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Charge dynamics in magnetically disordered Mott insulators
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With the aid of both a semianalytical and a numerically exact method, we investigate the charge dynamics in
the vicinity of half-filling in the one- and two-dimensional t-J model derived from a Fermi-Hubbard model in
the limit of large interaction U and hence small exchange coupling J . The spin degrees of freedom are taken to
be disordered. So we consider the limit 0 < J � T � W , where W is the bandwidth. We focus on evaluating
the local spectral density of a single hole excitation and the charge gap that separates the upper and the lower
Hubbard band. We find indications that no band edges exist if the magnetic exchange is taken into account;
instead of band edges, Gaussian tails seem to appear. A discussion of the underlying physics is provided.
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I. INTRODUCTION

Strongly correlated fermionic systems and Mott-Hubbard
physics in particular continue to represent a great challenge to
theoretical treatments in spite of many decades of research [1].
Even rather clear physical questions cannot be answered in a
straightforward manner. A prominent example is the motion
of a single hole in a Mott insulator. This issue attracted a lot
of interest soon after the discovery of high-temperature super-
conductivity [2] because it was noted that this phenomenon
involves intimately coupled charge and spin degrees of free-
dom [3]. The hopping of a doped hole at half-filling scrambles
the antiferromagnetic background [4], which can act as an
attractive force between two holes if the second one heals
the misalignments caused by the first hole [5]. Since then, a
multitude of studies have appeared treating the hole motion
in an ordered spin background by diagrammatic approaches
[6–12]. This issue continues to be a topic of current research
[13] via exact diagonalization, perturbation theory, and by
time-dependent density matrix renormalization group [14].
Recently, nonequilibrium setups have become an additional
focus [15]. In addition to solid-state systems, ultracold atoms
in optical lattices realize fermionic Mott insulators with or-
dered or disordered internal degrees of freedom, e.g., a spin.
The experimental possibility to detect the temporal evolu-
tion of inserted holes in real space [16,17] has rekindled the
theoretical interest in quantum hole motion in various back-
grounds [18–20] using analytic string theory in variational
approaches, density matrix renormalization group, and matrix
product states.

Even the hole motion in a disordered spin background
is a highly nontrivial issue. At first glance, one may think
that there is no order to be scrambled such that the hole can
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move as freely as it does without any interaction so that the
single-particle Mott gap � is given by (W − U )/2, where
W is the bandwidth and U is the local Hubbard repulsion.
This expectation, however, is only correct in the extreme limit
U → ∞ and for hole motion on self-retracing paths [4], for
instance in one dimension (1D) [14,21,22]. For finite values
of U in a Hubbard model, even the infinite-dimensional case
yields a nontrivial value for the opening of the Mott gap com-
puted to lie between Uc ≈ 1.11W [23,24] and Uc ≈ 1.19W
[25–30]. Note that in the considered paramagnetic infinite-
dimensional case, the spin background is indeed completely
disordered without spin-spin correlations between different
sites. Very recently, novel theoretical tools such as stochastic
series expansion and special algorithms based on quantum
Monte Carlo techniques [31,32] as well as novel experimental
techniques for ultracold atoms [16,17] have renewed interest
also in the subtle interference effects of hole motion in disor-
dered spin backgrounds.

In 1D, the Bethe ansatz allows for an exact treatment [33]
showing a Mott insulator at half-filling and zero tempera-
ture for infinitesimal interaction U . But it is also possible
to consider a completely disordered spin background [34]
corresponding to the situation where J � T � U ≈ W . Here,
J is the nearest-neighbor (NN) antiferromagnetic exchange
coupling taking the value 4t2

0 /U in leading order in the
NN hopping t0 [35–40], and W is the bandwidth. Under
this assumption, a Mott transition is identified to occur at
Uc = √

3W/2 ≈ 0.866W . This finding provides an important
benchmark. All these results illustrate that the hole motion is
influenced by nontrivial quantum effects even for disordered
spin backgrounds.

We emphasize at this stage that most previous studies on
hole motion in a disordered spin background do not con-
sider the spin dynamics, but they focus on the interference
effects of the various paths of the hole [4,9,11,12]. In par-
ticular, the approach of dynamic mean-field theory (DMFT)
becomes exact for an infinite coordination number, where no
spin dynamics takes place [9,11,23,24,29,30]. Another special
feature of DMFT for hypercubic lattices is the occurrence of
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Gaussian tails already in the bare density of states (DOS),
which smears out tails from other physical mechanisms. In
the context of hole motion without spin dynamics, one focus
is the occurrence of band tails due to hopping of the hole
in a ferromagnetically polarized cluster where no destructive
interference occurs so that band tails may occur over the full
support of the unrestricted hopping, i.e., over the full band-
width W , but with reduced weight in the tails [4,9,11].

The aim of the present article is to study the hole motion
in one and two dimensions (2D), i.e., along a chain and on
a square lattice, including spin dynamics. The former case
serves both as a benchmark and, due to its lower coordination
number, as a system in which a larger number of processes
with a larger spread is more numerically accessible than in
lattices with higher coordination numbers. The latter case
of a two-dimensional square lattice actually represents the
most interesting case in view of experimental realizations in
solid-state systems or in ultracold atom setups. We consider
the generalized t-J model, which is derived from the Hubbard
model [35–41] in up to second order in the hopping. We stress
that in this order, the mapping of the Hubbard model to a kind
of t-J model is not restricted to the magnetic exchange cou-
plings, but naturally extends to the charge degrees of freedom,
i.e., to hopping terms, hole-hole interactions, and correlated
hopping processes. This applies to the chain [21], to the square
lattice [41,42], and generally to the three-dimensional case [4]
at half-filling, but also in the vicinity of half-filling, i.e., for
finite doping [43].

We proceed in two steps. First, we consider very large U ,
i.e., we omit all terms of order t2

0 /U and only keep terms of
order U and t0. This is the case studied in the literature. To our
knowledge, almost all studies exclude the spin dynamics, i.e.,
flips of adjacent spins, except for brute force numerical studies
and a preliminary statement on moments of the spectral den-
sity by Brinkman and Rice [4]. Second, we include the terms
of order t2

0 /U to study to which extent they induce changes
in the spectral densities including the character of the band
edges. Such changes are expected, for instance the critical
U deviates from W in the estimate Uc ≈ 1.10W obtained by
Reischl et al. [42] for the square lattice. It turns out that band
tails beyond the bare bandwidth are an important aspect that
we will link to spin dynamics.

