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Spin liquid to spin glass crossover in the random quantum Heisenberg magnet
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We study quantum SU(M) spins with all-to-all and random Heisenberg exchange interactions of root-mean-
square strength J . The M → ∞ model has a quantum spin liquid ground state with the spinons obeying the
equations of the Sachdev-Ye-Kitaev (SYK) model. Numerical studies of the SU(2) model with S = 1/2 spins
show spin glass order in the ground state, but also display SYK spin liquid behavior in the intermediate frequency
spin spectrum. We employ a 1/M expansion to describe the crossover from fractionalized fermionic spinons to
a confining spin glass state with weak spin glass order qEA. The SYK spin liquid behavior persists down to a
frequency ω∗ ∼ JqEA, and for ω < ω∗, the spin spectral density is linear in ω, thus quenching the extensive zero
temperature entropy of the spin liquid. The linear ω spectrum is qualitatively similar to that obtained earlier using
bosonic spinons for large qEA. We argue that the extensive SYK spin liquid entropy is transformed as T → 0
to an extensive complexity of the spin glass state. We comment on holographic connections of the confinement
transition to the fragmentation of black holes with AdS2 horizons.
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I. INTRODUCTION

A common theme in many experimental studies of the
hole-doped cuprate compounds below optimal doping is that
while there is nearly static spin or charge order at low tem-
peratures, the intermediate temperature pseudogap regime can
be described in terms of an underlying quantum spin liquid
state. Among recent studies, we note the nuclear magnetic
resonance observations in La2−xSrxCuO4 of Frachet et al. [1]
showing spin glass order at low temperature all the way up
to optimal doping; the neutron scattering observations of Ma
et al. [2] on La1.6−xNd0.4SrxCuO4 showing spin stripe order
at low temperature under the entire superconducting dome;
and photoemission measurements [3,4] and angle-dependent
magnetoresistance observations [5] in the pseudogap metal
showing evidence for the breakdown of the Luttinger Fermi
surface, which can be interpreted in terms of a fractionalized
Fermi liquid containing a background quantum spin liquid
[6,7]. In the undoped antiferromagnet, we recall the observa-
tions of Dalla Piazza et al. [8] showing intermediate energy
spinon continua at wave vector (π, 0) in a system with long-
range Néel order at wave vector (π, π ).

In this paper, we will study a random quantum Heisenbeg
magnet with all-to-all exchange interactions Ji j

H = 1√
N

N∑
i< j=1

Ji jSi · S j . (1.1)

We study an ensemble of models, where the Ji j are indepen-
dent random variables for each pair (i, j), and their ensemble
averages are

Ji j = 0, J2
i j = J2. (1.2)

This model generalizes the classical Sherrington-Kirkpatrik
model with Ising spins σi = ±1 to quantum SU(2) spins Si,
acting on a Hilbert space of states with angular momentum
S = 1/2 on each site.

Although such a random exchange model is far from the
microscopic situation in the cuprates, it can successfully cap-
ture many aspects of cuprate phenomenology [9]. Here, we
will show that it exhibits a deconfinement-to-confinement
crossover, and we will obtain explicit results for the dynamic
spin susceptibility across this crossover. This is one of the
rare instances in which fractionalization and subsequent con-
finement can be described in a strongly coupled system with
gapless matter.

The generalization of the model (1.1) to SU(M) spins, and
the limits N → ∞ followed by M → ∞, yield a fractional-
ized quantum spin liquid ground state [10] whose fermionic
spinons obey the same equations as the complex Sachdev-Ye-
Kitaev (SYK) model [11–14]. On the other hand, numerical
studies [15–17] of the N → ∞ limit of the model (1.1) for
SU(2) and spin S = 1/2 show the presence of spin glass order
in the ground state (in contrast to the SYK model itself, which
does not have spin glass order [18]). However, the recent
numerical study of the S = 1/2 SU(2) model argued [17] that
the spin spectral density at intermediate frequencies matched
that of the SYK spin liquid. Specifically, they observed

χ ′′(ω) ∼ sgn(ω)

J

[
1 − c

J
|ω| . . .

]
, ω∗ < |ω| � J, T = 0.

(1.3)
The leading term in (1.3) has its origins in the spinons obey-
ing the SYK equations [10]; it is often called the ‘marginal’
spectrum, because electrons scattering off such spin fluc-
tuations acquire a marginal Fermi liquid Green’s function.
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(The subleading term, with positive coefficient c, is related
to the coefficient of the Schwarzian effective action [14].)
Neutron scattering observations [2] on La1.6−xNd0.4SrxCuO4

yield a momentum-integrated inelastic spin spectrum which
is doping-independent, with some similarities to (1.3), along
with a doping-dependent static spin stripe order; these features
are similar to the numerical results on the random t-J model
[17], with the spin glass order replacing the spin stripe order.

A marginal spectrum is also obtained in the density fluc-
tuations in a model with density-density interactions, and this
has been argued [19] to be related to the anomalous continuum
observed in dynamic charge response measurements [20,21]
on optimally doped Bi2.1Sr1.9Ca1.0Cu2.0O8+x (Bi-2212) using
momentum-resolved electron energy-loss spectroscopy (M-
EELS).

In the present paper, we will obtain an estimate of the
low frequency bound ω∗ of the marginal spectrum, and also
describe the nature of the crossover at ω ∼ ω∗. This paper
addresses the nature of the crossover from the spectrum in
(1.3) to frequencies ω < ω∗. The presence of spin glass order
implies a delta function at zero frequency

T χ ′′(ω)

ω
= πqEA δ(ω), (1.4)

where qEA is the spin glass order parameter. We find that the
crossover occurs at a frequency

ω∗ = JqEA, for qEA � 1, (1.5)

and for smaller frequency

χ ′′(ω) = ω

ω∗πJ
+ . . . , 0 < |ω| < ω∗, T = 0. (1.6)

Given the numerical estimate qEA ∼ 0.02 [17], the quantum
spin liquid behavior of (1.3) is visible over a wide range of
frequencies.

We note that a linear spectrum, qualitatively similar to
(1.6), was found in an earlier theory [22,23] of the spin fluctu-
ations by bosonic spinons. The bosonic spinon theory is valid
for large S, and so leads to a large qEA (see Appendix A); it
also requires an additional assumption of marginal stability
of a replica symmetry breaking solution to obtain the gap-
less spectrum. Our analysis uses fermionic spinons, does not
require any additional marginal stability criteria, and is appli-
cable for small qEA. It is reassuring that the same qualitative
behavior is obtained by fermionic and bosonic spinons. Thus
we have a “duality” between fermionic and bosonic spinons
present not only in the gapless, fractionalized, spin liquid
regime [10], but also in the crossover to the confining spin
glass state. We note that boson-fermion dualities have seen
much discussion in the context of disorder-free gapless spin
liquids on the square lattice [24,25].

