
start with this limit before we analyze the general situation of
the steady-state current.

A. Logarithmic scaling in the strong-coupling limit

The SIAM at zero temperature and in the electron-hole
symmetric case approaches a critical point in the absence
of both magnetic field and bias with increasing interaction
strength. We can safely suppress all noncritical fluctuations,
which allows us to find an analytic representations of the
vanishing Kondo scale. The screening integral (29) can be
simplified in this regime to (see Appendix D)

R = − �̃2

π

∫ 0

−∞
Im

[φr (x)]3

1 + �̃φr (x)
dx, (41)

where we used the fluctuation dissipation theorem.
We denote the denominator of the integrand in the

screening integral Dr (x) = 1 + �̃φr (x). Its static value Dr (0)
determines the dimensionless Kondo scale aK = Dr (0) =
1 + �̃φr (0) and vanishes at the critical point. It is pro-
portional to the inverse susceptibility [see Eq. (38)]. An

alternative one-particle spectral definition uses the half-width
at half-maximum (HWHM) of the Kondo-Abrikosov-Suhl
quasiparticle peak. The advantage of our thermodynamic def-
inition is that it can be determined analytically.

To obtain the Kondo scale, we first expand the denomi-
nator function Dr (x) ≈ aK + Ḋr (0)x in small frequencies and
keep only the first term that is dominant in the critical re-
gion with aK → 0. The overdot refers to first-order derivative
with respect to frequency. The derivative Ḋr (0) is generally
a complex number that at half-filling and without magnetic
field becomes purely imaginary. One can explicitly evaluate
the real and imaginary parts of Ḋr (0) at zero temperature:

ReḊr (0) = �̃

π

∫ 0

−∞
dx[Re ˙̄Gr (x)ImḠr (x)

− Re ˙̄Gr (x)ImḠr (x)], (42a)

ImḊr (0) = − �̃

π
ImḠr (0)ImḠr (0). (42b)

We obtain by putting the above representations into the
screening integral and taking into account Eq. (28):

�̃ = Un2

n2 − 4�̃2[φr (0)]3 ImḊr (0)
|Ḋr (0)|2 ln aK

. (43)

By realizing that in the Kondo strong-coupling regime �̃ =
−1/φr (0), n = 1, and ReḊr (0) = 0, we resolve the above
equation and obtain ln aK = ImḊr (0)[1 + φr (0)U ]/[4φr (0)].
Since in the Kondo regime, U � 1, and we get the explicit
analytic solution for the Kondo scale

ln aK = U

4
ImḊr (0). (44)

Since the electron-hole bubble is evaluated from the ther-
modynamic propagators, ImḊr (0) = 1/(
)2, �̃ = 
π when
U → ∞ and hence ln aK = −U/(4
), which thereby repro-
duced the linear logarithmic scaling of aK with the increase of
U [2]. The nonuniversal prefactor 1/4 in our theory slightly
differs from π/8 of the exact solution from the Bethe ansatz
[2]. We stress, however, that the scaling coefficient depends on
the averaging scheme used in the reduced parquet equations as
well as on the density of states on the dot.

B. I-V characteristics in Coulomb-blockade regime

We now turn to the Coulomb-blockade regime to calcu-
late the current-voltage (I-V) characteristics of the steady
state. We choose U = 40
 and T = 0.1
. The correspond-
ing Kondo temperature can be estimated by Haldane’s
formula [63]

TK ≈
√

2
U

2
exp

πεd (εd + U )

2
U
. (45)

The value of the Kondo temperature with our parameters
is TK ≈ 10−6
 that is much smaller than the real tempera-
ture T = 0.1
 and can be safely neglected. We compare the
solution obtained from the reduced parquet equation (RPE)
with the Hartree-Fock (HF) mean-field solution that is free
of dynamical correlations and also a widely used GW ap-
proximation, where the dynamical correlations are added via
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FIG. 5. I-V characteristic curve of the SIAM at half-filling for
U = 40
 and T = 0.1
 in the Coulomb-blockade regime calculated
by the Hartree-Fock (HF) mean-field, GW approximation, and the re-
duced parquet equations (RPE). Unphysical hysteresis loop appears
in the HF and GW approximations with the solid line corresponding
to the nonmagnetic solution and the dashed line to the magnetic one.
The RPE suppresses the spurious magnetic order, hence is free of the
hysteresis.