A semianalytic and a numerical approach are employed.
The first, semianalytic approach relies on iterated equa-
tions of motion (iEoM) in the Heisenberg picture. The set of
tracked operators is enlarged iteratively by commuting with
the Hamiltonian, i.e., by applying the Liouville superoperator.
This Liouvillian acts on operators like a Hamiltonian acts on
states [44,45] yielding a Hermitian, oscillatory dynamics. The
dominant part of the Liouvillian is the commutation with the
hopping projected in such a way that no double occupancies
are created or annihilated. Thus, the semianalytic approach
amounts to a systematic expansion in the hopping element,
which means in x := t0/U . The second, numerical approach
tracks the hole motion in time on finite clusters with periodic
boundary conditions in 1D and 2D by the Chebyshev poly-
nomial expansion technique (CET) [46–48]. We opt for the
CET in place of exact diagonalization because the latter would
require us to diagonalize the full Hamiltonian so that only

smaller systems can be treated, while the CET only requires
that a few vectors of the finite-dimensional Hilbert space can
be stored.

This article is structured in the following way: In Sec. II,
the Hubbard model and its simplification in the limit of strong
interaction is explained briefly. Section III outlines the con-
cepts and algorithms used to assess the time evolution of
observables and to gain insight into the metal-insulator phase.
Section IV provides data in the time domain comparing results
from the two approaches used, and it illustrates how band
edges are determined. In Secs. V and VI we discuss the results
for the generalized t-J model in 1D and 2D, respectively. A
summary and outlook are given in Sec. VII.

II. INITIAL MODEL

The Fermi-Hubbard model is one of the prime examples
and archetypical models for strongly interacting electrons
on lattices, and it combines tight-binding electrons with a
strongly screened, local Coulomb interaction [49–51]. We re-
strict our considerations to the one-band model in the vicinity
of half-filling such that the Hamiltonian takes the form

H = H0 + Hint, (1a)

H0 = t0
∑

〈i, j〉,σ
( f †

iσ f jσ + H.c.), (1b)

Hint = U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
. (1c)

Here, f †
iσ ( fiσ ) are the creation (annihilation) operators at site

i for a fermion of spin σ , n̂iσ is the corresponding number
operator, t0 denotes the real hopping matrix element between
the sites i and j, and U > 0 is the on-site interaction. The
energy U/2 represents the energy cost of adding an electron
inducing a double occupancy (DO) of two electrons at one site
or of adding a hole inducing a double occupancy of holes at
one site, i.e., creating an empty site. The kinetic energy H0 is
diagonal in momentum space with the dispersion relation

εk := 2t0

d∑
i=1

cos (kai ) (2)

with ai denoting primitive translation vectors spanning the un-
derlying Bravais lattice. The model is particle-hole symmetric
on bipartite lattices such as the 1D chain or the 2D square
lattice.

A. Charge gap

A large enough on-site interaction U > 0 splits the local
density of states ρ(E ) into a lower Hubbard band (LHB) and
an upper Hubbard band (UHB) as shown in Fig. 1. This is the
characterizing feature of a Mott insulator.

For general lattices, it is not known at which critical
interaction strength Uc the gap finally closes signaling the
instability of the Mott insulator. The 1D chain is special
due to its integrability. It is solved exactly by thermody-
namic Bethe ansatz equations [33] at any temperature. But
also under the assumption of a disordered spin background
and charge excitations at zero temperature, the problem can
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FIG. 1. For a large enough U > 0, the local density of states
ρ(E ) splits into a lower and an upper Hubbard band at half-filling.
Each band has the effective bandwidth Weff . Charge excitations take
the form of DOs of electron or hole character with a minimum
excitation energy of the gap �. Decreasing the on-site interaction
reduces the gap until it closes at the critical interaction Uc.

be treated analytically [34]. Yet we are not aware that the
spectral density of the Hubbard models has been determined
exactly by the Bethe ansatz. Another possibility at finite
temperatures in 1D is to use time-dependent density matrix
renormalization-group computations to determine spectral
properties as well [14]. The complementary limit of a Bethe
lattice with an infinitely large coordination number z → ∞
can be treated by dynamic mean-field theory providing infor-
mation on the local spectral densities [23–30]. But it must
be stressed that in this limit, no spin dynamics takes place
[9,11].

B. Effective model: Generalized t-J model

In the limit of strong interaction, i.e., x = t0/U � 1, the
Hubbard model can be mapped to t-J models based on pertur-
bation theory in the small parameter x. First, we consider all
terms linear in U , i.e., in zeroth order, as well as the hopping
H0, which is of first order xU = t0,

Heff = Hint + T0 + O(x2U ), (3)

where T0 stands for hopping processes without changes of the
number of DOs; for its concrete definition, see below. In a
further step, we include terms of second order O(x2U ) step
by step neglecting cubic and higher orders. The systematic
derivation of the corresponding effective Hamiltonian can be
done perturbatively [21,22,35–39,41] or via continuous uni-
tary transformations [40,42,43,52–54]. Below, we quote the
explicit results needed for the present work.

For the sake of brevity, we will use the term (generalized)
t-J model even if the magnetic exchange is not present. Its
effective hopping processes can be split in the following way:

H0,eff = T0 + T ′
0 + T ′

s,0 + T ′′
0 + T ′′

s,0. (4)

The magnetic exchange interaction can easily be added to
H0,eff ; see below.

In (4), the term T0 describes NN hopping from site i to j
and vice versa subjected to the restraint that DOs are neither

added nor removed,

T0 = t0
∑

〈i, j〉,σ
[(1 − ni,σ )c†

i,σ c j,σ (1 − n j,σ )

+ ni,σ c†
i,σ c j,σ n j,σ + H.c.]. (5)

Here and in the following, the sums imply a one-time count-
ing of each bond between the lattice sites i and j, and σ

denotes the opposite of the spin orientation σ . We stress that
this model is not fully equal to what is commonly referred
to as the t-J model in the literature and textbooks since no
magnetic interaction is taken into account. Nevertheless, this
case is what is considered mostly in the context of single hole
hopping in various spin backgrounds.

Hopping processes between next-nearest neighbors
(NNN), i.e., all processes between sites on the 2D square
lattice that lie on adjacent diagonal positions, are denoted by

T ′
0 = t ′ ∑

〈〈i, j〉〉;σ
[(1 − ni,σ )c†

i,σ c j,σ (1 − n j,σ )

− ni,σ c†
i,σ c j,σ n j,σ + H.c.]. (6)

Hopping processes between third-nearest-neighbor (3NN)
sites, i.e., sites that lie in-line on one of the axes and are
separated by two bonds, are captured by

T ′′
0 = t ′′ ∑

〈〈〈i, j〉〉〉;σ
[(1 − ni,σ )c†

i,σ c j,σ (1 − n j,σ )

− ni,σ c†
i,σ c j,σ n j,σ + H.c.]. (7)

In 1D, only the second type, i.e., the contribution T ′′
0 , ex-

ists because there are no diagonals so that the double-prime
processes represent NNN hopping. Since this makes the
nomenclature NN, NNN, and 3NN ambiguous if 1D and 2D
are both considered, we use the terms prime and double-prime
hopping instead. In 2D, both exist; in 1D, only the double-
prime hopping exists.

