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Gain-dependent Purcell enhancement, breakdown of Einstein’s relations,
and superradiance in nanolasers
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Light emitters in a single-mode nanolaser interact with the same cavity field that gives rise to polarization
correlations which transform the cavity mode. Usually these correlations are ignored, however, collective
phenomena can lead to the distinct sub- and superradiance, whose fully quantum description is challenging.
Here we develop a simple yet rigorous picture of radiative transitions in single-mode nanolasers that accounts for
polarization correlations. We show that the collective behavior of emitters modifies the photonic density of states
leading to gain-dependent Purcell enhancement of spontaneous emission. Moreover, the stimulated emission
rate is dependent on both the photon number and the laser line shape. As the laser line narrows, stimulated
emission becomes stronger than predicted by Einstein’s relations and the nanolaser reaches the threshold earlier.
Finally, we provide concise, ready-to-use expressions for spontaneous and stimulated emission rates seamlessly

describing both conventional and superradiant nanolasers.
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I. INTRODUCTION

The Purcell effect, first noted in 1946 for radio frequen-
cies [1], has become a foundation of nanophotonics, playing
a pivotal role in surface-enhanced Raman spectroscopy [2],
ultrafast response dynamics of nanoscale sources of light
[3], and enabling bright and efficient single-photon emitters
[4,5]. The advances in fabrication technology enabled the
production of nanolasers, the record small sources of co-
herent light [6-17], realizing collective coupling of emitters
to a single subwavelength-scaled cavity. Apart from obvious
practical applications, nanolasers attract research interest by
their unique and rich physics, including the thresholdless
lasing [10,11], delayed and gradual transition to coherent
state [18,19], antibunching [20], and many other phenom-
ena. The standard approach to nanolaser modeling employs
rate equations [21,22], in which the spontaneous and stimu-
lated emission rates originate from Fermi’s golden rule [23].
However, Fermi’s golden rule is initially derived for isolated
discrete levels not engaged in any interaction except that
with the continuum of states. In contrast, electronic states in
nanolasers’ gain media are disturbed by other charge carriers
and phonons, causing their spectral broadening. To treat this
disturbance rigorously, radiative phenomena must be studied
microscopically.

Using the master equation approach, Ujihara [24] found
the spontaneous emission rate of a single broadened excited
emitter into the cavity mode as
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where p.(w) and p(w) are Lorentzian densities of states per
unit of angular frequency for the emitter and the cavity mode,
respectively, and g is the light-matter coupling constant. Gu
and coauthors obtain a similar expression [25], except that
their collisional dephasing model yields a non-Lorentzian
density of states for emitters. To obtain the stimulated decay
rate, one multiplies the spontaneous emission rate by the
number of photons in the cavity N, as dictated by Einstein’s
relations for radiative transitions:

Fstim = Nprsp- (2)

Taking into account that only a fraction of emitters are ex-
cited by a factor ny(1 — ny), where ny(;) are populations of the
excited (ground) states, one usually finds the total spontaneous
emission rate as:

Rsp = Nny(1 — nl)rsps 3

where N is the number of emitters in the gain medium. The
total stimulated emission rate combines the absorption and
emission processes in a single term:

Rgtim = N(n2 — n1)rgtim. 4)

In the above expressions, 7y, and ry;m are defined by Egs. (1)
and (2).

The laser rate equation model incorporating Egs. (3) and
(4) (hereafter abbreviated as REM) shows good agreement
with the many-body microscopic model [26] based on the
cluster-expansion approach [27,28]. Although some authors
consider the Purcell enhancement independently from the
stimulated emission [29], REM currently embodies the estab-
lished consensus [30]. However, Eqs. (1) and (2) treat each
quantum emitter independently and ignore their collective
behavior. All emitters interact with the same cavity mode;
therefore their small individual polarizations contribute coher-
ently to a macroscopic electric dipole moment. This dipole
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moment affects the dynamics of the laser mode, which, in
turn, may significantly modify the radiation rates when the
cavity linewidth is comparable or larger than the emitters
linewidth [25,31,32]. This effect is referred to as sub- and su-
perradiance, depending on whether the emission is suppressed
or enhanced.

