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Multigap topology and non-Abelian braiding of phonons from first principles
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Non-Abelian states of matter, in which the final state depends on the order of the interchanges of two quasipar-
ticles, can encode information immune from environmental noise with the potential to provide a robust platform
for topological quantum computation. We demonstrate that phonons can carry non-Abelian frame charges at the
band-crossing points of their frequency spectrum, and that external stimuli can drive their braiding. We present
a general framework to understand the topological configurations of phonons from first-principles calculations
using a topological invariant called Euler class, and provide a complete analysis of phonon braiding by combining
different topological configurations. Taking a well-known dielectric material Al2O3 as a representative example,
we demonstrate that electrostatic doping gives rise to phonon band inversions that can induce redistribution of
the frame charges, leading to non-Abelian braiding of phonons. Our work provides a quasiparticle platform for
realizable non-Abelian braiding in reciprocal space, and expands the tool set for studying braiding processes.
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I. INTRODUCTION

Non-Abelian states of matter arise from noncommuta-
tive interchanges of quasiparticles [1]. In this process, called
braiding, the winding of one quasiparticle around another can
encode information, creating non-Abelian states that are im-
mune from external noise: as long as the braiding occurs, the
information is topologically protected. This process can form
the basis for topological quantum bits (qubits), and a variety
of strategies for non-Abelian braiding have been proposed,
including braiding of quasiparticles in intrinsic topological
states such as fractional quantum Hall systems [2], and also in
symmetry-protected topological states such as half-quantum
vortices in superconductors with p-wave symmetry [3] and
Majorana modes in hybrid systems [4]. Multiple variants
of these proposed architectures exist [5,6], and experimen-
tal evidence has started to emerge in the past few years
[7,8], providing a proof of principle for the existence of non-
Abelian quasiparticles. However, multiple difficulties remain
in exploiting these quasiparticles for braiding, for example,
Majorana fermions are boundary states that have proven chal-
lenging to observe [9]. It would therefore be desirable to find
alternative platforms in which non-Abelian braiding exists.

The recent development of the theory of topology in the en-
ergy bands of crystals [10–46] has created new opportunities
for exploring non-Abelian braiding of band-crossing points
(nodes) in reciprocal space [47–52], providing an alternative
to the real-space braiding exploited by other strategies. Real-
space braiding is practically constrained to boundary states,
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which has made experimental observation and manipulation
difficult; instead, reciprocal-space braiding occurs in the bulk
states of the band structures and we demonstrate in this work
that this provides a straightforward platform for non-Abelian
braiding. Concretely, reciprocal-space braiding occurs be-
tween nodes carrying non-Abelian frame charges in multiband
systems described by a real Hamiltonian [48–60], and as such
is referred to as multigap topology, in contrast to the single-
gap topology associated with two-band systems. The real
Hamiltonian constraint leads to a real basis of eigenvectors
[48–54,61,62] and is fulfilled with the symmetry requirement
of either (i) a combination of C2 rotation symmetry and time-
reversal symmetry T for both spinful and spinless systems, or
(ii) a combination of spatial inversion symmetry P and time-
reversal symmetry T for spinless systems. In any multiband
system arising from a real Hamiltonian, the band-crossing
points carry non-Abelian frame charges that can be converted
through the braiding of nodes belonging to adjacent energy
gaps [51,53,54,63]. If a pair of nodes within a gap carry the
same frame charge (with the same sign), they cannot be anni-
hilated when brought together. Conversely, two nodes within
the same gap with opposite frame charges can be annihilated.
When nodes are braided, the signs of their non-Abelian frame
charges flip, thus changing the relative stability between pairs
of nodes in the same gap. As a consequence, the braiding of
nodes is accompanied with the transfer of stable pairs of nodes
from one gap to an adjacent gap.

To achieve elementary braiding it is necessary to braid
one node of an energy gap with a node of an adjacent gap
(the gap immediately above or immediately below in energy).
The motion of the nodes can be driven by modifying the
band structure of the material with the application of external
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stimuli. In solid-state systems, where the band structure in-
herits the symmetries of the crystal, braiding involves groups
of nodes that are related by symmetry. Moreover, the braid
trajectories usually collapse onto the high-symmetry points of
the Brillouin zone. As a consequence, the transfer of a stable
pair of nodes from one gap to an adjacent gap is often mani-
fested by a band inversion at one of the high-symmetry points,
and such band inversion provides a very direct signature of the
braiding process in crystalline systems. This phenomenology
is rather general, and reciprocal-space braiding can in princi-
ple occur in multiband systems of any quasiparticle, including
electrons and phonons.