Apart from the above hopping processes, further spin-
dependent hops occur in the effective model. Whenever
charges hop from one site to another, e.g., from i to j, with
a NN site k in-between, spin-dependent hops of the form

T ′
s,0 = t ′

s

∑
〈i,k, j〉
α,β

{[(1 − ni,α )c†
i,ασα,βc

j,β
(1 − n j,β )] · Sk

+ [ni,αc†
i,ασα,βc

j,β
n j,β ] · Sk + H.c.}, (8a)

T ′′
s,0 = t ′′

s

∑
〈〈i,k, j〉〉

α,β

{[(1 − ni,α )c†
i,ασα,βc

j,β
(1 − n j,β )] · Sk

+ [ni,αc†
i,ασα,βc

j,β
n j,β ] · Sk + H.c.} (8b)

occur. These processes involve the hopping of a fermion over
a nearest neighbor and its interaction with the spin of this
nearest neighbor. For instance, the spin of the hopping fermion
can swap with the spin of the nearest neighbor. Just like the
hopping processes in (6) and (7), the spin-dependent processes
(8) do not change the overall number of DOs. As before, in
1D only the double-prime processes exist because of the lack
of diagonals. The leading second order of these processes
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is determined analytically via perturbation theory [4,21,41]
or numerically by CUTs [42]. In the following we use the
analytical values, which read in 1D [21]

t ′′ = − t2
0

2U
, (9a)

t ′′
s = t2

0

U
. (9b)

Generalizing to 2D, there is exactly one shortest route from i
to j which generates the t ′′ contribution. For diagonal hop-
ping, i.e., for t ′, there are two shortest routes. A diagonal
hop on a square lattice can happen via first a horizontal step
and then a vertical step or vice versa. For spin-independent
diagonal hopping, both routes contribute and hence one has a
factor 2,

t ′ = − t2
0

U
. (10)

For spin-dependent processes, the involved intermediate lat-
tice site k distinguishes the two routes so that

t ′
s = t2

0

U
; (11)

no doubling occurs. These generalized prefactors (10) and
(11) are consistent with the numerically determined prefactors
t ′ and t ′

s [42], and they agree with the 2D results in Ref. [41].
Next, we consider the spin-spin Heisenberg interactions

appearing as well in second order. The model with NN hop-
ping only and the spin-spin interactions is conventionally
called the t-J model in the literature. The Heisenberg term
reads

HJ = J
∑
〈i, j〉

SiS j = J

2

∑
〈i, j〉

(
Pi j − 1

2

)
(12)

with J = 4t2
0

U so that the total effective Hamiltonian of the
generalized t-J model becomes

Heff = H0,eff + HJ . (13)

The equivalent notation employing the permutation operator
Pi j interchanging two spins S = 1/2 on the lattice sites i and j
is useful in numerics where the spin states are represented by
bit patterns.

In the sequel, we will use two choices for the magnetic
exchange:

(A) J = t0
3

, (14a)

(B) J = t0
d

. (14b)

Choice (A) is a generic value relevant in many cuprates.
Choice (B) represents the maximum value of the magnetic
exchange because for larger hopping the mapping of the
Fermi-Hubbard model to a (generalized) t-J model no longer
makes sense because the Mott insulator description breaks
down if the bandwidth W = 4dt0 reaches U .

III. METHODS

Here, we briefly introduce the methods used in the present
study to keep it self-contained. Strengths and shortcomings
of the techniques are pointed out, and uncommon techni-
cal aspects are discussed. The iEoM approach works in the
Heisenberg picture addressing operators while the Cheby-
shev expansion treats quantum states. The iEoM approach
systematically truncates the underlying Hilbert space of op-
erator monomials, but it treats the thermodynamic limit of an
infinite lattice. The CET considers the whole Hilbert space
with exponentially increasing dimension for increasing finite
system size. For the iEoM approach, no simulation of the
time dependence of the hole-doped generalized t-J model
up to a specific threshold time tmax is necessary. Instead, the
excitation spectrum can be deduced by diagonalization.

A. Iterated equations of motion

We follow here the previous applications in Refs. [55–57]
using a suitable scalar product [44,45]. But other variants of
iterated equations of motion have been used in abundance in
the literature. The basic idea is to expand a time-dependent
arbitrary operator A(t ) in the Heisenberg picture in a basis of
time-independent operators {Ai}

A(t ) =
∑

i

hi(t )Ai. (15)

All time dependence is contained in the complex prefactors
hi(t ). The Heisenberg equation of motion reads

d

dt
A(t ) = i[H (t ), A(t )] =: iL(A(t )) (16)

with the Liouville superoperator L(·) leading to

d

dt
A(t ) = i

∑
i

hi(t )L(Ai ). (17)

Expanding L(Ai ) in the chosen basis {Ai} is achieved by

L(Ai ) :=
∑

j

MjiA j (18)

defining the Liouvillian matrix M, also called the dynamic
matrix. This enables the compact notation

d

dt
h(t ) = iMh(t ). (19)

If the basis {Ai} is orthonormal, the matrix elements of M are
given directly by

Mji = (Aj |L(Ai )). (20)

If the Liouvillian is self-adjoint with respect to the chosen
scalar product, M is Hermitian. This is the case for the Frobe-
nius scalar product

(A|B) := N Tr (A†B) with N := 1/Tr (1) (21)

if the local Hilbert space of a single site is finite-dimensional
[44,45].

To describe the hopping of a single hole, we start from
the insertion of a single hole at site i by the operator
Ki = hi↑ = fi↓ fi↑ f †

i↑. Further operators Aj are created by it-
erated application of L(·). Since we restrict ourselves to one
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hole away from strict half-filling, it is sufficient to consider
a product of spin operator at sites j with Bj = σ+

j = f †
j↑ f j↓,

Bj = σ−
j = f †

j↓ f j↑, or Bj = σ z
j = f †

j↑ f j↑ − f †
j↓ f j↓. Then the

operator basis consists of monomials of the form

Am = NmKi(Cm)
∏
j∈Cm

Bj (Cm), (22)

where the argument Cm defines the set of sites (cluster) in-
volved and which operator of the choices given above is to be
taken. The normalization factor is given by Nm.

Once the operator basis of monomials Am is determined,
the dynamic matrix M is calculated using (20) and diago-
nalized leading to the desired set of eigenvalues ωn and the
corresponding eigenvectors vn. For efficiency, we resort to
the Lanczos algorithm [58] because the Hermiticity of M is
guaranteed by construction. The Lanczos algorithm generates
an f -dimensional Krylov space; the eigenvalues and eigenvec-
tors in the Krylov space are denoted ωn and vn, respectively.
To very good accuracy, the dynamics of an operator can be
found as the linear combination

h(t ) =
f∑

n=1

αneiωnt vn (23)

with the coefficients αn chosen such that the initial condition
is fulfilled. We varied the dimension f of the Krylov space
to monitor if any changes in the results occur, and finally
we chose f = 200, above which no changes are discerned
anymore. In particular, the minimum of ωn represents a very
reliable estimate for the band edge. As long as U/2 + ωn > 0,
the Mott insulating phase is locally stable.