The increasing interest in superradiant lasers is driven
by the ability to emit very strong pulses [33], stability of
the emission wavelength to fluctuations of the cavity res-
onance [34], and generation of superthermal light [32,33].
Furthermore, most spasers or dielectric nanolasers with highly
confined open cavity modes are expected to operate in su-
perradiant regime thanks to low quality factor of the cavity
resonance.

Within the semiclassical lasing picture, collective effects
are already accounted for by the semiclassical Maxwell-Bloch
equations (SMBE), which, as we note below, predict lower
threshold population inversion than REM. At the same time,
SMBE ignore spontaneous emission into the cavity mode
because they treat electromagnetic field classically.

A fully quantum description of superradiance in nanolasers
is challenging. Existing methods rely on cluster expansion
approach [31-33] or supplement SMBE with the Langevin
forces [35,36]. The former approach can describe any exper-
imental setting; however, it results in a cumbersome set of
coupled equations that provide limited insight. The latter is
mainly applicable to atomic gain media and therefore ignores
the Pauli blocking effects relevant to all nanolasers with semi-
conductor quantum dots as the source of optical gain.

Here we provide a simple picture of radiative transitions
in nanolasers, including sub- and superradiance. The the-
ory is derived using the rigorous Keldysh formalism for
nonequilibrium Green’s functions. We preserve convenient
“golden rulelike” expressions for the spontaneous and stim-
ulated emission rates and show that sub- and superradiance
in spontaneous emission emerges from the transformation of
photonic density of states p(w) caused by polaritonic trans-
formation (dressing) of the cavity mode; p(w) depends on
the population inversion, thus superradiance in nanolasers
can be understood as gain-dependent Purcell enhancement.
On the other hand, stimulated emission is enhanced by line
narrowing, hence the reduced threshold compared with REM
and violation of Einstein’s relations for single-mode lasers.
Notably, our model shows that sub- and superradiance in
nanolasers can appear even without the modification of the
collective electronic state, described in the seminal work by
Dicke [37].

II. NANOLASER MODEL

We consider the Tavis-Cummings model [38] for the
interaction of an ensemble of two-level emitters with the
single-mode quantized field in a cavity:

H = Hem + chv + Hintv (5)

where Hamiltonians of the emitters and the cavity (& = 1)
are H,, = Z?’Zl(slciicli + ezc;cz,-) and H,,y = w.a'a corre-
spondingly. Here ¢, &, are the energies of the ground and
excited emitter states; w, is the central frequency of the cav-

ity mode; ¢!’ ¢{”, a" are annihilation (creation) operators

(@)  i-th emitter (b)

cavity

BB

FIG. 1. (a) Schematic of the laser model comprising N two-
leveled emitters radiatively coupled to the cavity mode. Ground
(labeled 1) and excited (labeled 2) levels of each emitter are coupled
to fermionic reservoirs (labeled FB1i and FB2i for the ith emitter)
responsible for incoherent pumping and collection of electrons and
homogeneous broadening of electronic levels. Cavity loss is mod-
eled by coupling to bosonic bath BB. (b) Self-energies originating
from light-matter interaction in the system for the cavity photons
[Ty, ground Xy; iy, and excited X,;_i, electronic levels. (c) Vertex
function expansion showing the leading-order correction.

of the ground and excited levels of the ith emitter and the
cavity mode, respectively; N is the number of emitters in
the cavity. Light-matter interaction is governed by Hijy =
Zf.vzl (gic;cla + H.c.), where g; is the constant of light-matter
coupling. To achieve lasing, one should pump the excited
electronic state and collect electrons from the ground state,
which in our model is realized by connecting each emit-
ter’s electronic levels to corresponding fermionic reservoirs,
as shown in Fig. 1(a). The cavity loss is modeled as cou-
pling to a bosonic bath. Here we do not impose restriction
cJ{cl + c;cz = 1 and allow electrons to populate the excited
and ground levels independently, which applies to gain media
based on semiconductor quantum dots [28]. Also, the absence
of the restriction allows for a more straightforward diagram-
matic treatment than otherwise [39].