the nonlocal screening effect due to the electron-hole pairing
[25,64]. We plotted in Fig. 5 the I-V characteristic curve cal-
culated by the HF (blue line), the self-consistent GW (orange
line), and the RPE (red line), respectively. Both magnetic
(dashed line) and nonmagnetic (solid line) solutions coexist
in HF for V < 30
. The current in the nonmagnetic state
starts to grow rapidly up to saturation at a larger value of
the voltage bias while the current in the magnetic state is
strongly suppressed for small biases up to a (spurious) first-
order transition to a nonmagnetic state at a threshold value
around V = 30
. The magnetic solution in the GW approxi-
mation behaves similarly to the HF one where the unphysical
magnetic solution is not suppressed and the magnetic solution
exists for V < 22
. The rapid growth of the nonmagnetic
curve is, however, interrupted with a small hump followed
by a less steep increase towards saturation. The current in
the RPE follows for weak biases the magnetic solution of
the other approximations. The RPE solution leads only to
a nonmagnetic state where the spurious magnetic transition
with a discrete jump is suppressed. Instead, it continuously
crosses over to saturation as determined numerically and ex-
perimentally [65,66].

The behaviors of the current in the various approximations
can be explained from the corresponding spectral functions
displayed in Fig. 6. The steep increase of the current with
the increasing bias of nonmagnetic HF and GW solutions is
caused by a central peak at the Fermi level, which is insensible
to a weak applied voltage. The magnetic solution, where the
spin-up and -down spectra are split, has small density of states
near the Fermi level. There are hence only few electrons to
participate in the current. The magnetic solution ceases to
exist at larger values of the bias and the transition to the
nonmagnetic state leads to a jump in the current.

The RPE solution is nonmagnetic for any bias. There is no
central peak in the spectral function for T � TK . It contains

FIG. 6. Spectral function for various voltage biases in GW (left
panel) and the reduced parquet equations (right panel) of the SIAM
at half-filling, U = 40
, and T = 0.1
 � TK . The dashed line
corresponds to the magnetic solution while the solid line for the
nonmagnetic one.

two Hubbard satellite bands, sitting around ±U/2 away from
the Fermi level. With the increasing bias, these two satellite
bands do not move too much, and this leads to the S-shape
I-V characteristics [65]. In particular, when V � U , the cur-
rent is largely suppressed due to the small density of states
around the Fermi level, exhibiting a strong Coulomb-blockade
effect. The satellite bands start to contribute when the voltage
becomes of the order of the position of the satellite Hubbard
bands. The RPE result fits well with the magnetic solution of
HF and GW at small-V region, due to the similar structure of
the spectral functions; however, the magnetic solution breaks
the spin symmetry which is unphysical. If we further increase
V , the I-V curve will become flat again due to the decay of the
density of states at large frequencies.

The stability of the nonmagnetic solution of the RPE is
demonstrated on the positivity of the magnetic susceptibility
(38), plotted in Fig. 7(a). It is achieved by the two-particle
self-consistency in the equation for the effective interaction
(28). The interaction is strongly screened for small biases
[see Fig. 7(b)]. The voltage suppresses the interaction-induced
dynamical fluctuations and the screening of the interaction.
Consequently, vertex �̃ approaches the bare interaction and
the susceptibility exponentially decreases with increasing the
bias voltage V . The susceptibility remains positive in the
whole range of the bias voltage as expected [67].

Furthermore, to quantitively compare our method with
the other existing results, we plot the I-V characteristics for

FIG. 7. Magnetic susceptibility (left panel) and the effective in-
teraction �̃ (right panel) of the SIAM at half-filling, U = 40
, and
T = 0.1
 as a function of the voltage bias. The susceptibility is
positive and decreases with the bias while the effective interaction
increases towards the bare interaction indicating that the bias sup-
presses the interaction-induced dynamical fluctuations.
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FIG. 8. I-V characteristics at half-filling for U = 20
, (a) T = 


and (b) T = 10
, respectively. Data of EOM are taken from Fig. 3
in Ref. [65].

U = 20
, T = 
, and T = 10
 in Figs. 8(a) and 8(b), re-
spectively. The red solid line is our RPE results and the blue
dashed line is calculated from the equation-of-motion (EOM)
method which read from Fig. 3 in Ref. [65]. The discrepancy
of these two methods becomes smaller with the increase of
temperature. Note that EOM method, as known, is only valid
for Coulomb-blockade regime, namely T � TK ; however, our
RPE method qualitatively captures both Coulomb-blockade
and Kondo regimes, which will be discussed in the next
subsection.