In this work we argue that phonons are an ideal platform
to study the non-Abelian braiding of band nodes in the con-
text of multigap topology. As a bosonic excitation associated
with ionic vibrations, the entire phonon spectrum is readily
accessible to external probes. This contrasts with fermionic
excitations such as electrons, in which the Pauli exclusion
principle means that only band nodes near the Fermi level
can be accessed, placing significant restrictions to the full
exploitation of multigap topologies. Additionally, phonons
are charge neutral, spinless quasiparticles, and time-reversal
symmetry T is hard to break in phonons because they do
not directly couple to magnetic fields. For these reasons, the
symmetry requirements of real Hamiltonians can be easily
fulfilled by phonons in a wide range of materials, suggesting
that many will exhibit non-Abelian frame charges in their
phonon dispersion. This motivates us to extend the study of
phonon bands from single-gap topologies, which have been
extensively studied [64–83], to multigap topologies, which
remain largely unexplored.

The main purpose of our work is to provide a gen-
eral framework to study non-Abelian braiding of phonons
using first-principles methods, enabling the accurate material-
specific calculation of multigap topologies in the phonon
bands of any material. The key mathematical objects to study
multigap topologies are (i) non-Abelian frame charges, and
(ii) a topological invariant called Euler class, which captures
the relative stability of a pair of nodes within the same gap,
that is, whether annihilation of the nodes is possible or not,
and that in turn depends on their trajectory with respect to the
nodes of the adjacent gaps. We describe the calculation of the
Euler class for phonon bands using the phonon eigenvectors
that can be obtained from a first-principles lattice dynamics
calculation. We also explain how to then use the Euler class to
derive the global topological configurations of all the nodes in
the multiband system.

To illustrate our method, we study non-Abelian braiding
of phonons in monolayer Al2O3 from first principles. We
show that Al2O3, a well-known dielectric material, carries
non-Abelian frame charges in its phonon dispersion, and
that braiding within a three-band subspace can be driven
with electrostatic doping. We explain in detail how to de-
termine the Euler class to construct consistent topological
configurations during the braiding process, thus providing a
template for analogous calculations in other materials. Our
main prediction, non-Abelian braiding constrained by crystal
symmetry and driven by electrostatic doping in monolayer
Al2O3, constitutes a robust proposal for the practical realiza-
tion of this phenomenon. Additionally, Al2O3 has been widely

incorporated into electronic devices as a dielectric material
[84–87] and, as a result, electrostatic doping using a gate
voltage could be seamlessly integrated into the modern mi-
croelectronics industry.

The paper is structured as follows. In Sec. II, we review the
theoretical background behind non-Abelian frame charges,
the associated patch Euler class, and the Dirac strings that con-
nect nodes with half-integer Euler class [48]. We then present
a general computational methodology to calculate the Euler
class of phonon band-crossing points from first principles in
Sec. III. In Sec. IV, we apply this methodology to study non-
Abelian braiding of phonons driven by electrostatic doping
in monolayer Al2O3 taking place in a three-band subspace. In
Sec. V, we present our conclusions and discuss future research
directions.

II. THEORETICAL BACKGROUND

A. Non-Abelian frame charges

We start by introducing non-Abelian frame charges in
the context of a three-band Bloch Hamiltonian of a two-
dimensional system with C2T symmetry. The spectral decom-
position of the 3 × 3 Hamiltonian gives

H =
∑

n=1,2,3

|en〉En〈en|, (1)

with the ordered eigenvalues E1 < E2 < E3 (which we as-
sume to be gapped) and the eigenvectors {|en〉}n=1,2,3 that
can be chosen to be real in an appropriate basis [50].
As a result, the three real and normalized eigenvectors
form a three-dimensional orthonormal frame (|e1〉, |e2〉, |e3〉)
∈ R3 × R3, that is, an orthogonal matrix O(3) or, fix-
ing the handedness (i.e.. the orientation of the frame), a
3D rotation matrix SO(3). For real eigenvectors, the gauge
phase degree of freedom of complex eigenvectors turns
into a +/− sign degree of freedom [50,54]; specifically,
(|e1〉, |e2〉, |e3〉), (|e1〉,−|e2〉,−|e3〉), (−|e1〉, |e2〉,−|e3〉), and
(−|e1〉,−|e2〉, |e3〉) all represent the same state (the orien-
tation of the frame is not preserved if only one sign flips).
Therefore, the order-parameter space of the Hamiltonian can
be expressed as SO(3) modulo the group of π rotations that
flip the sign of two eigenvectors, namely, SO(3)/D2 (the di-
hedral point group D2 = {E ,C2,C′