Since we consider a fully disordered spin background, the
initial hole is not inserted in a pure state, but in a mixture
captured by the density matrix

ρ0 ∝ 1 (24)

in spin space. The subsequent dynamics is described by the
retarded Green’s function,

g(t ) = −i Tr (hi↑(t )h
†
i↑ρ0)θ (t ), (25)

where θ (t ) is the Heaviside function. No commutator appears
because its second term vanishes because no hole can be anni-
hilated in the exactly half-filled state. Eventually, one obtains

g(t ) = −i〈hi↑(t )h
†
i↑(0)〉θ (t ) (26a)

= −i
∑
mn

hm(t )h∗
n(0)〈AmA†

n〉θ (t ) (26b)

= −i
∑

n

|αn|2eiωntθ (t ), (26c)

where orthonormality is used. The spectral density A(ω) re-
sults from the Fourier transform g(ω) of (26c),

A(ω) = − 1

π
Im g(ω) (27a)

=
∑

n

|αn|2δ(ω − ωn), (27b)

wherein the squared modulus of αn indicates the weight and
hence the relative importance of the corresponding process for
the hole dynamics.

A finite number of applications of L(·), i.e., a finite order
m, implies that only processes with a finite spatial spread in
the infinite system are taken into account. Hence only a finite
number of eigenvalues ωn occurs so that the spectral den-
sity (27a) is not continuous, but consists of discrete δ-peaks
even if the Krylov dimension f would be chosen maximal.
We checked that doubling f does not influence the obtained
numerical results. The loop order m cannot be increased eas-
ily. To compare continuous spectral densities from different
approaches, we broaden the δ-peaks by Gaussians,

A(ω) =
∑

n

|αn|2√
2πσ

exp

(
− (ω − ωn)2

2σ 2

)
. (28)

This broadening σ has the unit of an energy; recall that we set
h̄ = 1. The chosen values of σ will be discussed below.

B. Chebyshev expansion technique

The Chebyshev expansion technique is a very well estab-
lished technique to evolve quantum states in finite Hilbert
spaces in time [46,47]. The basic idea is to expand the time
evolution operator in terms of Chebyshev polynomials Tn,

exp(−iHt ) =
∞∑

n=0

αn(t )Tn(H ′), (29a)

αn(t ) = (2 − δn,0)ine−ibt Jn(at ), (29b)

where H ′ is the rescaled Hamiltonian H → H ′ = (H − b)/a
so that the spectrum of H ′ lies in the interval [−1, 1]. The time
dependence is essentially given by the Bessel functions Jn.
The error ε due to truncation of the infinite series at order Nc in
the above equation can be systematically controlled according
to

ε �
(atmaxe

2Nc

)Nc

, (30)

where tmax is the maximum time considered.
The spectral density is computed via the retarded Green’s

function g(t ). The trace over the half-filled Hilbert space in
(25) is determined by stochastic trace evaluation as proposed
by Skilling [59] and generalized later [47,60,61]. The full
trace Tr (A) by R � d is approximated by the sum over R
normalized states |r〉 whose complex coefficients are each
drawn from a normal distribution

Tr (O) = d〈r|O|r〉, (31)

where the overbar denotes the arithmetic average over the R
random states, and d is the dimension of the half-filled Hilbert
space on the finite cluster considered. The standard deviation
of the estimate (31) scales like 1/

√
Rd . Finally, inserting (31)

and (24) into (25) yields the Green’s function

g(t ) ≈ − i

R

R∑
r=1

〈r|eiHefft hi↑e−iHefft h
†
i↑|r〉θ (t ). (32)

We consider the hole dynamics in both the generalized t-J
model in its form Heff as well as the hopping-only model
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H0,eff . In the latter case, one can simplify the above expression
to

g0,eff (t ) ≈ − i

R

R∑
r=1

〈r|hi↑e−iH0,efft h
†
i↑|r〉θ (t ), (33)

because eiHefft has no effect for J = 0 on 〈r| because no hop-
ping can take place at 〈r|.

The Green’s functions (32) and (33) are calculated for a
finite time span [0; tmax] and then Fourier-transformed,

g(ω) :=
∑

n

e−iωtn g(tn)dt . (34)

The finite time interval leads to spurious ringing in the
Fourier transforms (34), which we suppress by multiplying
the temporal Green’s function g(t ) with a gradually decreasing
function. For simplicity, we opt for Gaussian damping

g̃(t ) = g(t ) exp(−t2/(2σ 2)), (35)

which amount to the convolution with the Gaussian kernel
K ∝ exp(−ω2

/2σ 2 ) in the frequency domain. Finally, the spec-
tral density reads

A(ω) = − 1

π
Im g̃(ω). (36)

IV. REAL TIME DEPENDENCE AND BAND EDGES

A. Method comparison

Here we compare the two methods described in Sec. III
for the complete generalized t-J model in (13) on the 1D
chain with the parameters (A) in (14a). In all of the following
results, the hopping element t0 defines the energy unit and the
time unit [t] = 1/t0.

Using (26) and (32), the retarded Green’s function g(t )
is displayed in Fig. 2. The short-time behavior of g(t ) is
determined analytically by expanding in powers of t (cf.
Appendix A); see the dashed blue line. The Green’s func-
tion starts at g(t =0) = 0.5 because a hole can only be
created if an electron with the appropriate spin is present.
Due to the assumed spin disorder, this holds in 50% of the
cases.

The time dependence in Fig. 2 resembles a damped os-
cillation. But in a closed quantum system, no relaxation can
occur so that the damping must be seen as dephasing from
the superposition of many coherent oscillations. Since we
are dealing with a large mixture of spin backgrounds, it is
plausible that this strong dephasing results from very many
eigenstates of the hole motion. In CET, no finite-size effects
appear in the studied time interval up to tmax = 20 (not fully
shown here) as supported by the agreement of the results
for N = 10, 14, and 18. For this reason, we refrain from
further analysis of finite-size effects in subsequent CET re-
sults. The iEoM results agree very well with the CET data
except for low loop order m. We emphasize that the iEoM
dynamics consists of oscillatory contributions exclusively;
no contributions to g(t ) decrease or increase exponentially
due to the guaranteed Hermiticity of the dynamic matrix
[44,45].

For the iEoM data, we use the maximum available loop
order m. It strongly depends on the lattice as well as on

−

−

FIG. 2. Retarded Green’s function of the chain for the complete
generalized t-J model with parameters (A) for various chain lengths
N (CET) and loop orders m (iEoM). The parabola (blue triangles)
from the expansion, cf. Appendix A, in powers of t up to O(t3) is
depicted for orientation. The iEoM result for m = 6 first starts to
deviate from the CET results at about t � 9/t0.

the number of physical processes considered. The number of
processes depends on whether only first-order contributions
in t0/U with T0, second-order contributions without spin-spin
interaction (H0,eff ), or the complete generalized t-J model is
considered. The numerically most challenging case is given
by a high coordination number z and the complete generalized
t-J model, i.e., for 2D and Heff . For this case, we reached
m = 3 at most due to memory constraints.