C. Interplay between Kondo and Coulomb-blockade regimes

We now turn to study the interplay between the Kondo and
Coulomb-blockade effects with reduced parquet equations.
Both the temperature and the biased voltage should be kept
sufficiently low compared with the Kondo temperature TK

to stay inside the Kondo regime. Specifically, for the case
we study below, we choose U = 5
 with TK ≈ 0.222
 as
estimated from Eq. (45).

Figure 9(a) plots the differential conductance as a function
of temperature at zero bias and Fig. 9(b) as a function of volt-
age bias at zero temperature. We denoted G0 = 2e2/h = 1/π

(in atomic units) the elementary quantum conductance. One
can observe three transport regimes with the increase of the
temperature: Kondo resonance, cotunneling, and sequential
tunneling [22,47]. The zero-bias conductance [Fig. 9(a)] be-
comes unity at zero temperature due to the Kondo resonance
tunneling [46]. It remains in the Kondo regime up to the
Kondo temperature TK where thermal fluctuations start push-
ing the electrons away from the Fermi energy which leads
to a sharp drop of the conductance. When TK < T < 
, the
system is driven to the cotunneling regime where the Kondo

FIG. 9. Differential conductance (black line) of the SIAM at
half-filling as a function of temperature in (a) linear response regime
V = 0 and (b) as a function of voltage far from equilibrium T = 0.
The blue line in the right panel refers to the current.

FIG. 10. The spectral function of the SIAM at half-filling and
for U = 5
 at different temperatures and zero bias (a) and different
voltage biases and zero temperature (b). The thin dashed line is for
U = 0 at zero-temperature equilibrium state. The vertical lines in the
inset of (b) refer to the local chemical potentials of the leads.

peak is effectively suppressed; however, the temperature is
not high enough to destroy coherence in the electron system.
In this regime, the conductance slightly increases since the
Hubbard satellite bands contribute to the effective transport
energy window. After T crosses 
, thermal fluctuations start
dominating the system and sequential tunneling plays the
major role and the electrons on the QD can be assumed in
equilibrium. For this reason, the conductance will finally de-
crease to zero in the high-temperature limit. When we fix the
temperature to be zero and increase the voltage V , the current
grows monotonically as shown by the blue curve in Fig. 9(b).
Simultaneously, the differential conductance quickly drops
for V < TK in the Kondo regime but starts growing in the
cotunneling regime when the voltage becomes sufficiently
large [46,68]. Notice that the system does not go through the
sequential tunneling regime since there are no thermal fluctu-
ations that would destroy coherence of the transport process.

The behavior of the differential conductance in different
regimes can be best understood from the spectral function
plotted in Fig. 10 for various temperatures at zero bias, left
pane, and various biases at zero temperature, right pane. The
spectral function exhibits a typical three-peak structure with
the central narrow quasiparticle peak and the satellite Hubbard
bands for T < TK and V < TK . By comparing Figs. 10(a)
and 10(b), we see that temperature and voltage bias affect
similarly the spectral function by broadening the Kondo res-
onant peak. With the increase of either T or V to TK , the
central peak is rapidly suppressed with almost intact satel-
lite bands. Aside from that, unlike the temperature-dependent
spectral function, the voltage bias further develops local peaks
around the chemical potential of each lead. These local peaks
are finally destroyed when further increasing the bias, which
agrees with the previous experimental results as well as the
theoretical studies [10,68,69]. One may further quantitatively
compare the nonequilibrium spectral functions in Fig. 10(b)
with Fig. 13 in Ref. [69]. One can see that the width of the
Kondo peak calculated by RPE is slightly narrower than the
numerically exact results at equilibrium and the extra weight
of the spectral function is redistributed towards the Hubbard
bands. Such a trend is also reported in Fig. 5 of Ref. [42].
With the increase of the bias V , the central peak is suppressed
more quickly than in the QMC simulations of Ref. [69]. For
example, when V = 0.8
, the Kondo peak from RPE has
already been destroyed [red curve in Fig. 10(b)], while it
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FIG. 11. Real and imaginary parts of the spectral self-energy for
various temperatures at equilibrium, corresponding to the spectral
function plotted in Fig. 10(a).

just becomes broadened in the QMC result (orange curve in
Fig. 13 of Ref. [69]).