At nonzero temperature, our results have interesting im-
plications for the temperature dependence of the entropy, as
sketched in Fig. 1.

The fractionalized SYK spin liquid has an extrapolated
entropy which is extensive at T = 0 [23]. The SU(2) model in
(1.1) has a phase transition to a spin glass state with qEA 	= 0
at a small temperature Tsg, which is estimated in (4.19) in
the SU(M → ∞) limit. Below Tsg the entropy decreases so
that there is no extensive entropy at T = 0. This spin glass

FIG. 1. Schematic plot of the temperature dependence of the
entropy. There is a phase transition at Tsg. The α coefficient is related
to the coefficient of the Schwarzian in the theory of the spin liquid.
We argue that the extrapolated T = 0 entropy of the spin liquid
(denoted by the filled circle) turns into the complexity of the spin
glass by the fragmentation of phase space into an exponentially large
number of disconnected sectors at temperatures below Tsg.

entropy should be interpreted as the entropy of quantum and
thermal fluctuations within a given sector of phase space.
However, the spin glass state also has a large number, eN� ,
of disconnected sectors measured by the exponential of the
complexity � [26–31]. We will estimate � for our quantum
model here, and find that it remains nonzero as T → 0. So we
conclude that as we increase T past Tsg, the sectors reconnect,
and the complexity turns into the quantum entropy of the SYK
spin liquid.

The SYK spin liquid has a holographic description in terms
of the AdS2 horizons of charged black holes [11,32,33]. Inter-
estingly, AdS2 horizons have a fragmentation instability [34],
and this has been connected to the physics of spin glasses
[31,35–37]. The spin glass transition in Fig. 1 is therefore an
instance of this instability of AdS2: the fact that the spin glass
state has vanishing zero temperature entropy implies that the
instability can proceed to completion to a state without black
hole horizons. Indeed, the instability of AdS2 depends upon
the ultra-violet completion of the quantum gravity theory: it
is not present for the SYK model [18], but is present for the
SU(2) spin model in (1.1).

We will begin in Sec. II by formulating the path integral of
the random SU(M) magnet for large N but general M. This
will be a G-�-Q theory, involving a path integral over the
fermionic spinon Green’s function and self energy, G, �, and
the spin autocorrelation Q. We will present the M → ∞ limit
of this theory in Sec. III, which yields the quantum spin liquid
state of Ref. [10]. Spin glass order is absent at M = ∞, but is
present at any finite M because of a logarithm-squared diver-
gence of the spin glass susceptibility [23]. We will describe
such finite M effects in Sec. IV, and present the structure
of the effective action for qEA and the spin autocorrelation
function in powers of 1/M. Section V combines our results to
obtain the feedback of the spin glass order on the dynamic spin
spectrum. The low temperature complexity of the quantum
spin glass state is discussed in Sec. VI.
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II. LARGE N ACTION

All our analysis will be carried out in the N → ∞ limit of
a model with SU(M) symmetry. We will keep M arbitrary in
the present section. We consider the SU(M) spin model

H = 1√
NM

N∑
i< j=1

M∑
α,β=1

Ji jSα
β (i)Sβ

α ( j) (2.1)

where Sα
β (i) = [Sβ

α (i)]† are generators of SU(M) on each
site i, with α, β = 1, . . . , M. Each site contains states cor-
responding to the antisymmetric product of kM (integer)
fundamentals, and these are realized by fermionic spinons
with

Sα
β (i) = f †

β (i) f α (i) − kδα
β ,

∑
α

f †
α (i) f α (i) = kM (2.2)

with fermions f α (i) on each site i; the model with bosons on
each site realized the symmetric product of fundamentals, and
is briefly discussed in Appendix A. Note that (2.2) implies
that the spinons carry a U(1) gauge charge, where the gauge
transformation can depend upon the site index i, and on time;
such a gauge invariance is not present in the SYK model.
However, the SYK model does have an emergent gauge sym-
metry involving gauge transformations that depend only on
time (see Appendix B). We have made the spin operators
traceless, and will restrict ourselves to the particle-hole sym-
metric case k = 1/2. The Hamiltonian in (2.1) reduces to the
S = 1/2 case of the SU(2) Hamiltonian in (1.1) for M = 2 and
k = 1/2 (apart from an overall factor of 1/

√
2).

We introduce replicas a = 1, . . . , n, and average over Ji j to
obtain the averaged, replicated partition function

Zn =
∫

D f α
a (i, τ )Dλa(i, τ ) exp[−SB − SJ ],

SB =
∑

i

∫
dτ [ f †

aα (i)∂τ f α
a (i) + iλa(i)( f †

aα (i) f α
a (i) − kM )],

SJ = − J2

4NM

∫
dτdτ ′

[∑
i

Sα
aβ (i, τ )Sγ

bδ (i, τ ′)

]

×
[∑

j

Sβ
aα ( j, τ )Sδ

bγ ( j, τ ′)

]
. (2.3)

We can now decouple SJ with a Hubbard-Stratonovich field
Qαγ

ab,βδ
(τ, τ ′) and take the large N limit. Then the problem

reduced to finding saddle points of the single site action

S[Q]

N
= J2

4M

∫
dτdτ ′|Qαγ

ab,βδ
(τ, τ ′)|2 − lnZ f [Q], (2.4)

where Z f [Q] is the single site partition function

Z f [Q] =
∫

D f α
a (τ )Dλa(τ ) exp [−SB − S f ], (2.5)

SB =
∫

dτ
[

f †
aα∂τ f α

a + iλa( f †
aα f α

a − kM )
]
, (2.6)

S f = − J2

2M

∫
dτdτ ′Qαγ

ab,βδ
(τ, τ ′)

[
f †
aα (τ ) f β

a (τ ) − kδβ
α

]
× [

f †
bγ (τ ′) f δ

b (τ ′) − kδδ
γ

]
. (2.7)

Note that now there is no remaining path integral over Q. We
simply have to find the saddle points of the action S[Q] in
(2.4).