We study the described driven-dissipative Tavis-
Cummings model using the Keldysh diagrammatic technique
[40] for nonequilibrium Green’s functions [41]. Within
this method all observables are defined through the Green’s
functions of electronic and photonic states, while the emission
rates follow directly from quantum Kkinetic equations.
Importantly, we can account for large dipole moment of
the gain medium in all perturbation orders via the partial
summation of relevant diagrams.

Couplings to the fermionic reservoirs are described by the
retarded and lesser self-energies [42] 25}31,%(")) = —iy12/2
and T, 5 (@) = in{ ,y1.2, whereas similar self-energies for
the coupling to a bosonic bath are [T, (w) = —ik /2 and, ne-
glecting thermal occupancy of the bosonic bath, IT5; (w) = 0.
Here «, y1, y» are the photonic modes damping rate and tun-
neling rates to the ground and excited levels, correspondingly.
Superscripts <, >, R, A denote the lesser, greater, retarded,
and advanced components of Green’s functions and self-
energies. For simplicity, we let populations 10 , of FB1i and
FB2i be energy-independent. We focus on the steady-state
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solution, thus for any quantity O: 04 (w) = [0%(w)]*. Also,
0> =0~ +O0R - 0",

Figure 1(b) depicts self-energies from light-matter interac-
tion. We treat the interaction self-consistently, which means
that all lines in diagrams in Fig. 1(b) label dressed Green’s
functions. Our approximation is valid when the number of
photons in the cavity is not too large so that the corrections
to the vertex function, shown in Fig. 1(c), can be neglected.
The components of interaction-induced polarization operator
read

N
7 da), < / /
M (@) = —i ; |gi|2f E[Gli(a) )GE(@ + w)
+Giy(@)Gi( + o)), ©)
N do’ >
< . <
I (@) = —l;|gi|2/EGﬁ(w/)Gi(w’—Fw), (7)

where G,; denote Green’s functions of the ith emitters
electronic levels. To derive the emission rates, we use the
Kadanoff-Baym (quantum rate) equations. In the stationary
state,

. 8Np . dw R A -
0=2= / o M*@) - I @)D" (@)
+ f —;lwﬂ<(w)[DA(w)—DR(w)], ®)
T

in which N, is the number of photons and D(w) is the
Fourier transform of the photonic Green’s function D(¢,t") =
—i(Txla(t)a'(t")]), where T denotes time ordering along the
Keldysh contour. The polarization operator contains both the
dissipative and the interaction parts [T = Tlgg 4 ITjy. In this
rate equation, the total stimulated and spontaneous emission
rates into the cavity mode are given by

dw
Riin = / 5

Ry = / ;’—jn;,xm[mw)—w(wn. (10)

[M1f (@) — T} (@)D" (@), (9

The physical meaning of these equations becomes clear
after we introduce photonic p(w) = (—1/7)Im[DR(w)]
and electronic pj;(w) = (—1/7 )Im[Gf.Zi(w)] spectral
functions  (densities of states) and corresponding
nonequilibrium populations n(w) and n(w): D=(w) =
—2rin(w)p(w), G7,(®) = 27in 2i(®)p1.2(w). Using the
identity IR — IT* = IT> — I1~, we express the spontaneous
and stimulated emission rates of the ith emitter as

Fimsp = 21 |gil? / dwdw'nyi(w + o)1 — ny(o)]
X pa(w + & )p1 (@) p(w), (11)
Fiostim = 277 |gi|* f dwdw' [nyi(w + ") — nii(@)]

X pa(w + ") p1 (0 n(w)p(w). (12)

The obtained equations are very similar to those for the
rates of interband transitions in bulk semiconductors [23].

Note that Egs. (11) and (12) treat initially discrete bound elec-
tronic levels and the cavity mode as if they are energy bands
with energy-dependent populations and densities of states.
Transformation of the discrete level into an energy band can
be qualitatively explained by its interaction with the contin-
uum of reservoir modes, producing a continuum of hybridized
“modes of the Universe” with different coupling strengths to
the quantum emitter. Energy-dependent populations and den-
sities of states absorb non-Markovian many-body effects into
convenient “golden-rule-like” form. Pumping and dephasing,
as well as radiative transitions themselves, self-consistently
determine the densities of states and population functions. The
nonequilibrium photonic population is dictated by the balance
of the spectral densities of emission and loss rates in Eq. (8),
leading to

n(w) = = /(IR — ). (13)