2,C′′
2 } is composed of three

independent and perpendicular π rotations) [63].
For a band-crossing point (node) in a three-band system,

we can define a topological frame charge by the geometry of
the SO(3) rotations encircling the node in momentum space,
as the acquired angle can be calculated by decomposing the
three-dimensional (3D) rotation matrix around the encircled
node [50,51,54,88]. A closed path in SO(3)/D2 can be charac-
terized by the fundamental homotopy group π1[SO(3)/D2] =
Q, where Q = (±i,± j,±k,−1,+1) is the quaternion group
with i2 = j2 = k2 = −1, i j = k, jk = i, ki = j, and where
the charges {i, j, k} anticommute [54]. Lifting the SO(3)
frame in the covering spin group Spin(3) = SU(2) and using
the correspondence (−iσx,−iσy,−iσz ) �→ (i, k, j) from the
parallel-transported spin frames over a base loop l and the
quaternion charges, we can assign a quaternion frame charge
to any node formed by the bands within the region bounded by
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FIG. 1. Topological configurations (a) before and (b) after the
braiding. Squares (circles) represent the nodes formed by the lower
(upper) two bands, and open (closed) symbols represent the nodes
with negative (positive) frame charges. Importantly, the frame
charges of the nodes are unambiguously defined only once a base
point, an oriented base loop, and choice of gauge have been fixed.
We implicitly assume that these have been fixed and we do not show
them in the figure.

the loop l [54]. The nodes formed by the lower two bands can
thus be characterized by the frame charge ±i, and the nodes
formed by the upper two bands can be characterized by ± j.
A pair of nodes, one formed by the lower two bands and the
other formed by the upper two bands, can be denoted by ±k
as k = i j. We note that the sign of the charges is fixed by (i)
the gauge chosen for the frame at a base point of the loop, and
(ii) the orientation of the parallel transport over the base loop.
The stability of a pair of nodes formed by the same two bands
can then be characterized by −1 because two nodes with the
same frame charge cannot annihilate when brought together,
as can be deduced from the algebra of the quaternion charges,
i.e., i2 = j2 = k2 = −1 [note k2 = i · j · i · j = i · j · (− j) ·
i = i2 = −1]. We also conclude that the −1 frame charge is
gauge invariant since (+i)2 = (−i)2, and similarly for j and k.
On the other hand, two nodes with opposite frame charges can
be annihilated or created pairwise, with a total frame charge
of (−i)(+i) = (− j)(+ j) = +1.

The quaternion group is non-Abelian, as captured by the
noncommutativity of the charges {i, j, k} and the nontrivial
action of their conjugation, e.g., j−1i j = − ji j = j2i = −i.
This indicates the possibility of flipping the non-Abelian
frame charge of a node. Keeping in mind that the frame
charges are defined for a fixed base point with a fixed oriented
base loop, we can easily see, through the composition of
oriented loops, that a conjugation operation, say j−1i j = −i,
corresponds to the braiding of a node i around a node in an
adjacent gap j [54]. Therefore, the band nodes in three-band
systems can carry a non-Abelian charge, and the sign of the
topological frame charge can be flipped by a braiding pro-
cesses, as schematically shown in Fig. 1. Hereafter, we use
open (closed) symbols to represent the nodes with negative
(positive) frame charges. Different from the topological in-
variants formed only by two bands in single-gap topologies, in
three-band systems the frame charge depends on the braiding
of the nodes formed by both the lower two and the upper two
bands, which involve all three bands [47]. For clarity, we use

squares (circles) to represent the nodes formed by the lower
(upper) two bands. As shown in Fig. 1(a), a node formed by
the lower two bands with a frame charge +i (labeled as a
closed square) can circle another node formed by the upper
two bands with a frame charge + j (labeled as a closed circle),
and as a result, the signs of the frame charges are changed to
be −i and − j, respectively [labeled as an open square and an
open circle in Fig. 1(b)]. With this process we can create an
obstruction to annihilate two opposite nodes, e.g., +i and −i
in Fig. 1(a), by braiding one node around another node formed
by the neighboring bands, so the frame charges of the pair of
nodes become the same, e.g., the two nodes with the same
frame charge of −i in Fig. 1(b).