Let us assume that the saddle point does not break spin
rotation symmetry: this is true in both the spin glass, and
quantum spin liquid phases. So we make the ansatz [10]

Qαγ

ab,βδ
(τ, τ ′) = δα

δ δ
γ

β Qab(τ − τ ′) (2.8)

where Qab(τ ) is a real function. Also, because there is no path
integral over Q, we can also assume from now on that Qab(τ )
is independent of τ for a 	= b [38]. Then (2.4) is replaced by

S[Q]

N
= J2M

4

∫
dτdτ ′[Qab(τ − τ ′)]2 − lnZ f [Q] (2.9)

while (2.7) is replaced by

S f = − J2

2M

∫
dτdτ ′Qab(τ − τ ′)

[
f †
aα (τ ) f β

a (τ ) f †
bβ (τ ′) f α

b (τ ′)

− k2M
]
. (2.10)

Finally, we express Z f [Q] as a G-� theory [33,39]. We define
the spinon Green’s function

Gab(τ, τ ′) = − 1

M

∑
α

f α
a (τ ) f †

bα (τ ′). (2.11)

Then we can write

Z f [Q] = exp

(
−k2J2

2

∫
dτdτ ′ ∑

a,b

Qab(τ − τ ′)

)

×
∫

DGab(τ, τ ′)D�ab(τ, τ ′)Dλa(τ )

× exp[−MI[Q]], (2.12)

where the action I[Q] is

I[Q] = − ln det[−δ′(τ − τ ′)δab − iλa(τ )δ(τ − τ ′)δab

−�ab(τ, τ ′)] − ik
∫

dτλa(τ )

+
∫

dτdτ ′
[

− �ab(τ, τ ′)Gba(τ ′, τ )

+ J2

2
Qab(τ − τ ′)Gab(τ, τ ′)Gba(τ ′, τ )

]
. (2.13)

We note that (2.12) and (2.13) constitute an exact for-
mulation of the theory for all M. Our remaining task is to
evaluate the path integral over Gab(τ, τ ′), �ab(τ, τ ′), and
λa(τ ) in (2.12), and then determine the saddle-point solutions
for Qab(τ ) in (2.9). The saddle point equations for Q from
(2.9), (2.10), and (2.13) are

Qab(τ − τ ′) = 1

M2
〈 f †

aα (τ ) f β
a (τ ) f †

bβ (τ ′) f α
b (τ ′)〉Z f [Q] − k2

M

= −〈Gab(τ, τ ′)Gba(τ ′, τ )〉Z f [Q] − k2

M
, (2.14)

but we will find it more convenient to obtain them directly
from the functional form of S[Q].

From the resulting Qab(τ ), we obtain two different char-
acterizations of the spin glass order [22,23,31,38,40,41]. At
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T = 0, we can examine the long-time limit of the replica
diagonal Q

q = lim
n→0

1

n

∑
a

Qaa(τ → ∞), T = 0, (2.15)

and q is one measure of the spin-glass order. Alternatively, we
can examine the off-diagonal components, which are neces-
sarily time-independent

qab = Qab(τ ), a 	= b. (2.16)

In the n → 0 limit, it is conventional to describe the ultra-
metric structure of qab by the Parisi function q(x), 0 � x �
1, and the Edwards-Anderson spin glass order parameter is
qEA = q(1). Consistency between the two different character-
izations requires that q = qEA, and this is an important feature
of earlier studies of quantum spin glasses [38].

These definitions also allow us to place a bound on spin-
glass order. The state with maximum order has the spins
frozen in a state in which the fermions occupy the states with,
say, α = 1, . . . , kM, while the other values of α are empty.
Evaluating (2.14) on such a state, we obtain

qEA � k(1 − k)

M
. (2.17)

Note that (2.17) vanishes as M → ∞, and qEA is at most
O(1/M ) in the large M limit; this is consistent with our results
in Secs. III and IV. In Appendix A we review the bosonic
spinon case of (2.1), and find there that qEA can be O(M0) in
that large M limit. We also note that for SU(2), the definition
of the spin glass order from (2.14) is qEA = 〈Si〉 · 〈Si〉/2, and
this is a factor of 2 smaller than the usual definition; so the
bound in (2.17) is qEA � 1/8.

We would now like to evaluate lnZ f [Q] for general
Qab(τ ), with Qab independent of τ for a 	= b. We first do this
at M = ∞ in Sec. III, and then examine 1/M corrections in
Sec. IV.

III. LARGE M LIMIT

Assuming a general Qab(τ ), the large M limit of the path-
integral in (2.12) leads to the following saddle-point equations
for the fermion Green’s function and self-energy

�ab(τ ) = J2Qab(τ )Gab(τ ),

Gab(iω) = [iωδab − �ab(iω)]−1, (3.1)

where λa = 0 at the k = 1/2 saddle-point because of particle-
hole symmetry. However, we must keep in mind that there
cannot be any off-diagonal components of the fermion
Green’s function at the saddle-point, because it is not possible
for fermions to condense. So we write

Gab(τ, τ ′) = GQ(τ − τ ′)δab, M = ∞, (3.2)

and similarly for �ab. From the large N saddle-point equation
for Qab in (2.14), we see that Qab must also be replica diago-
nal,

Qab(τ ) = Q(τ )δab, M = ∞, (3.3)

and so there is no spin glass order at M = ∞ [10]. The large
M saddle point equations (3.1) therefore reduce to

�Q(τ ) = J2Q(τ )GQ(τ ),

GQ(iω) = [iω − �Q(iω)]−1. (3.4)

These equations hold for general Q(τ ), and we have empha-
sized this by the subscript Q on G and �. Upon including the
large N saddle point equation for Q in (2.14), we obtain

Q(τ ) = −GQ(τ )GQ(−τ ), M = ∞. (3.5)

The combination of (3.4) and (3.5) yields precisely the large
N equations of the fermion of the complex SYK model [10].
In the following sections, we include corrections from the
replica off-diagonal and two-time fluctuations of Gab(τ, τ ′)
and �ab(τ, τ ′), and these will modify (3.5), but we will con-
tinue to use (3.4).

For completeness, we also present the expressions for the
path integral in (2.13):

− lnZ f [Q]

Mn
= I[Q]

n
+ k2J2

2Mn

∫
dτdτ ′ ∑

a,b

Qab(τ − τ ′),

I[Q]

n
= − ln det

[ − δ′(τ − τ ′) − �Q(τ − τ ′)
]

+
∫

dτdτ ′
[

− �Q(τ − τ ′)GQ(τ ′ − τ )

+ J2

2
Q(τ − τ ′)GQ(τ − τ ′)GQ(τ ′ − τ )

]
.

(3.6)

IV. 1/M EXPANSION

This section will describe 1/M corrections to lnZ f [Q] in
(2.9). We will see below that these corrections are character-
ized by a divergent spin glass susceptibility, and so spin glass
order is present for any finite M [23].