The width of the central peak determines a region within
which the system behaves as Fermi liquid. This can be seen
from the behavior of the self-energy, plotted for various tem-
peratures in Fig. 11. The bias-dependent self-energy has a
similar behavior. At zero temperature and zero bias, the real
part of the self-energy has a sharp negative slope and the
imaginary part vanishes at the Fermi energy. Increasing either
temperature or bias, the slope of the real part decreases and the
imaginary part becomes increasingly negative. Finally, when
the slope of the real part of the self-energy turns positive and
the local maximum of the imaginary part turns minimum, the
Kondo regime is fully destroyed.

Additionally, we make a quantitative comparison with fRG
in the Kondo regime of the I-V characteristics for different
interaction strengths in Fig. 12. The solid and dashed-dotted
lines are the RPE and fRG, respectively. The fRG data are
taken from Fig. 2 in Ref. [70]. The inset in Fig. 12 gives the
zoomed-in details around the coordinate origin. For V < TK ,
the system is in the Kondo regime with a rapid growth of
the current, which starts to slow down when V crosses TK .
The discrepancy between these two methods is small when
U = 2 and becomes larger with the increase of U as shown.
In all the cases, the RPE quantitatively underestimate the
current compared to the fRG in the Kondo regime. This can

FIG. 12. I-V characteristics for different U at half-filling. Inset:
zoomed-in image. Solid lines for RPE and dashed-dotted lines for
fRG taken from Fig. 2 of Ref. [70].

FIG. 13. Imaginary part of the spectral self-energy for various
biased voltages (T = 0). The solid and dashed lines refer to the
results calculated from RPE and Fermi-liquid theory (see Ref. [35]),
respectively.

be explained by the behavior of the nonequilibrium spectral
function as already discussed [see Fig. 10(b)]. At equilibrium,
the central peak evaluated from RPE is narrower than that
from the advanced numerical methods. With the increase of
V , the Kondo peak quickly vanishes in our RPE method and
splits for larger U . The actual current is thus underestimated
due to the missing density of states assist of the electrons
transported through the dot for low bias.

We further compare the self-energy calculated from the
RPE with the one predicted by the Fermi-liquid theory of
Ref. [35] in Fig. 13. We plotted its imaginary part for vari-
ous biased voltages at zero temperature and two interaction
strengths. The solid and dashed lines refer to the RPE and the
Fermi-liquid theory, respectively. The parameters (spin and
charge susceptibilities) of Eq. (20) in Ref. [35] are obtained by
fitting the spectral self-energy at zero-temperature equilibrium
around the Fermi level. One can see that for relatively low
bias, the self-energies from RPE calculation agree quite nicely
with the Fermi-liquid results around the Fermi level. The
difference between these two methods becomes larger with
the increase of V as expected since the voltage destroys the
Fermi-liquid state around the zero frequency. Thus, we see
that our RPE is qualitatively consistent with the nonequilib-
rium Fermi-liquid theory.

Finally, we also calculated and compared the conductance
as a function of the charging energy U in both the linear
response regime and the fully nonequilibrium solution, plotted
in Figs. 14(a) and 14(b), respectively. The conductance in the
two extreme cases behaves similarly. There is a unity conduc-
tance plateau in weak coupling due to the Kondo resonance
tunneling [46]. The effective Kondo temperature TK decreases

FIG. 14. Conductance as a function of the onsite Coulomb re-
pulsion U for various voltage biases V . Linear response (weak
nonequilibrium) regime (left panel) and full nonequilibrium solution
(right panel).
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with the increasing electron repulsion U and, once its value
becomes comparable with T or V , the conductance starts
abating with progressive destruction of the Kondo peak. The
conductance is significantly suppressed in the extreme limit
U � TK due to the Coulomb blockade.