Finally, the retarded Green’s function required for the cal-
culation of the photonic density of states is given by the
Schwinger-Dyson equation

DR ()] = v — v, — TR (w). (14)

Similar equations determine the densities of states of elec-
tronic levels p;(w), p2(w) and their frequency-dependent
populations n(w), ny(w). In addition to the transformation
of the cavity mode, the full set of self-consistent equations de-
scribes a nonlinear optical response of the gain medium which
includes population-related phenomena, such as gain satura-
tion and spectral hole burning, and mixing of electronic levels
via the strong cavity field usually named the AC Stark effect.
For the sake of simplicity, we first focus on the transformation
of the cavity mode while neglecting nonlinearities in the gain
medium.

III. NANOLASER IN THE LIMIT OF A LINEAR
GAIN MEDIUM

We assume that all coupling constants are equal g; = g
and ignore the transformations of the emitters levels and
densities of states by the cavity field. Mathematically this
corresponds to the limit of g — 0, N — oo while |g|’N is
constant. Such a limit matches SMBE [43]. For any finite
number of photons in the cavity, we can ignore the contribu-
tions from light-matter interaction to total self-energies of the
electronic states X »; & Xgpj 2 and, more importantly, vertex
corrections [Fig. 1(c)]. As a result, the electronic densities of
states are the usual Lorentzian functions

v12/Q2m)
(@ —e12)? + (112/2)*

while the populations of electronic levels coincide with
those of the fermionic reservoirs nj»(w) = n?)z. However,
we should account for the interaction in polarization oper-
ator IT = Igp + Iiy. Using Eq. (6), we find the retarded
interaction-induced polarization operator responsible for the
polaritonic transformation of the cavity mode,

p12(w) = (15)

_ l’N(n3 —nt)

e (o) = —
®— w1 + iYe/2

(16)
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where wy; = &, —¢; and y. = y; + y». Light-matter inter-
action produces a term that is proportional to the classical
electric susceptibility of the gain medium. The retarded
Green’s function, evaluated from Eq. (14), gives the photonic
density of states modified by the gain medium,

-1
! k18PN (nh —n})
w)=——Im|lw—-—w. +i=— 4+ ———= 17
p@) T [ T2 w—wntive/2 (an
It is worth noting that, within the studied limit, the photonic
Green’s function is the Green’s function of SMBE:

id,Df = (we — ik /2)DR + g*P + 8(1),
idP = (w31 — iye/2)P + gD*N(n) —n),  (18)

where P denotes the dipole moment of gain medium.

Next, instead of the photonic population, we directly ex-
tract the line shape function S(w) = n(w)p(w) by balancing
photon emission and loss, which gives

KS(w) = Ryp(@) + G(w)S(w), 19)

where Ryy(w) = 27 N|g|*n(1 — n))pe(w)p(w) is the rate of
spontaneous emission of all emitters per unit of angular
frequency, and G(w) = 2N |g|*(n) — n?)pe(w) is the modal
gain spectrum, with pe(w) = [ dw'pi(e)p2(w + ') being
the emitter’s density of states. Once S(w) is determined, we
can calculate the spontaneous and stimulated emission rates
as

R;;t =/Rsp(w)dw, R;‘;‘m :/g(w)S(a))dG). (20)

These equations are very similar to Egs. (3) and (4). In fact,
one can recover Egs. (3) and (4) from Eq. (20) by manually
setting up

Kk/Q2m)
(0 — we)* + (k/2)?

and S(w) = Npp(w). This means that observable characteris-
tics of lasing, such as line narrowing and frequency pulling,
are the result of the cavity mode transformation under the
collective dipole moment of emitters. Importantly, this trans-
formation occurs in any structure capable of lasing, regardless
of the number of emitters and the coupling strength between
the emitters and the cavity mode. Thus fundamentally, lasers
always operate beyond the weak coupling regime.