To evaluate these finite M fluctuations, we extend (3.2)
for the fermion Green’s function and self-energy, and for the
constraint Lagrange multiplier by

Gab(τ, τ ′) = GQ(τ − τ ′)δab + δGab(τ, τ ′),

�ab(τ, τ ′) = �Q(τ − τ ′)δab + δ�ab(τ, τ ′)

− iδλa(τ )δ(τ − τ ′)δab,

λa(τ ) = λa + δλa(τ ), (4.1)

where λa = 0 at the M = ∞ saddle point for the particle-hole
symmetric case k = 1/2. We can use the gauge invariance
discussed in Appendix B to choose a gauge in which δλa(τ ) is
τ independent. Then the time-independent value of δλa can be
absorbed into λa, and evaluating the path integral over δλa(τ )
to relative order 1/M2 reduces to computing the shift in the
saddle-point value of λa to order 1/M [42,43]. This shift in
the value of λa has to be included in GQ. Also, while the
expectation values of Gab(τ, τ ′), �ab(τ, τ ′) must depend only
upon τ − τ ′ and have to be replica diagonal, the fluctuations
δGab(τ, τ ′), δ�ab(τ, τ ′) of both replica diagonal and replica
off-diagonal components must include full dependence on
both τ and τ ′.
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FIG. 2. Pictorial representation of the “ladder” kernel featuring
in the fluctuation determinant.

A. Determinant of quadratic fluctuations

We begin with the first 1/M corrections, which are asso-
ciated with quadratic fluctuations of δGab(τ, τ ′), δ�ab(τ, τ ′).
Expanding the action (2.13) to second order in fluctuations
around the large M saddle point, we find the quadratic action

I(2)[Q] = 1

2

∫
dτ1 · · · dτ4

∑
a,b,c,d

δX T
ab(τ1, τ2)

× ·Aab;cd (τ1, τ2; τ3, τ4) · δXcd (τ3, τ4)

≡ 1

2
δXT · A · δX, (4.2)

where matrix multiplication involves the following structures:

δX ≡ δXab(τ1, τ2) ≡
(

δGab(τ1, τ2),
δ�ab(τ1, τ2)

)
,

A ≡ Aab;cd (τ1, τ2; τ3, τ4)

≡
(

J2 Qab(τ1, τ2)δ(τ14)δ(τ32) −δ(τ14)δ(τ32)
−δ(τ14)δ(τ32) GQ(τ14)GQ(τ32)

)
δadδbc,

(4.3)

and the dot product is defined as indicated in terms of integra-
tion over pairs of time arguments and summation over pairs of
replica indices.

Having reduced the problem to a Gaussian integral, we
are now in a position to evaluate the contribution to the free
energy F = −(Mβn)−1 lnZ f [Q] originating from quadratic
fluctuation determinants. We denote this contribution as

βnFsg = k2J2

2

∫
dτdτ ′ ∑

a,b

Qab(τ, τ ′)

+ 1

2
ln det A + O(M−1). (4.4)

Let us focus on the fluctuation determinant of A, which can
be expanded in terms of a ladder kernel:

1
2 ln det A = 1

2 Tr ln(K − 1)

= − 1
2 Tr K − 1

4 Tr K2

− 1
6 Tr K3 + . . . , (4.5)

where the ladder kernel and the identity operator are defined
as

K ≡ Kab;cd (τ1, τ2; τ3, τ4)

≡ J2 Qab(τ1, τ2)GQ(τ1 − τ3)GQ(τ4 − τ2) δacδbd ,

1 ≡ δ(τ1 − τ3)δ(τ4 − τ2) δacδbd . (4.6)

FIG. 3. Some diagrams contributing to − lnZ f [Q] at the first
subleading order, i.e., O(M0).

In Fig. 2, we introduce a diagrammatic notation for the ker-
nel.1Figure 3 further illustrates the above contributions to the
free energy diagrammatically. One can check that the first
diagram, Tr K, is canceled by the first term in (4.4).2The traces
of higher powers of the ladder kernel yield:

−1

4
Tr K2 = −J4

4

∫
dτ1 · · · dτ4

×
∑
a,b

Qab(τ1, τ2)Qab(τ3, τ4) R(2)
Q (τ13)R(2)

Q (τ24),

−1

6
Tr K3 = J6

6

∫
dτ1 · · · dτ6

×
∑
a,b

Qab(τ1, τ2)Qab

× (τ3, τ4)Qab(τ5, τ6) R(3)
Q (τ13, τ35)R(3)

Q (τ24, τ46),
(4.8)

and so on, where the time splitting functions are given by the
spinon loops

R(2)
Q (τ ) ≡ GQ(τ )GQ(−τ ),

R(3)
Q (τ, τ ′) ≡ GQ(τ )GQ(τ ′)GQ(−τ − τ ′), . . . (4.9)

Consider now the ansatz for Qab, which we described in
(2.15) and (2.16). Without loss of generality, we parametrize
this ansatz as follows:

Qab(τ, τ ′) = [Q(τ − τ ′) + q] δab + qab, qaa = 0. (4.10)

We then find a simple expression for the contribution of Z f [Q]
to the free energy per spin. In particular, the subleading terms
described above yield a contribution to the free energy, which
we denote as

Fsg ≡ − lnZ f [Q]

βn

= −c0 − c1q − c2q2 − d2β

(
q2 + 1

n

∑
a 	=b

q2
ab

)

− c3q3 − c4q4 − d4 β

(
q4 + 1

n

∑
a 	=b

q4
ab

)
+ . . . ,

(4.11)

1The diagrams focus on the structure of replica indices. To recover
the fermionic description one uses a double line notation where the
wiggly line fattens into two lines carrying SU(M) indices.

2In the computation of Tr K, we use the following point splitting
prescription to be consistent with the fermionic description:

Tr K = lim
ε→0

∫
dτ1dτ2

∑
a,b

Kab;ab(τ1, τ2; τ1 + ε, τ2 − ε). (4.7)
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where we organize the expression as an expansion in powers of q and qab. The coefficients are given by

d2 = J4

4
R(2)

Q (iω = 0)2, d4 = J8

8
R(4)

Q (iω1 = 0, iω2 = 0, iω3 = 0)2, . . . , (4.12)

and

c0 = J4

4β

∑
ω

R(2)
Q (iω)2Q(iω)2 + J6

6β2

∑
ω,ω′

R(3)
Q (iω, iω′)2Q(iω)Q(iω − iω′)Q(iω′)

+ J8

8β3

∑
ω,ω′,ω′′

R(4)
Q (iω, iω′, iω′′)2Q(iω)Q(iω − iω′)Q(iω′ − iω′′)Q(iω′′) + . . . ,

c1 = J4

2
R(2)

Q (0)2 Q(0) + J6

2β

∑
ω

R(3)
Q (iω, 0)2Q(iω)2 + J8

2β2

∑
ω,ω′

R(4)
Q (iω, iω′, 0)2Q(iω)Q(iω − iω′)Q(iω′) + . . . ,

c2 = J8

4β

∑
ω

[
2R(4)

Q (iω, 0, 0)2 + R(4)
Q (iω, iω, 0)2

]
Q(iω)2 + . . . ,

c3 = J8

2
R(4)

Q (0, 0, 0)2Q(0) + . . . , (4.13)

where all Q and R(n)
Q in the above equations are frequency

space expressions. We also used their symmetry properties,

R(n)
Q (−iω1, . . . ,−iωn−1) = (−1)n R(n)