VI. CONCLUSIONS

We extended a two-particle semianalytic approach with
the reduced parquet equations and an effective-interaction
approximation to an out-of-equilibrium single-impurity An-
derson model coupled to two biased metallic leads. The
theory was formulated in the critical region of the strong-
coupling Kondo limit, capturing the dominant contributions
from the spin-flip fluctuations in the instantaneous screened-
interaction approximation. It self-consistently determines
thermodynamic and spectral quantities. The reduced par-
quet equations become analytically solvable and reproduce
the logarithmic Kondo scaling in the strong-coupling limit.
Numerical solutions are used beyond the Kondo critical
regime. We reached a qualitative agreement with experimen-
tal and more demanding advanced computational techniques.
Specifically, the hysteresis loop in the current-voltage char-
acteristics, caused by the spurious phase transition weak-
coupling approximations, is fully suppressed in the deep
Coulomb-blockade regime, T � TK or V � TK , due to the
renormalization of the effective interaction. We reproduced
qualitatively well the temperature dependence of the zero-
bias conductance with three stages: Kondo resonant tunneling
T < TK , cotunneling TK < T < 
, and sequential tunneling
T > 
. If one keeps temperature zero and turns on the bias,
the system will experience a crossover from the Kondo res-
onant regime when V < TK to a cotunneling regime when
V > TK . We proved that the biased voltage plays a similar role
as temperature in that they both lead to destroying the central
Kondo peak when its value crosses the Kondo temperature TK .
Additionally, the applied voltage also tends to develop peaks
around the local chemical potentials in low bias.

The theory proved reliable in the electron-hole symmetric
case with the qualitatively correct results for the whole range
of the model parameters. Some modifications have to be done
to extend consistently the present theory to arbitrary filling,
away from the Kondo critical region, to keep the compress-
ibility positive.
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APPENDIX A: REAL-TIME GREEN FUNCTIONS

Physical quantities are directly related to real-time Green
functions. They can be derived from the Keldysh Green
function depending on which branch the real-time temporal
arguments lie. One defines the following four real-time Green
functions [23]:

Gt
σ (t, t ′) = −i〈Tt {dσ (t ), d†

σ (t ′)}〉, (A1)

G<
σ (t, t ′) = +i〈d†

σ (t ′)dσ (t )〉, (A2)

G>
σ (t, t ′) = −i〈dσ (t )d†

σ (t ′)〉, (A3)

Gt̄
σ (t, t ′) = −i〈Tt̄ {dσ (t ), d†

σ (t ′)}〉, (A4)

corresponding to (t, t ′) sitting on (−,−), (−,+), (+,−), and
(+,+) branches, respectively. (We used − for the forward
branch and + for the backward branch.) Since the above
Green functions are linearly dependent, for further ease of
use, we introduce another three linearly independent real-time
Green functions:

Gr
σ (t, t ′) = −iθ (t − t ′)〈{dσ (t ), d†

σ (t ′)}〉, (A5)

Ga
σ (t, t ′) = +iθ (t ′ − t )〈{dσ (t ), d†

σ (t ′)}〉, (A6)

Gk
σ (t, t ′) = −i〈[dσ (t ), d†

σ (t ′)]〉. (A7)

In the above formulas we denoted {A, B} = AB + BA and
[A, B] = AB − BA the anticommutator and commutator, re-
spectively. As a result, Gt

σ , G<
σ , G>

σ , and Gt̄
σ can be expressed

as a linear combination of Gr
σ , Ga

σ , and Gk
σ via [71][

Gt
σ −G<

σ

G>
σ −Gt̄

σ

]
= 1

2

[
Gr

σ + Ga
σ + Gk

σ Gr
σ − Ga

σ − Gk
σ

Gr
σ − Ga

σ + Gk
σ Gr

σ + Ga
σ − Gk

σ

]
,

(A8)

where we used identities G>
σ + G<

σ = Gt
σ + Gt̄

σ and Gr
σ −

Ga
σ = G>

σ − G<
σ . One can similarly define the bosonic Green

functions with the proper change of the quantum statistics.
They satisfy the same relations defined above.

APPENDIX B: LEAD SELF-ENERGY

The self-energy of the s lead can formally be written as

�ld
sσ (z1, z2) =

∑
k

tskt∗
skGcc,0

s,kk,σ
(z1, z2), (B1)

where

Gcc,0
s,kk′,σ (z1, z2) = −i〈T⊃{cskσ (z1), c†

sk′σ (z2)}〉0 (B2)

is the decoupled c-electron Keldysh Green function. (The
subscript “0” implies that the average is taken over the lead
Hamiltonian only.) Since the lead is assumed to be in local
equilibrium and in the frequency domain, we have

Gcc,0,r
s,kk,σ

(w) = 1

w − εskσ + μs + iη
. (B3)

Therefore, the self-energy of the s lead becomes

�ld,r
sσ (w) = 1

π

∫ ∞

−∞
dx


sσ (x)

w − x + iη
, (B4)

where 
sσ (x) = πρsσ (x)tsk (x)t∗
sk (x) is the linewidth function

and ρsσ (x) = ∑
k δ(x − εskσ + μs) is the spin-resolved den-

sity of states of the s lead.
In wide-band limit (WBL), we assume 
sσ (x) =


sσ θ (|x − μs| < D) where θ (x) is the Heaviside step
function. The s-lead self-energy then is

�ld,r
sσ (w) = 
sσ

π
ln

∣∣∣∣D + (w − μs)

D − (w − μs)

∣∣∣∣ − i
sσ θ (|w − μs| < D).