To determine the laser threshold, we analyze the poles of
DR(w) shown in Fig. 2(a). They obey the equation

p(w) = 2L

(@ — o + ik [2)(® — w21 +iye/2) + |gI*N(n —nl) =0,
(22)
solving which we find that one of the poles crosses the real
axis at wy = w. + k A/(k + y.) when G(wy) = «, or, in terms
of the population inversion, when

. 2A \?
PO o . (23)
4N |g|? K=+ Ye

Above, A = wy; — . is the detuning between the emitters
and the cavity. Notably, our nanolaser model predicts a dif-
ferent lasing threshold from REM. The latter reaches the
balance between stimulated emission and the photon loss
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FIG. 2. (a) Poles of the retarded photonic Green’s function as
a function of population inversion. Arrows show the direction of
increase in inversion. Dashed parts of the curves are relevant to neg-
ative inversion n < n?, i.e., absorbing gain medium. (b) The optical
density of states p(w) normalized to its maximum value and (c) the
normalized emission spectrum plotted at different degrees of popu-
lation inversion. All calculations assume A = /3, y. = 0.4k, n? =
0; (1) denotes the threshold population of the excited level given
by Eq. (23).

27 N|gl*(n) — n)N, [ pe(w)p(w)dw = kN, at a population
inversion of

2
no_nozw 1+ 24 (24)
2T AN c+ve) |

exceeding the value in Eq. (23) by a factor of (y. + k)/Ve.-
At the same time, Eq. (23) agrees with SMBE, while the
threshold of REM is not [43]. Unlike REM, SMBE include
the collective dipole moment of emitters classically, thus the
obtained agreement can be understood as a particular case of
quantum-classical correspondence.

Figures 2(b) and 2(c) show how the optical density of
states and the line shape function evolve with the increase in
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population inversion. For illustrative purposes, we assumed
A =«/3, y. = 0.4k, ”(1) = 0. Remarkably, the optical den-
sity of states is negative in a limited spectral band corre-
sponding to G(w) > x. Although negative densities of states
look exotic and are impossible in purely lossy environments,
they have been reported for optical systems which combine
amplifying and absorptive media [44]. At the same time, no
exotic behavior is seen in the calculated line shape function
S(w) which remains positively valued and exhibits peak nar-
rowing and frequency pulling. As the population inversion
approaches its threshold value, the laser luminescence peak
approaches wy, which again fully agrees with SMBE [43].
Although the photonic density of states and the line shape
function have complicated profiles, it is possible to calculate
the total spontaneous and stimulated emission rates analyti-
cally. After some algebra exploiting the residue theorem (see
Supplement 1, Sections I and II for details in the Supplemental
Material [45]), we obtain one of key results of this paper:

N|g|2 K+ Ve — Gmax/2

Ry = )T e
RS = kN, — R;‘I’f, (26)
where the number of photons in the cavity is
4Ngl® n3(1—n)
N, = f S(w)dw = E__chy , 27)
K[l + (%) ] — Gmax

and Gax = G(@a1) = 4N(1g]*/7*)(n§ — n))/ve. In the above
expressions we have restored 7 for the convenience.

The effect of the polaritonic transformation on the total
spontaneous emission rate is equivalent to the reduction of the
effective cavity damping rate. As a result, Eq. (25) predicts
the increase in the total spontaneous emission rate, i.e., su-
perradiance, at positive population inversion (Gpmax > 0) and
subradiance when the gain medium absorbs light (Gyax < 0),
unless A is very large. This leads to gain-dependent values
of beta and Purcell factors even in the absence of inhomo-
geneous broadening. In the case when A =0, the Purcell
factor increases by a factor of 2 as the population inversion
approaches the threshold value. Rates of the spontaneous and
stimulated emission of radiation are connected by the Einstein
relations, which in the case of a single cavity mode is typically
expressed by Eq. (2). However, in our case, Eq. (2) holds
only for spectral densities of the spontaneous and stimulated
emission rates of an excited emitter ryim(w) = rop(w)n(w),
while the total rates violate it due to nonuniform n(w), as seen
from Egs. (25) and (26).