Q (iω1, . . . , iωn−1),
(4.14)

to simplify some expressions and to conclude that coefficients
such as d3 = d5 = . . . = 0 (for the particle-hole symmetric
case k = 1/2). Note that we have reinstated explicit β depen-
dence in the above formulas in order to make manifest that
only the terms multiplying dk are linearly proportional to β in
the low temperature limit, β → ∞. In general, we find that
the coefficients of these linearly divergent terms are always
negative and given by

d2k = J4k

4k

(
1

β

∑
ω

GQ(iω)2k

)2

(k = 1, 2, . . .). (4.15)

When evaluated on the spin liquid Green’s function GQ(iω) ∼
1/

√
ω, we find a further divergence in the values of d2k in

(4.15): d2k ∼ β2k−2. However, this divergence is cutoff when
we compute d2k using the self-consistent results for GQ(iω)
to be computed in Section V: the cutoff frequency scale is ω�

in (1.5), and hence d2k ∼ q2−2k
EA . The net contribution of all

the d2k terms in (4.11) to the free energy is therefore of order
βq2

EA. For k = 1, there is an additional logarithm of β (or ω∗),
as noted below in (4.18).

Higher orders in the 1/M expansion can be computed in
a similar fashion. In short, these are characterized by more
complicated diagrams build from the kernel K. We elaborate
on this in Appendix C.

B. Free energy

In order for the theory to be consistent, we will need to
ensure that physical quantities such as the free energy are
finite as β → ∞. As we discuss next, this follows indeed
from the equations of motion for the spin glass parameters q
and qab.

The free energy including the corrections to first sublead-
ing in the 1/M expansion reads as follows:

βnF ≡ S[Q]

NM
= βnJ2

4

[
1

β

∑
ω

Q(iω)2 + 2q Q(iω = 0)

+β

(
q2 + 1

n

∑
a 	=b

q2
ab

)]
+ I[Q]

+ βn

M
Fsg + O(M−2), (4.16)

where the leading terms were given in (2.9) and (3.6), while
the Fsg term was computed in (4.11). Of particular importance
is the term quadratic in the spin glass order parameter

S[Q]

NM
= β2nJ2

4

(
q2 + 1

n

∑
a 	=b

q2
ab

)[
1 − J2

M
χ2

loc

]
+ . . . ,

(4.17)
where χloc = −R(2)

Q (iω = 0) is the local spin susceptibility.
The term in square brackets in (4.17) is precisely that appear-
ing in the denominator of the spin glass susceptibility [23]. In
the SYK spin liquid state [10] [this is evident from the Hilbert
transform of (1.3)],

χloc =
∫ β

0
Q(τ )dτ = 1

J
√

π
ln(βJ ), (4.18)

and so the term in square brackets becomes negative at low
enough temperatures provided M is finite. Once this term
is negative, spin glass order will appear, and we obtain an
estimate

Tc ∼ J exp(−√
Mπ ) (4.19)

for the critical temperature [23]. For temperatures below Tc,
χloc is finite at T = 0 in the presence of spin glass order, as
we will see in Sec. V.

The simplest ansatz for evaluating the free energy assumes
a replica symmetric off-diagonal spin glass order of the form
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qa 	=b = qEA. In this case, we employ the following simplifica-
tion as n → 0:

1

n

∑
a 	=b

q�
ab = (n − 1)q�

EA −→ −q�
EA. (4.20)

Extremization of F with respect to qEA then yields the follow-
ing equation of motion:

J2

2
qEA = 1

M

[
2d2 qEA + 4d4 q3

EA + . . .
] + O(M−2). (4.21)

Similarly, extremization with respect to q gives

J2

2

[
q + 1

β
Q(0)

]

= 1

M

[
2d2 q + 4d4 q3 + . . .

+ 1

β
(c1 + 2c2 q + 3c3 q2 + 4c4 q3 + . . .)

]
+ O(M−2).

(4.22)

Evidently, these equations imply

q = qEA + O(β−1). (4.23)

Evaluated on this solution, the free energy is indeed finite as
β → ∞ since all dangerous terms are of the following form
as n → 0:

F = β

{
J2

4

(
q2 − q2

EA

) − 1

M

∑
k�1

d2k
(
q2k − q2k

EA

) + O(M−2)

}

+ O(β0) = O(β0), (4.24)

where in the last step we used the relation (4.23). In Appendix
C, we compute some examples of contributions at higher
orders in the 1/M expansion, and show that these also have
a finite limit as β → ∞.

A notable feature of this analysis is that the free energy
is finite in the β → ∞ limit, even though there are many
individual terms that diverge in this limit. There is a deli-
cate cancellation of the divergent terms between the replica
diagonal and off-diagonal contributions in the n → 0 limit
[38]. This cancellation was overlooked in an early work on
the random quantum magnet [44]: they only included the
replica diagonal terms, which in fact diverge as β → ∞, and
so their energy estimates are not meaningful. Such divergent
contributions to the free energy are also present in various
EDMFT theories of strongly correlated phases [45–50], and
we believe that the energy estimates in such theories are
not reliable in the phase with long-range order at very low
temperatures.

V. SPECTRUM OF THE SPIN GLASS STATE

We have seen in Sec. IV that the order parameter charac-
terizing the spin glass ground state, qab, is determined entirely
by corrections to the leading large M saddle point. Moreover,
as β → ∞, the long time limit of the spin autocorrelation
function, q, equals the Edwards-Anderson order parameter
qEA (which is in turn determined from qab). In this section,

FIG. 4. Numerical results for the spinon spectral density ob-
tained by the solution of (3.4) and (5.1). The results scale as in (5.2)
for small qEA. The solutions were obtained with n frequency points.

we will address the feedback of the onset of spin glass or-
der on the spinon Green’s function and the dynamic spin
susceptibility.

In Sec. III, we determined the large M equations, (3.4),
obeyed by the fermion Green’s function for a general spin
autocorrelation function Q(τ ). In the spin glass phase, we
mapped Q(τ ) → Q(τ ) + q in (4.10) to allow for a nonzero
long time limit. The computations of Section IV, will lead
to corrections to Q(τ ) at order 1/M, along with allowing for
a nonzero q. In our analysis here, we will ignore the 1/M
corrections to Q(τ ), as they have a structure similar to that
obtained in the M = ∞ theory. However, we will keep the
nonzero value of q = qEA because it has a singular effect on
the low frequency fermion spectrum, as we will now show.