B. Determination of band edges

A particularly interesting issue is the width of the Hubbard
bands. Note that this implies the existence of finite band
edges. Otherwise, the width would be infinite. So far, the
literature considered band tails, but with finite band edges not
exceeding the bare edges [4,9,11]. We are interested in the
lower band edge of the upper Hubbard band. In the particle-
hole symmetric case, this is equivalent to the upper band edge
of the lower Hubbard band, which describes the hole motion.
The necessary minimum energy eigenvalue ωmin can be deter-
mined systematically from the iEoM results by extrapolating
ωmin(m) in the loop order m → ∞. This procedure considers
the infinite system and takes processes of larger and larger
spatial range into account upon increasing m. If m → ∞ were
realizable, the result would be exact.

Data are shown in Fig. 3 for the chain and parame-
ters (A), cf. (14a); the results for parameters (B), cf. (14b),
are qualitatively the same. The more processes included in
the Hamiltonian, the lower is the maximum loop order m
achieved. If the minimum eigenvalues converge toward a finite
value

c := −ωmin(m → ∞), (37)

this value yields the exact band edge. To estimate this value,
we fit the data by

−ωmin(m) = a

(m − b)
+ c. (38)
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FIG. 3. Minimum eigenvalues ωmin (symbols) for a chain and pa-
rameters (A) as a function of the loop order m of the iEoM. The three
different Hamiltonians [NN hopping only (T0), generalized hopping
in second order (H0,eff), and the inclusion of magnetic exchange
(Heff)] are shown by different colors. The solid lines mark fits of the
form (38) where applicable. The fit parameter c = −ωmin(m → ∞)
is displayed as short horizontal bars at the right boundary of the
graph.

These fits are displayed by solid lines in Fig. 3; they de-
scribe the depicted data very well for the effective models
comprising only hopping, i.e., for the Hamiltonians T0 and
H0,eff. The key observation, however, is that the data for
the Hamiltonian including the magnetic exchange look qual-
itatively very different. Instead of a hyperbolic behavior,
the data appear to diverge linearly with m. Although it
might be that the data converge to some finite value, at
much higher values of m the qualitative difference from the
hopping-only cases catches the eye. If the data diverge, this
indicates an unbounded support of the corresponding Hubbard
band.

Clearly, the qualitative difference is related to the magnetic
exchange and hence to the spin dynamics, which has been
hitherto mostly neglected. We consider the magnetic energies
in order to reach a physical understanding of the observation.
In the antiferromagnetic Heisenberg model without a hole,
the eigenenergies lie in the interval between the ground-state
energy Emin < 0 and the maximum energy for fully polar-
ized states Emax > 0. Both limits are extensive, i.e., they are
proportional to the system size N and hence for the infinite
system infinitely negative and positive, respectively. In con-
trast, the energy expectation value of any of the completely
disordered initial spin states is zero. Hence, according to the
Lehmann representation of spectral densities, contributions to
the spectral density can stem from transitions between the
initial disordered spin states and the eigenstates at energies
between −∞ and ∞ if the corresponding matrix elements do
not vanish. For this reason, an unbounded support is possible.
It is not ruled out by energy reasons. At this stage, we cannot
prove that the matrix elements are finite. But there is no reason
why the matrix elements should vanish for the infinite number
of eigenstates with extensively negative or positive eigenener-
gies. Further analysis of our data addressing the shape of the
spectral tails will be provided below.

Our observation and argument pointing toward an infinite
support of the density of states (DOS) seems to contradict
the findings of Ejima and co-workers [34], who studied the
1D Hubbard model by the Bethe ansatz under the assumption
of a completely disordered spin background. They identified
and computed a finite lower band edge for the charge excita-
tions. Since the generalized t-J model can be derived from
the Hubbard model in the Mott insulating phase for large
interaction U , one does not expect a qualitative difference in
the support of the spectral density. But in the treatment of the
charge dynamics by the Bethe ansatz, the dynamics of the spin
sector has been treated as frozen [34]. This means that the
balance of magnetic energies has not been included because
the focus was on the influence of the disordered spin states on
the charge excitations, but not on the spin dynamics. Hence,
the considered quantities differ and the contradiction is only
apparent.

V. RESULTS FOR THE CHAIN

We consider explicit results for the local spectral densities
and their lower band edges where detectable. First, however,
we study the tails of the spectral densities where no band
edges are found.

A. Tails of the spectral densities

Above, we found indications that the spectral density
differs qualitatively depending on whether the magnetic ex-
change is considered. One indication was numerical, while
the other was the analytic argument that the energy bal-
ance of the spin degrees of freedom allows for contributions
at all frequencies from −∞ to ∞ if the matrix elements
do not vanish for large parts of Hilbert space. In this sec-
tion, we address what the numerical results tell us about
the matrix elements and the resulting tails of the spectral
densities.

The starting point is the fact that the orientation of each
spin at half-filling is chosen randomly and independently
for each site in the completely disordered spin ensemble.
Hence, an infinite number of independent random processes
influences the matrix elements entering the spectral densi-
ties and their tails in particular. The central limit theorem
suggests that the resulting tails are of Gaussians nature.
This working hypothesis is consistent with the indications
for an infinite support of the spectral densities. Next, we
put the working hypothesis to a quantitative numerical
test.

For this test we have to refrain from any broadening be-
cause this would induce artificial tails concealing the intrinsic
physics. Similar to mathematical studies on probability dis-
tributions, we focus on the primitive of the spectral densities
because it is unambiguously defined even for discrete distri-
butions. We define

f−(ω) =
∫ ω

−∞
A(x)dx, (39a)

f+(ω) =
∫ ∞

ω

A(x)dx, (39b)
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−

−

−

−

FIG. 4. Analysis of the lower and the upper tail of the spectral
density as obtained by iEoM via the logarithm of the primitives
defined in Eq. (39) for the parameter set (A); the fits are defined in
Eq. (40). The optimum fit parameters read W− = 0.28, σ− = 0.24t0,
x− = −1.88t0 for the lower tail, and W+ = 0.80, σ+ = 0.26t0, x+ =
1.62t0 for the upper tail.

where f− is used to study the lower tail ω → −∞ and f+
is used for the upper tail ω → ∞. If the tails were close to
Gaussian, the following approximate relations would hold:

f−(ω) ≈ f Gauss
− (ω) (40a)

:= W−√
2πσ−

∫ ω

−∞
exp ( − (x − x−)2/(2σ 2

−))dx (40b)

= W−
2

[erf (ω−) + 1], (40c)

f+(ω) ≈ f Gauss
+ (ω) (40d)

:= W+√
2πσ+

∫ ∞

ω

exp ( − (x − x+)2/(2σ 2
+))dx (40e)

= W+
2

[1 − erf (ω+)], (40f)

where

ω− := (ω − x−)/(
√

2σ−), (41a)

ω+ := (ω − x+)/(
√

2σ+). (41b)

Three free parameters need to be determined by fitting. Since
exponentially small values of the f -functions occur, we plot
ln( f±) as a function of |ω| in Fig. 4 and compare it with the
fits (40). The fitted parameters are given in the caption. The
corresponding results for the parameter set (B) can be found
in Fig. 5.