(B5)
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We further set D → ∞, �ld,r
sσ (w) = −i
sσ . The lesser and

greater s-lead self-energies can be obtained by fluctuation
dissipation theorem [23]

�ld,<
sσ (w) = −2i fs(w)Im�ld,r

sσ (w), (B6)

�ld,>
sσ (w) = 2i[1 − fs(w)]Im�ld,r

sσ (w), (B7)

where fs(w) = 1/(eβ(w−μs ) + 1) is the Fermi-Dirac distribu-
tion function.

APPENDIX C: DERIVATION OF EQ. (29)

We start from Eq. (25). The complex variable z in R(z) can
be chosen either on the forward or backward branch, which is
irrelevant to the final result. By applying the Langreth’s rules
[23] we obtain

R−(t ) = i
∫ ∞

−∞
dt1dt2[φt (t, t1)K̃t (t1, t2)φt (t2, t )

−φt (t, t1)K̃<(t1, t2)φ>(t2, t )

−φ<(t, t1)K̃>(t1, t2)φa(t2, t )

−φ<(t, t1)K̃r (t1, t2)φ>(t2, t )], (C1)

R+(t ) = i
∫ ∞

−∞
dt1dt2[φ>(t, t1)K̃<(t1, t2)φa(t2, t )

+φ>(t, t1)K̃r (t1, t2)φ<(t2, t )

−φ t̄ (t, t1)K̃>(t1, t2)φ<(t2, t )

+φ t̄ (t, t1)K̃t̄ (t1, t2)φ t̄ (t2, t )], (C2)

where superscript “−” (“+”) refers to t lying on the forward
(backward) branch. By considering the relations between the
real-time Green functions given in Eq. (A8), after averaging
R− and R+ followed by the Fourier transform, one obtains
Eq. (29).

APPENDIX D: FORMULAS AT EQUILIBRIUM

In equilibrium, the above-formulated equations can be sim-
plified by applying the fluctuation-dissipation theorem [23]
which imposes an additional relation between lesser or greater
quantities and the corresponding spectral functions. Specifi-
cally, the renormalization integral in Eq. (29) only depends on
the retarded components, that is,

R = − 1

2π
P

∫ ∞

−∞
dx[1 + 2b(x)]{2 Imφr (x)ReKr (x)Reφr (x) − [Imφr (x)]2ImKr (x) + ImKr (x)[Reφr (x)]2}, (D1)

where P
∫

dx refers to the principal-value integral and b(x) is the Bose-Einstein distribution function. By considering the
symmetry relation X r/a(x) = X a/r (−x) (X ∈ {K, φ}), each term in the second brackets is an odd function with respect to x
so that only when they are multiplied by b(x) they contribute. As a result,

R = − 1

π
P

∫ ∞

−∞
b(x)Im[φr (x)Kr (x)φr (x)]dx = �̃2

π
P

∫ ∞

−∞
b(x)Im

[φr (x)]3

1 + �̃φr (x)
dx, (D2)

where we used K̃r (x) = −�̃2 φr (x)
1+�̃φr (x)

. Similarly, the equilibrium formula for the even self-energy, Eq. (32a), is given by

�̄int,r (w) = Un
2 + �̄cor,r (w), where

�̄cor,r (w) = −U �̃

2π

∑
σ

P
∫ ∞

−∞
dx

[
b(x)Im

φr (x)

1 + �̃φr (x)
Ḡr (w − x) − f (x)

φr (x + w)

1 + �̃φr (x + w)
ImḠa(−x)

]
, (D3)

and the odd self-energy, Eq. (33a), is unchanged, i.e., �r (w) = −m
2 �̃. The calculation of the electron-hole bubble at

equilibrium is simplified to

φr (w) = − 1

π

∫ ∞

−∞
dx f (x)[Ḡa(x − w)ImḠr (x) + Ḡr (x + w)ImḠr (x)], (D4)

and at zero frequency, it reads as

φr (0) = − 1

π

∫ ∞

−∞
dx f (x)Im[Ḡr (x)Ḡr (x)]. (D5)
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