The upshot of this discussion is that we can determine
the fermion Green’s function by solving (3.4), while (3.5) is

FIG. 5. Numerical results for the spin spectral density obtained
by the solution of (3.4) and (5.1). The results scale as in (5.3) for
small qEA.
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FIG. 6. The real part of the local susceptibility χ ′ = χloc.

modified to

Q(τ ) = −GQ(τ )GQ(−τ ) + qEA. (5.1)

Remarkably, the equations (3.4) and (5.1) have been solved
previously [51,52], in different contexts. Reference [51] con-
sidered a random t-J model in a particular large M limit, with
r.m.s. exchange J , and r.m.s. hopping t . Ref. [52] considered
a SYK model with a random four-fermion interaction term
with r.m.s. strength J , and a random two-fermion hopping
term t . The equations of the latter model map onto (3.4)
and (5.1) with t = J

√
qEA. Their main result was that there

was a crossover from SYK non-Fermi liquid behavior to
Fermi liquid behavior at a coherence energy scale ∼t2/J
[51,52] which equals JqEA. From this, we can obtain the
structure of the low frequency spectrum in the spin glass
phase when qEA � 1. For the spinon spectral density, we
have

ρ(ω) = − 1

π
Im GQ(ω) = 1

π
√

Jω∗
�ρ (ω/ω∗), (5.2)

with ω∗ given by (1.5). The scaling function �ρ obeys
�ρ (0) = 1, and �ρ (ω  1) ∼ 1/

√
ω. We present result for

ρ(ω) in Fig. 4, comparing with the scaling in (5.2).
Similarly, for the spin spectral density we have

χ ′′(ω) = −Im Q(ω) = 1

J
�χ (ω/ω∗). (5.3)

Note that the full dynamic spin susceptibility has the delta
function in (1.4), which is not included in (5.3). The scaling
function �χ (ω) has the form given by (1.6) at ω � 1, and by
(1.3) for ω  1, and this is illustrated in Fig. 5.

The real part of the local spin response function, i.e., the
local static susceptibility has a logarithmic contribution which
violates scaling: the qEA = 0 result in (4.18) is replaced by

χloc = 1

J
√

π
ln(J/ω∗), T = 0. (5.4)

This is illustrated in Fig. 6.
With these results for GQ, the entropy can be computed

form the expression for the free energy in (3.6). We expect

results similar to those in Ref. [52], with an entropy that
vanishes linearly in temperature, with a co-efficient that is
enhanced as 1/ω∗. This was anticipated in Fig. 1. We note that
the bosonic spinon approach also yielded numerical results
consistent with a linear-in-T entropy [23], and a linear-in-T
entropy has also been found in other solvable quantum spin
glass models [31].

VI. COMPLEXITY

In the quantum spin liquid phase, the model features an
exponential density of states and an extensive (in N) ther-
modynamic entropy. As the system enters the spin glass
phase and thermal fluctuations are further reduced, the ther-
modynamic entropy approaches zero. Instead, an extensive
configurational entropy counts an exponential number of pos-
sible meta-stable glass states. This configurational entropy is
often referred to as the complexity �, which can be expressed
as a functional of the free energy F and the break-point pa-
rameter m of the replica symmetry breaking ansatz [26–28].3

The number of meta-stable states in a given free energy band
of width 1/(mβ ) is then given by

�(F , m) = eN�(F ,m). (6.1)

In practice we compute the complexity as the Legendre trans-
form of the free energy with respect to m. As a function of
(β, m), this can be computed as

�(β, m) = βm2 ∂m F (β, m). (6.2)

We will now show how to evaluate this expression in our
model.

Consider the following simple Landau free energy, which
exhibits the basic structure of our model:

Fsg[q, qab] = −d2β

(
q2 + Trq2

n

)

− e3

3
β2

(
q3 + 3q

Trq2

n
+ Trq3

n

)

− d4β

(
q4 + 1

n

∑
a,b

q4
ab

)
+ . . . (6.3)

The coefficients d2, e3, d4 are dimensionful but finite as β →
∞. We computed d2 and d4 in Sec. IV; the coefficient e3 is
generated at O(M−1), see Appendix C. We dropped terms that
do not contribute to the zero-temperature complexity, as well
as terms at higher orders in q and qab.

To evaluate the free energy, we now go beyond the replica
symmetric ansatz and consider full replica symmetry break-
ing (FRSB). This is implemented by starting from the Parisi
ansatz for k-step replica symmetry breaking [53] and then

3See also Ref. [29] for a review, Ref. [30] for a textbook discussion,
and Ref. [31] for a recent application.

085120-8



SPIN LIQUID TO SPIN GLASS CROSSOVER IN THE … PHYSICAL REVIEW B 105, 085120 (2022)

considering the limit k → ∞: we first make an ansatz for
qab with constant blocks along the diagonal and then succes-

sively refine the structure by breaking up blocks into smaller
blocks:

(6.4)

and so on, where Ami is an mi × mi matrix with blocks Ami+1

along the diagonal and all off-diagonal entries filled with qi

such that n = ∑
i mi. In the analytic continuation n → 0 we

replace the matrix qab by a monotonously increasing function
q(x), which extrapolates the structure above. The variable
x ∈ [0, 1] parametrizes continuous breaking of replica sym-
metry. The analog of the Edwards-Anderson parameter is
qEA = q(x = 1).

With this ansatz, the free energy (6.3) then becomes a
functional of q(x):

Fsg[q, q(x)] =
∫ 1

0
dx

{
d2β(q(x)2 − q2) + d4β (q(x)4 − q4)

− e3

3
β2

(
q3 − 3q q(x)2 + xq(x)3 + 3q(x)

×
∫ x

0
dy q(y)2

)
+ . . .

}
(6.5)

Extremizing the action with respect to q(x) leads to the fol-
lowing continuous solution [54]:

q(x) =
{

x
m qEA, x ∈ [0, m]
qEA, x ∈ [m, 1]

, (6.6)

where m ≡ 12d4
e3β

qEA plays the role of the break point param-
eter of an equilibrium solution. The extremization procedure
also relates the value of the diagonal contribution q to qEA:

q = qEA − d2 + 6d4q2
EA

e3β
. (6.7)

Note that we do not separately extremize with respect to q
because even perturbatively the ansatz (6.3) only captures part
of the full q dependence of our system.

Evaluated on the saddle point solution for q(x), the free
energy takes the following value:

Fsg(m, βe) = −d4
2 d4m3

e4
3β

3
e

− d3
2 m(4 − 2m + m2)

6e2
3βe

+ d2
2 (2 − m)(4 − 2m + m2)βe

96d4

+ d2e2
3(2 − m)3β3

e

6(24d4)2

+ e4
3[48 − 5m(4 − m)2]β5

e

15(48d4)3
+ . . . , (6.8)

where βe ≡ mβ is an effective temperature, conjugate to the
free energy. Expanding in large β, we obtain

Fsg(m, β ) = d2
2

e3
qEA + 4d2d4

e3
q3

EA

+ 36d2
4

5e3
q5

EA + O(β−1) + . . . (6.9)

Note again that the free energy is finite as β → ∞. This was
not guaranteed to happen. It is a consequence of the specific
way in which q appeared in (6.3) and of the extremization
condition (6.7).