The agreement between the data obtained by iEoM and
the fits is very good. The logarithm of the iEoM data
clearly shows an approximate parabolic shape consistent with
Gaussian tails even though some fluctuations occur. For com-
parison, we note that an exponential tail would yield straight
lines in the logarithmic plots. But we point out that the
agreement found for all four fits extends over 15 orders of
magnitude if one converts the differences on the log-scale to
decimal ratios. We take this observation as support for the
hypothesis of Gaussian tails. To our knowledge, brute force

−

−

−

−

−

FIG. 5. Same as Fig. 4, but for parameters (B) and the fit param-
eters W− = 0.12, σ− = 0.69t0, x− = −2.26t0 for the lower tail, and
W+ = 0.37, σ+ = 0.70t0, x+ = 1.81t0 for the upper tail.

numerical approaches can hardly provide information over
such a range of energies.

The analogous analyses in 2D are currently not conclusive
because of the low maximum loop order m. But the prelimi-
nary results point in the same direction as in 1D. In view of
the conceptual relevance of this issue, further studies are
called for.

B. Spectral densities

The spectral densities A(ω) for the chain for the three cases
T0, H0,eff, and Heff are displayed in Figs. 6 and 7. For H0,eff

and Heff the difference of the two parameter sets (A) and (B)
matters. The results from the different methods used, CET
(solid) and iEoM (dashed), agree very well in all cases. The
data have been broadened by σ = 0.15t0 to reach continuous
curves which are little influenced by finite size or finite loop
effects. The first three moments of the spectral densities can
be computed by CET and by iEoM and they agree, but they
differ qualitatively from the results by Brinkman and Rice [4];
for instance, the first moment vanishes rigorously.

− − −

FIG. 6. Spectral density A(ω) vs ω for a chain and the parameter
set (A) in (14a), broadened by σ = 0.15t0. Solid lines represent CET
results, dashed lines iEoM results. The band edges ωmin determined
from (37) are indicated by vertical dashed lines.
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− −

FIG. 7. Same as Fig. 6, but for the parameters (B) in (14b).

Both the upward and downward flanks of the spectral den-
sity as well as the characteristic shape including the peak
positions are accurately reproduced. The wiggling of the
iEoM results around ω = 0 results from a few discrete, Gaus-
sian broadened peaks. Higher loop order m and thus increased
basis would lead to smoother spectral densities.

The spectral density A(ω) for T0 is symmetric about ω = 0.
This is expected because T0 represents NN hopping, which
implies particle-hole symmetry on bipartite lattices and thus
symmetric local DOS. This has been shown rigorously in the
1D case in the limit U → ∞ [4,21,22]. The rigorous result
also explains the value of the lower band edge ωmin = −2t0,
which our extrapolation reproduces well within a relative error
of 2%. The pronounced peaks are the van Hove singularities
∝1/

√|�ω|, which are smeared out by finite-size effects or
finite loop order and the additional broadening. The analytical
results [4,21,22] yield the explicit result

A(ω) = 1

2π

1√
ω2 − 4t2

0

. (42)

If the spin-dependent and spin-independent hopping in sec-
ond order is included, i.e., if we consider H0,eff, the support
of the spectrum increases: for parameter set (A) it increases
by about 10%, and for set (B) it increases by almost 20%.
Since the DOS satisfies the sum rule

∫
A(ω)dω = 1/2, a larger

support necessarily translates into a reduced average height.
In addition, the DOS loses its symmetry: the left van Hove
peak becomes lower than the right one.

If the magnetic exchange, i.e., the spin-spin interaction, is
included, we consider the dynamics induced by Heff. The cor-
responding data are shown by the darkest curves in Figs. 6 and
7. The broadened curves show a larger asymmetry between
the left and the right peak compared to the curves for H0,eff.
For parameter set (B) the left peak is reduced to a shoulder
only. The tails contain much more weight, in particular for
parameter set (B). No band edge can be detected for the
reasons discussed in the preceding section.

VI. RESULTS FOR THE SQUARE LATTICE

Analogous to calculations for the chain, spectral densities
and band gaps can also be determined for the square lattice.

− −

FIG. 8. Spectral density A(ω) for hole motion on the square
lattice and parameter set (A). See the caption of Fig. 6 for further
explanations.

We emphasize that such a calculation does not merely en-
large the dimension, but it introduces also additional physical
processes along the diagonals. Furthermore, the four nearest
neighbors in the square lattice, instead of two in the chain,
yield a more densely populated Hamiltonian matrix. For the
same tractable cluster size N , only

√
N hopping processes

are possible without wraparound for NN hopping, and cor-
respondingly fewer are possible for NNN or 3NN hopping.
Thus, describing the dynamics without finite-size effects be-
comes significantly more demanding. As a result, the obtained
densities are not as smooth as in 1D and they wiggle more.
The iEoM treats the thermodynamic limit by construction, but
it cannot reach the same accuracy as in 1D either because
the additional physical processes reduce the maximum loop
order m that can be reached. The first three moments of the
spectral densities can be computed by CET and by iEoM and
they agree, but they differ qualitatively from the results by
Brinkman and Rice [4]; for instance, the first moment vanishes
rigorously.

To realize more hopping processes without wraparound
effects, we rotate the studied square cluster by 45 ◦. Then
its edge length is given by

√
2n, where n is the number of

NN steps to pass from one corner of the square cluster to
its center implying N = 2n2. For n = 3 we have to treat 18
sites, which is still feasible while the wraparound only occurs
after 2n = 6 NN hops. Without the rotation this would have
required N = 62 = 36 sites, and the corresponding Hilbert
space dimension would have been larger by almost a factor
2.6 × 105.

The overall shape of the spectrum is significantly altered
compared to the 1D case; see Figs. 8 and 9 for CET results.
Results obtained by iEoM are presented and compared to CET
results for larger broadening in Appendix B. In contrast to
the two distinct van Hove singularities in 1D, the 2D case
reveals a spectral density of approximately elliptical or even
rectangular shape. It is symmetric only for T0 and becomes
asymmetric as soon as the Hamiltonian is extended, in agree-
ment with what was found in 1D. Note, however, that the
lower band edge for T0 is not −4t0 but close to this value (see
the vertical dashed lines in Figs. 8 and 9). This is in contrast to
the 1D case, where we had found −2t0. The reason is that in
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FIG. 9. Spectral density A(ω) for hole motion on the square
lattice and parameter set (B). See the caption of Fig. 6 for further
explanations.