To demonstrate violation of the Einstein’s relations, we
plot the violation factor defined as

_ Rym 1) —nf
- 0 0
NpRsp n3(1 = nf)

Fy (28)

as a function of the photon number (Fig. 3). According to this
definition, Fy = 1 for emission rates given by Eqgs. (3) and
(4) which obey Einstein’s relation. By contrast, the violation
factor calculated using Eqgs. (25) and (26) reaches above 2.75.
Note, that, even when N, ~ 0, i.e., when the photonic density

2.75

2.7 -

2.65F -

2.6 -

Violation factor

2.55 -
| | |
0 2 4 6 8 10

Photon number

FIG. 3. Einstein’s relation violation factor determined by
Eq. (28) as a function of the photon number in the laser mode. The
nanolaser parameters are the same as in Fig. 2.

of states is still Lorentzian, the Fy is still above 2.5, thanks to
nonuniform n(w).

Although our equations predict the violation of Einstein’s
relations, this violation becomes weak if ¥ < y., or the
nanolaser belongs to “class-B” lasers [46]. This is not the
result of weak coupling but rather is caused by insensitivity
of emission rates to the transformations of p(w) and S(w). In
fact, one can simply assume p(w) = §(w — w.) and S(w) =
Npd(w — w.). At the same time, solid-state nanolasers can
disobey k¥ < y. since the quality factor of wavelength-scaled
nanocavities can be as small as a few hundred [7] or even less
for open cavities while y. of quantum dots can be made as
small as 10 eV at low temperature [47]. In such case, they
are often referred to as superradiant, with a number having
been experimentally realized [48,49].

IV. FEEDBACK, LASING THRESHOLD, AND
LIMITATIONS OF THE THEORY

In this section, we briefly discuss the role of the cavity
feedback on electronic levels and limitations of the described
theory. As the population inversion increases, the number
of photons in the cavity grows, eventually making light-
matter-interaction-related contributions Xi;_in¢, 22i—int to the
electronic self-energies large. To estimate the photon number,
when we can no longer neglect these contributions, we di-
rectly calculate £F . . Assuming N, > 1, the line shape can
be approximated as S(w) = Np6(w — wyp), or, equivalently,
D~ (w) = —2miNy8(w — o). Neglecting a small contribution
from DR (w) we find

. < '
S dlel? / D™ (@G + o) -~
T
1gI*N,
o+ wy— e +iy/2

(29)

Demanding |Z8 . (0)] < |ZX,,.(w)| for real frequencies,
we obtain N, < y1y2/ (4/g|*). When the number of photons
approaches this limit, two phenomena occur. First, due to
the rapid stimulated emission, populations of electronic levels
ni(w), ny(w) start to deviate from fermionic baths occupan-

cies n?, ng, which results in gain saturation and spectral hole
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FIG. 4. Diagrammatic series for the two-particle Green’s func-
tion for photons.

burning. Second, the corrections to the electronic densities of
states make the modal gain spectrum G(w) = 27 N|g|*(n, —
np)pe(w) explicitly dependent on the number of photons in
the cavity mode, even if n; and n, are maintained at a con-
stant level. This regime corresponds to the onset of the AC
Stark effect [50]. In most nanolasers, only a small fraction of
emitters homogeneous broadening is caused by the pumping
or decay, with the rest of it being due to elastic phase breaking
processes, thus gain saturation occurs much earlier than the
AC Stark effect. In this case, ”(1)(2) in Egs. (25) and (27) are to
be replaced with ny(2) = (cf(z)c 12))> which should be obtained
from ny2) = n{5) £ kNp/(Nyr1(2)), where “4 corresponds
to the equation for n;, while y,¢2) are population relaxation
rates, now different from electronic level homogeneous broad-
enings y1(2)-

Next, we demonstrate that our theory describes nanolasers
in both the lasing and the nonlasing regimes by estimating
the lasing threshold and showing that it is within limits of
applicability of the developed theory. The concept of lasing
and in particular lasing threshold has been attracting much
attention in recent years. With the experimental demonstration
of so-called thresholdless nanolasers [10], the usual definition
based on features of input-output (light-light or light-current)
characteristics becomes ill-defined [51]. As a result, alterna-
tive definitions have been proposed [18-20,52], most of which
are based on the statistics of radiation, which is Poissonian
for coherent light, while that of incoherent, or thermal, light
is described by the Bose-Einstein distribution. We consider
a two-particle photonic Green’s function D*(t, 1, t3, ts) =
—(Txla(t))a(ty)a’ (t3)a’ (t4)]). This function is directly re-
lated to the second-order coherence function g®(r) =