In order to compute the low temperature complexity, we
take an m derivative (at fixed β) and then expand in large β.
According to (6.2), we find

�(m, β ) ≡ βm2∂mFsg(m, β ) ≡ β2
e ∂βeFsg(m, βe)

= 12d4

e2
3

q2
EA

(
d2 + 6d4q2

EA + . . .
)2 + O(β−1).

(6.10)

The fact that the complexity � is finite as β → ∞ means
that the spin glass at zero temperature is characterized by an
extensive number eN� of metastable states.

VII. DISCUSSION

The initial analysis [10] of the SU(M) random quantum
magnet (2.1) found a gapless quantum spin liquid ground
state in the large M limits realized by fermionic and bosonic
spinons, and both limits yielded a “marginal” dynamic spin
susceptibility with χ ′′(ω) ∼ sgn(ω) at small ω. This frac-
tionalized spin liquid is unstable to spin glass order at low
enough temperatures for any finite M [23], and (4.19) con-
tains an estimate of the critical temperature for fermionic
spinons. A theory of a spin glass ground state was presented
in Refs. [22,23] using bosonic spinons, in which case the spin
glass order can be large, with qEA = O(M0) (see (A2)). How-
ever, numerical studies of the SU(2) case show that the spin
glass order is small [16,17], and the intermediate frequency
spin spectrum was a better match with the large M theory with
fermionic spinons [14,17]. Here we have presented an analysis
which is closest to the numerical observations: a theory for
the onset of weak spin glass order using fermionic spinons,
where qEA is at most O(M−1) [see (2.17)]. We identified a
frequency scale ω∗ = JqEA, and showed that χ ′′(ω) ∼ ω in
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the fermionic spinon theory, as had also been found for small
ω in the bosonic spinon theory. For the case of small qEA, there
is a universal crossover from the physics of a quantum spin
liquid with fractionalized spinons for ω > ω∗, to the physics
of a confining spin glass for ω < ω∗, and we obtained results
for the crossover functions.

In Sec. V, we mapped the crossover from the spectrum of
the SYK spin liquid to the spin glass to the crossover from
non-Fermi liquid to Fermi liquid behavior in the model of
Ref. [52]. We now comment on why this can be interpreted as
a crossover from fractionalization to confinement in our con-
text of the random quantum magnet. Unlike the case for the
model of Ref. [52], the fermions in our quantum magnet, and
in the t-J models of Refs. [51,55], carry a U(1) gauge charge:
(2.2) is invariant under the gauge transformation f α (i) →
f α (i)eiφi (τ ) (see Appendix B). Consequently the SYK spin
liquid can be regarded as a gapless quantum spin liquid with
fractionalized fermionic spinons. The crossover to the spin
glass phase is induced by the qEA term in (5.1), which turns out
to be identical to the influence of the t term in the t-J models
of Refs. [51,55]. The latter t term is known to break the U(1)
gauge symmetry, and therefore, by Higgs-confinement conti-
nuity, we can regard the low frequency regime of our quantum
magnet as a confining regime of the U(1) gauge symmetry. It
is also interesting to compare with the analysis of the quantum
magnet using bosonic spinons in Refs. [22,23]: that model
also exhibits a fractionalized spin liquid regime, and spin glass
order appears by the condensation of bosonic spinons, which
explicitly higgses the U(1) gauge symmetry (see Appendix
A). Moreover the dynamic spectrum χ ′′(ω) ∼ ω appears not
only for bosonic and fermionic spinons in the spin glass
regime, but also for the Ising and rotor spin glasses [31,38,41]
where there is no fractionalization at any frequency scale.
So, as we noted in Sec. I, the random quantum magnet an-
alyzed here yields a realization of fermion-boson duality, and
a solvable theory of deconfinement-confinement crossover in
a gapless system with finite density matter. We are not aware
of other solvable examples of such phenomena.

In Sec. VI, we employed the insights gained from the
structure of the spin glass state to make some general remarks
on the complexity of infinite-range quantum spin glasses in
the low temperature limit. Our main result was that the com-
plexity is generically nonzero and extensive in the limit of
vanishing temperature. For the random quantum magnets con-
sidered here, the SU(M → ∞) models have a quantum spin
liquid ground state with a nonzero extensive entropy in the
limit of vanishing temperature [23] (here “extensive” refers
to proportionality to N , the number of sites, and not to M).
For finite M, we have shown that this entropy is quenched at
an energy scale ω∗. Below ω∗, we obtain a spin glass state
which in the limit of vanishing temperature has no exten-
sive entropy but an extensive complexity. It appears that the
chaotic quantum dynamics in the exponentially large phase
space explored by the quantum spin liquid gets turned off
at low temperatures, and the phase space fragments into an
exponentially large number of subspaces. It would be inter-
esting to explore this idea in the context of the holographic
nAdS2/nCFT1 paradigm, which gives a gravitational inter-
pretation of the low-energy Schwarzian sector describing the
quantum spin liquid phase at strong coupling [11,56]: moti-

vated by the existence of landscapes of multi-centered black
hole solutions in four dimensional supergravity [57,58], it was
previously suggested [31,35–37] that the spin glass crossover
could be realized gravitationally in terms of the fragmentation
instability of AdS2 space-times [34]. The latter gives rise to
a landscape of asymptotically AdS2 geometries characterized
by the number, location, and charge of fragmented throats. It
might then be possible to interpret the complexity of the spin
glass state as a measure of the volume of the moduli space of
gravitational solutions.
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APPENDIX A: BOSONIC SPINONS

Appendix briefly reviews the bosonic spinon theory of the
spin glass state [22,23] of (2.1).

Each site now contains states corresponding to the sym-
metric product of κM (integer) fundamentals, and (2.2) is
replaced by

Sα
β (i) = b†

β (i)bα (i) − κδα
β ,

∑
α

b†
α (i)bα (i) = κM (A1)

with bosons bα (i) on each site i. The bosonic and fermionic
spinon models co-incide only for the SU(2) case of physical
interest, with M = 2 and κ = k = 1/2.