1D at U = ∞, perfect spin-charge separation for NN hopping
occurs, i.e., the sequence of spin orientations is not changed
by the hole motion. On the square lattice, this is no longer
true since loops occur allowing for subtle interferences. Only
Trugman paths [5] allow for hole motion without changes of
the spin order.

For the square lattice, the band edges ωmin are significantly
closer to each other than in 1D. For the parameter set (A)
we attribute this to the altered dimensionality. For parameter
set (B), this effect is enhanced by the smaller value of the
exchange coupling J , i.e., because of J1D,B = 1 > 1/2 = J2D,B.
We emphasize that our results agree with previous research,
for instance ωc = −4.4t0 for the complete generalized t-J
model [42]. This value is in the range of the left flanks where
the DOS starts rising significantly; cf. the black curves in
Figs. 8 and 9. An exact determination of the band edge is not
possible due to the previously discussed Gaussian tails.

Analogous to the 1D case, a broadening of the spectrum
upon including more and more processes is observed also
on the square lattice. For parameter set (A) the spectrum
broadens from T0 to the complete generalized t-J model Heff

by about 13 %; for parameter set (B) the spectrum broadens by
almost 25 %. Instead of peaks at the boundaries of the DOS,
one observes kneelike flanks. This can be attributed to the
weaker van Hove singularities in 2D, which consist of either
jumps or logarithmic divergences.

VII. SUMMARY AND OUTLOOK

We studied the dynamics of a single hole in a disordered
spin background for various kinds of the generalized t-J
model which result from the Fermi-Hubbard model in the
limit of large repulsion U by eliminating systematically the
processes changing the number of double occupancies. This
can be done in or close to the Mott insulating phase. The
systematic elimination is controlled by the small parameter
x = t0/U , where t0 is the bare nearest-neighbor (NN) hopping.
In second order in x, spin-dependent and spin-independent
next-nearest-neighbor (NNN) hopping as well as the nearest-
neighbor spin-spin exchange interaction appear yielding a
generalized t-J model. (Often, the model consisting of the

projected NN hopping and the NN magnetic exchange is
called the t-J model.) For the one-dimensional chain and the
two-dimensional square lattice, we computed the lower band
edges of the Hubbard bands where possible and the shape of
the local spectral density, i.e., the density of states (DOS).
This is achieved by two approaches, the iterated equations of
motion (iEoM) and the Chebyshev expansion technique
(CET).

The CET is a well-established numerically exact method
for the analysis of finite clusters whose effort increases ex-
ponentially with the Hilbert space size. The iEoM addresses
the infinite translationally invariant lattice, i.e., the thermo-
dynamic limit. The systematic enlargement of the iEoM by
increasing the loop order m includes processes of larger and
larger spatial range. In 1D, numerical evidence was found
and an analytic argument was given that the support of the
DOS is only finite if hole hopping enters the Hamiltonian
exclusively. Once magnetic exchange is switched on as well,
the support becomes infinite and the DOS develops Gaussian
tails. This effect has not yet been discussed in the literature
to our knowledge because the spin dynamics is generically
omitted. We point out that a previous analysis of the Hubbard
model based on the Bethe ansatz found finite band edges for
the hole motion in a disordered spin background [34]. But in
this analysis, the spin dynamics was treated as frozen so that
the magnetic energy balance did not enter. Hence, the results
are not contradicting.

The analysis of the support of the spectral densities has
become possible by means of the iEoM. Numerical evidence
for Gaussian tails could be found in 1D, while the data in 2D
are not yet conclusive. But the analytic argument in favor of
an infinite support also holds in 2D. The substantially higher
numerical effort in 2D calls for further efforts to corroborate
the advocated scenario.

Future routes of research can address the spreading of a
locally inserted hole in real space as it can be measured in ul-
tracold atoms [16,17]. For solid-state systems, the momentum
resolved spectral densities should be investigated.
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APPENDIX A: APPROXIMATION OF THE SHORT-TIME
BEHAVIOR OF g(t )

The behavior of the retarded Green’s function g(t ) for
t � 0 can be estimated analytically by an expansion in
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FIG. 10. Spectral densities A(ω) for the square lattice, parameter
set (A), and the various contributions, calculated with CET for N =
18 (solid) and iEoM for m = 4 for T0 and H0,eff and m = 3 for Heff

(dashed). All data are convolved with σ = 0.45t0. The band edges
ωmin calculated according to (37) are indicated by vertical dashed
lines.

powers of t . The result reads

g(t ) ≈ − i

2
(1 + 〈[H, h̄i,↑(0)][H, h̄†

i,↑(0)]〉t2) + O
(
t3

)
, (A1)

where the translational invariance in time, i.e.,

g′(t ) = g′(−t ) = 〈[H, h̄i,↑(0)]h̄†
i,↑(−t )〉, (A2)

allows us to apply the second derivative to the second opera-
tor,

g′′(t ) = dg′(−t )

dt
= −i〈[H, h̄i,↑(0)][H, h̄†

i,↑(0)]〉. (A3)

In this way, a double commutator is avoided.
For clarity, we apply formula (A1) to the one-dimensional

chain. The commutators appearing are

[T0, h̄i,↑] = t0h̄i±1,↓σ+
i + 1

2 t0h̄i±1,↑σ z
i + 1

2 t0h̄i±1,↑, (A4a)

[T ′′
0 , h̄i,↑] = t ′′h̄i±2,↓σ+

i + 1
2 t ′′h̄i±2,↑σ z

i + 1
2 t ′′h̄i±2,↑, (A4b)

[T ′′
s,0, h̄i,↑] = 1

2 t ′′
s h̄i±2,↓σ+

i±1 + 1
2 t ′′

s h̄i±2,↓σ+
i±1σ

z
i (A4c)

+ t ′′
s h̄i±2,↑σ−

i±1σ
+
i + 1

4 t ′′
s h̄i±2,↑σ z

i±1 (A4d)

+ 1
4 t ′′

s h̄i±2,↑σ z
i±1σ

z
i − 1

2 t ′′
s h̄i±2,↓σ z

i±1σ
+
i , (A4e)

[HJ , h̄i,↑] = 1
4 Jh̄i,↑σ z

i±1 + 1
2 h̄i,↓σ+

i±1. (A4f)

The remaining commutators for the case h̄†
i,↑ result from the

relations (A4) substituting h̄i,↑ → −h̄†
i,↑ as well as σ+ ↔ σ−.