(a'()d' ¢+1)a(t+1)alt)) : : : :
OO e e which is capable of unambiguous dis-

tinction between thermal (g*(0) = 2) and coherent (¢ (0) =
1) radiation. Figure 4 shows the diagrammatic series for D?P.
The first two terms correspond to

(@ ®)a'(t + va(t + 1)at))
~ (a'()a))(a' (t + D)at + 1))
+a"®at + OV ¢ + 1)a@)), (30)

which translates into the Siegert relation [53] g® (1) =1 +
18V (7))?, where g(V(7) is the first-order coherence function.
Radiation obeying the Siegert relation is obviously thermal
(g®(0) =2) since g(r =0) =1 for a single-mode elec-
tromagnetic radiation. The breakdown of the Siegert relation
happens when the third and fourth terms of the diagrammatic

series become comparable to the first two; that is,
FA
Y1V2VeVine

where Yjine <K Ve is the FWHM of the laser peak (see Supple-
ment 1, Section III in the Supplemental Material [45] for more
details).

To determine the limits of applicability of the employed
self-consistent second-order approximation we roughly esti-
mate the previously discarded vertex correction [Fig. 1(c)]. Its
relative value in the leading order does not exceed |5g/g| ~
[4] g|2Np /(71y2)]?, setting up the limitation on the photon
number N, < 172/ (4] g|%) (see Supplement 1, Section IV in
the Supplemental Material [45]). When the number of photons
is moderately high, the vertex correction can still be neglected
compared with the corrections to the electronic Green’s func-
tions since the former is proportional to the second power
of small parameter 4| g|2Np /(y1y2) while the latter is propor-
tional to the first power of this parameter. Notably, the photon
number at the coherence threshold, determined by Eq. (31),
is well within this limit; thus the developed theory applies
both to nonlasing and to lasing regimes. Eventually, when
4 g|2Np /(y1y2) ~ 1, the nanolaser enters mostly unexplored
regime as SMBE, REM and this theory no longer describe the
physics of the nanolaser, even if ¥ < ye.

2
N2, 31)

V. CONCLUSION

To summarize, we present a systematic study of lasing
nanocavities with continuously pumped gain medium using
the Keldysh formalism for nonequilibrium Green’s functions.
Our theory incorporates non-Markovian cavity-emitter dy-
namics and the polarization correlations between emitters into
population functions and densities of states [see Eqs. (11) and
(12)]. We show that nanolasers always operate beyond the
weak coupling limit, as the photonic mode is transformed by
the collective electric dipole moment of the emitters in the
active region, which leads to sub- and superradiance. Remark-
ably, the discovered mechanism of sub- and superradiance is
fundamentally different from the Dicke superradiance since
no transformation of the electronic state is involved. Key
equations of our theory (19, 20) have a simple rate equa-
tion structure. Our approach systematically adds spontaneous
emission to SMBE. The use of the Keldysh formalism allowed
us to maintain a sufficient level of mathematical rigor by
revealing the limits of validity for all involved approximations
and the error scales associated with them.

Remarkably, while the derivation relies on the Keldysh for-
malism, the application of the developed theory to nanolasers
at N, < y172/(4]gl*) does not require mastery of many-body
perturbation theory. The retarded Green’s function of photons,
which describes the transformation of the photonic density of
states, can be obtained directly from SMBE (18) or classical
electrodynamics. The laser line shape naturally emerges from
the rate equation (19). Computations of input-output curves
would benefit from compact ready-to-use expressions (25,
26, 27) connecting the population inversion to the number
of photons and radiative emission rates. These expressions
shed light on nanolaser physics by revealing gain-dependent
Purcell enhancement and breakdown of Einstein’s relations
due to line narrowing. Also, we predict the negative spectral
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density of spontaneous emission near the lasing threshold.
Finally, we discuss the nonlinear optical response of the gain
medium and show that the transition to coherent emission
happens within the validity limits of our theory.

With foreseeable extensions to broadband gain media, such
as bulk semiconductors and quantum wells, our theory creates
a firm ground for studies of many-body phenomena in active
nanophotonic devices.
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