Now the perfectly ordered spin-glass has κM bosons in the
α = 1 state (say), and this replaces the bound in (2.17) by

qEA � κ2(M − 1)

M
. (A2)

Note that (2.17) and (A2) agree for the SU(2) case. However,
unlike (2.17), the bound in (A2) does not vanish in the M →
∞ limit, and so spin glass order can be order unity in M = ∞
theory. This order is realized by a Higgs condensate of the
bosonic spinons [22,23]

〈bα〉 =
√

M(qEA)1/4δα,1. (A3)

This condensate breaks the U(1) gauge symmetry associated
with the bosonic analog of (A1). In the replica theory, con-
densate requires replica off-diagonal components in the boson
Green’s function Gab at zero frequency [22,23]

Gab(iωn) = δabG(iωn) + βδωn,0 gab. (A4)

The replica off-diagonal components of gab break replica sym-
metry, and this symmetry breaking has to satisfy a marginal
stability criterion to obtain a gapless boson spectrum.
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APPENDIX B: U(1) GAUGE INVARIANCE

Consider the following gauge transformation:

f α
a (τ ) −→ eiφ(τ ) f α

a (τ ), f †
aα (τ ) −→ e−iφ(τ ) f †

aα (τ ),

λa(τ ) −→ λa(τ ) − ∂τφ. (B1)

This is an invariance of the fermionic formulation of the the-
ory, e.g., (2.4). In the G-� formulation (2.13), one can see that
the action is invariant under the following transformations:

Gab(τ, τ ′) −→ ei[φ(τ )−φ(τ ′ )] Gab(τ, τ ′),

�ab(τ, τ ′) −→ ei[φ(τ )−φ(τ ′ )] �ab(τ, τ ′),

λa(τ ) −→ λa(τ ) − ∂τφ. (B2)

We can use this gauge symmetry to make λa time-
independent, but cannot remove it entirely because of the
periodicity condition on the fields.

APPENDIX C: HIGHER ORDERS IN 1/M

In this Appendix, we compute higher orders in the 1/M
expansion of the free energy.

We first clarify some notation: we use a matrix dot product
both for fields with two and with four indices. Every “matrix”
multiplication always involves half of the available indices.
Relevant quantities occurring below are

δ� ≡ δ�ab(τ1, τ2), GQ ≡ GQ(τ12)δab,

K ≡ Kab;cd (τ1, τ2; τ3, τ4). (C1)

These multiply as follows:

δ� · GQ =
∫

dτ3

∑
c

δ�ac(τ1, τ3)(GQ(τ32)δcb),

K · K =
∫

dτ5dτ6

∑
e f

Kab;e f (τ1, τ2; τ5, τ6)Ke f ;cd

× (τ5, τ6; τ3, τ4). (C2)

Let us now explain the 1/M expansion of the free energy.
We need to consider higher powers of δ�ab in the expansion
of I[Q]. From (2.13), we find that such terms originate from
expanding the logarithm:

− ln det {−δ′(τ − τ ′)δab − (�ab(τ, τ ′) + δ�ab(τ, τ ′))}
= . . . + 1

3 Tr(δ� · GQ)3 + 1
4 Tr(δ� · GQ)4 + O(δ�5).

(C3)

where we omitted constant, linear and quadratic terms, which
are already taken care of. In the functional integral over
(δGab, δ�ab), we include these higher order terms by intro-
ducing a bilocal source Jab for δ�ab in the integral (4.2):

Z f [Q] ∝ exp

[
−

∑
k�3

M

k
Tr

(
δ

δJ

)k
]

J=0

×
∫

D[δX] e− M
2 δXT·A·δX+Tr[J·δ�·GQ]

∝ [det(K − 1)]−
1
2 exp

[
−

∑
k�3

M

k
Tr

(
δ

δJ

)k
]

J=0

× exp

[
1

M
WQ[J]

]
, (C4)

where we discarded the leading contribution obtained by eval-
uating Z f on the large M saddle point, and we defined

WQ[J] ≡ −J2

2

∫
dτ1 · · · dτ6

∑
a,b,c,d

Jab(τ1, τ2)Jcd (τ3, τ4) Qcd

× (τ6, τ4)GQ(τ15)GQ(τ36) (1 − K)−1
ab;cd (τ2, τ5; τ6, τ4)

(C5)

In order to compute the subleading contributions to the
free energy, we need to evaluate the new contributions to
− lnZ f [Q], which are generated by derivatives with respect
to J. Note that the logarithm does not simply remove the
exponential in (C4) due to the structure of contractions. For
instance, the terms involving four and six J derivatives take
the following form:

− lnZ f [Q] = . . . +
{

1

8M
Tr

(
δ

δJ

)4

W 2
Q +

(
1

36M2
Tr

(
δ

δJ

)6

− 1

108M

[
Tr

(
δ

δJ

)3]2)
W 3

Q + . . .

}
. (C6)

It is most useful to think about these expressions di-
agrammatically: the J-derivatives produce different Wick
contractions among the powers of K. For instance, at O(M−1)
we obtain the following contribution to the free energy from
the first term in (C6):

∝ J4

M

∫
dτ1dτ2dτ3dτ4

∑
a

Qaa(τ13)Qaa(τ24)R(4)
Q

× (τ14, τ43, τ32) (C7)

Similarly, the last term shown in (C6) gives further contribu-
tions at O(M−1).

∝ J6

M

∫
dτ1 · · · dτ6

∑
a,b,c

Qab(τ12)Qbc(τ34)Qca

× (τ56)R(2)
Q (τ23)R(2)

Q (τ45)R(2)
Q (τ61) (C8)

At O(M−2), we get cubic terms such as the following from
the second term shown in (C6):

∝ J6

M2

∫
dτ1 · · · dτ6

∑
a,b

Qab(τ14)Qab(τ25)Qab

× (τ36)R(3)
Q (τ15, τ53)R(3)

Q (τ42, τ26),
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∝ J6

M2

∫
dτ1 · · · dτ6

∑
a,b

Qab(τ13)Qaa(τ25)Qab

× (τ46)R(2)
Q (τ14)R(4)

Q (τ32, τ26, τ65). (C9)

We can now see how further potentially divergent terms
are generated in the free energy functional at higher orders
in 1/M. For example, the diagram (C8) and the last diagram
shown in (C9) lead to new contributions to the free energy,
which are cubic in the spin glass parameters:

Fsg ⊃ −e3

3
β2

(
q3 + 3q

Trq2

n
+ Trq3

n

)
− e′

3 β q

×
(

q2 + Trq2

n

)
+ . . . , (C10)

where e3 = O(M−1) and e′
3 = O(M−2). All possible terms in

the Landau functional theory (e.g., Ref. [38]) are generated
systematically this way. The other diagrams shown above give
1/M corrections to the coefficients ci and di that we already
included in (4.11).

Note that the free energy contribution proportional to
e3 is naively quadratically divergent as β → ∞. How-
ever, upon using the replica symmetric ansatz for qab and
the extremization condition (4.23), this divergence is again
cured and we obtain a finite limit. This follows from the
identity

q3 + 3q
Trq2

n
+ Trq3

n
−→ q3 − 3q q2

EA + 2q3
EA (C11)

for the replica symmetric ansatz as n → 0.
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