The expectation values occurring in (A1) can be calculated
straightforwardly since they are to be determined at t = 0.
The trace is computed over states at half-filling without a
hole. For demonstration purposes, we give the results for the

- -

FIG. 11. Same as in Fig. 10, but for parameter set (B).

expectation values that arise from HJ [see (A4f)],〈
h̄i,↑σ z

i±1h̄†
i,↑σ z

i±1

〉 = 2 × 1
2 , (A5a)

〈h̄i,↓σ+
i±1h̄†

i,↓σ−
i±1〉 = 2 × 1

4 . (A5b)

Here, the first factor results from the double occurrence of
the expectation value, once for i + 1 and once for i − 1.
The expectation values from the other contributions can be
calculated similarly. Substituting all expectation values and
(A4) into (A1) then yields the explicit expansion

g(t ) = − i

2

[
1 −

(
t2
0 + t ′′2 + 6

16
t ′′2
s + 3

32
J2

)
t2

]
+ O(t3).

(A6)

APPENDIX B: 2D RESULTS FROM IEOM AND CET

In addition to the results obtained for the square lattice
using CET, convolved with σ =0.15t0, and shown in Figs. 8
and 9, the analogous results can also be obtained using iEoM.
Due to the limited loop order m they need to be broadened
more strongly by Gaussians.

Due to the limited maximum loop order m, wiggly spectral
densities occur. To ensure a reasonable comparability to CET
results and to show the good agreement of both methods,
a convolution of (all) results with an increased σ = 0.45t0
is performed. Still, the iEoM results display some spurious
wiggles. The corresponding results for the sets (A) and (B)
are depicted in Figs. 10 and 11. The increased width of the
CET results compared to the ones in Figs. 8 and 9 is an
artefact due to the enhanced broadening. Obviously, the band
edges obtained from the minimum eigenvalues of the Liou-
ville matrix in iEoM are identical regardless of the additional
broadening. Increasing the loop order m is likely to lead to a
higher similarity of the results of both methods.
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Nonequilibrium Quantum Dynamics of a Charge Carrier Doped
Into a Mott Insulator, Phys. Rev. Lett. 106, 196401 (2011).

[16] J. Vijayan, P. Sompet, G. Salomon, J. Koepsell, S. Hirthe, A.
Bohrdt, F. Grusdt, I. Bloch, and C. Gross, Time-resolved ob-
servation of spin-charge deconfinement in fermionic hubbard
chains, Science 367, 186 (2020).

[17] G. Ji, M. Xu, L. H. Kendrick, C. S. Chiu, J. C. Brüggenjürgen,
D. Greif, A. Bohrdt, F. Grusdt, E. Demler, M. Lebrat, and M.
Greiner, Coupling a Mobile Hole to an Antiferromagnetic Spin
Background: Transient Dynamics of a Magnetic Polaron, Phys.
Rev. X 11, 021022 (2021).

[18] F. Grusdt, M. Kánasz-Nagy, A. Bohrdt, C. S. Chiu, G. Ji, M.
Greiner, D. Greif, and E. Demler, Parton Theory of Magnetic
Polarons: Mesonic Resonances and Signatures in Dynamics,
Phys. Rev. X 8, 011046 (2018).

[19] A. Bohrdt, E. Demler, F. Pollmann, M. Knap, and F. Grusdt,
Parton theory of angle-resolved photoemission spectroscopy
spectra in antiferromagnetic Mott insulators, Phys. Rev. B 102,
035139 (2020).

[20] A. Bohrdt, F. Grusdt, and M. Knap, Dynamical formation of a
magnetic polaron in a two-dimensional quantum antiferromag-
net, New J. Phys. 22, 123023 (2020).

[21] A. Mielke, The one-dimensional Hubbard model for large or
infinite U , J. Stat. Phys. 62, 509 (1991).

[22] B. Kumar, Exact solution of the infinite-U Hubbard problem
and other models in one dimension, Phys. Rev. B 79, 155121
(2009).

[23] M. P. Eastwood, F. Gebhard, E. Kalinowski, S. Nishimoto, and
R. M. Noack, Analytical and numerical treatment of the Mott-
Hubbard insulator in infinite dimensions, Eur. Phys. J. B 35, 155
(2003).

[24] S. Nishimoto, F. Gebhard, and E. Jeckelmann, Dynamical
density-matrix renormalization group for the Mott-Hubbard in-
sulator in high dimensions, J. Phys.: Condens. Matter 16, 7063
(2004).

[25] R. Bulla, Zero Temperature Metal-Insulator Transition in the
Infinite-Dimensional Hubbard Model, Phys. Rev. Lett. 83, 136
(1999).

[26] R. Bulla, T. A. Costi, and D. Vollhardt, Finite temperature
numerical renormalization group study of the Mott-transition,
Phys. Rev. B 64, 045103 (2001).

[27] D. J. Garcia, K. Hallberg, and M. J. Rozenberg, Dynamical
Mean Field Theory with the Density Matrix Renormalization
Group, Phys. Rev. Lett. 93, 246403 (2004).

[28] N. Blümer and E. Kalinowski, The Mott insulator: Tenth-order
perturbation theory extended to infinite order using a quantum
Monte Carlo, Phys. Rev. B 71, 195102 (2005).

[29] M. Karski, C. Raas, and G. S. Uhrig, Electron spectra close to a
metal-to-insulator transition, Phys. Rev. B 72, 113110 (2005).

[30] M. Karski, C. Raas, and G. S. Uhrig, Single-particle dynamics
in the vicinity of the Mott-Hubbard metal-to-insulator transi-
tion, Phys. Rev. B 77, 075116 (2008).

[31] J. Carlström, N. Prokof’ev, and B. Svistunov, Quantum Walk
in Degenerate Spin Environments, Phys. Rev. Lett. 116, 247202
(2016).

[32] M. Kanász-Nagy, I. Lovas, F. Grusdt, D. Greif, M. Greiner, and
E. A. Demler, Quantum correlations at infinite temperature: The
dynamical Nagaoka effect, Phys. Rev. B 96, 014303 (2017).

[33] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E.
Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, Cambridge, UK, 2005).

[34] S. Ejima, F. H. Essler, and F. Gebhard, Thermodynamics of
the one-dimensional half-filled Hubbard model in the spin-
disordered regime, J. Phys. A 39, 4845 (2006).

[35] P. W. Anderson, New approach to the theory of superexchange
interactions, Phys. Rev. 115, 2 (1959).

[36] A. B. Harris and R. V. Lange, Single-particle excitations in
narrow energy bands, Phys. Rev. 157, 295 (1967).

[37] D. J. Klein and W. A. Seitz, Perturbation expansion of the linear
Hubbard model, Phys. Rev. B 8, 2236 (1973).

[38] M. Takahashi, Half-filled Hubbard model at low temperature, J.
Phys. C 10, 1289 (1977).

[39] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t/U expan-
sion for the Hubbard model, Phys. Rev. B 37, 9753 (1988).

[40] J. Stein, Flow equations and the strong-coupling expansion for
the Hubbard model, J. Stat. Phys. 88, 487 (1997).
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