While the quaternion charges intrinsically unveil the non-
Abelian nature of the multigap topology of systems described
by a real Hamiltonian, they are cumbersome to use in real
material band structures because crystal point group symme-
tries lead to node multiplicities. Fortunately, there exists a
complementary quasi-two-dimensional topological invariant
which not only simplifies the computation of the topological
charges, but also greatly refines the characterization of the
topological stability of nodes belonging to the same gap. This
is the patch Euler class that we introduce next.

B. Patch Euler class

In the following, we number the bands from lower to higher
energy with En � En+1, and we label the partial gap between
two successive bands n and (n + 1) as {�n} with En � �n �
En+1. Similar to the Berry curvature in single-gap topologies,
we can compute the Euler curvature (Euler form) for bands n
and (n + 1) in gap �n [48,50,58]:

Eun(k) = 〈∂k1 en|∂k2 en+1〉 − 〈∂k2 en|∂k1 en+1〉, (2)

where |en〉 and |en+1〉 are eigenvectors of band n and (n + 1),
respectively, and k = (k1, k2) are the coordinates of the Bril-
louin zone. The Euler class χn for the bands n and (n + 1)
over a patch D of the Brillouin zone (assuming that there is
no node connecting the bands n and (n + 1) to other bands on
D) is then defined by [48,50]

χn[D] = 1

2π

[∫
D

Eun(k)dk1dk2 −
∮

∂D
an · dk

]
, (3)

where ∂D is the boundary of the patch, and with the Euler
connection an,i = 〈en|∂ki |en+1〉 for i = 1, 2.

When integrated over the whole Brillouin zone, the Euler
class χn is an integer Z [47,48,53,89,90], and indicates the
presence of |χn| pairs of stable nodes formed by a two-band
subspace. When integrated over a patch D, the Euler class
in Eq. (3) can either have integer or half-integer values, in-
dicating the presence of 2|χn| stable nodes within the patch.
For instance, assuming the presence of two nodes within
the patch, a Euler class of 0 indicates that the nodes can
annihilate [Fig. 2(a)], whereas an Euler class of ±1 means
that they cannot annihilate when brought together [Fig. 2(b)].
Importantly, the Euler class is related to the frame charges
discussed above: for a patch containing only one node, a patch
Euler class of χ1 = ± 1

2 (χ2 = ± 1
2 ) can be associated to the

frame charge ±i (± j) and such node is referred to as a linear
node [Fig. 2(c)], while the value |χn| = 1 indicates the frame
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FIG. 2. Patch Euler class for two nodes in the same gap �2

(a) with the opposite frame charges and (b) with the same frame
charges, as well as the patch Euler class for (c) a linear node and
(d) a quadratic node. We use open (closed) symbols to represent the
nodes with negative (positive) frame charges, and one symbol (two
concentric symbols) to represent the linear (quadratic) node.

charge −1 and such node is referred to as a quadratic node
[Fig. 2(d)]. Hereafter, we label a quadratic node of |χn| = 1
as two concentric symbols since it can be interpreted as the
superposition of two linear nodes.

We note that the Euler class refines the topological analysis
since, contrary to the frame charges, it keeps track of the
stability of an arbitrary number of nodes formed by two bands,
taking a half-integer (integer) value for an odd (even) number
of stable nodes. However, we also note that this requires that
the two bands under consideration must be disconnected from
all the other bands over the patch. The direct computation
of the frame charges remains useful when more than two
bands are degenerate at a single point, which can happen at
critical points during a band inversion (or in systems with
three-dimensional irreducible representations protected by cu-
bic point groups).

One interesting feature of the Euler class is that it gives
the lower bound of the powerlike dispersion of the bands at
a band crossing [55,58]. More precisely, the number 2|χn|
gives the lower bound of the exponent of the leading term in a
Taylor expansion of the energy eigenvalues at the band cross-
ing. At this stage, a clarification is necessary to distinguish
between electrons and phonons. In electronic band structures,
the dispersion at band crossings almost always realizes the
lower bound indicated by their Euler class because of the
strong electrostatic screening provided by electrons. By con-
trast, and as described below, the frequencies of the phonon
bands correspond to the square root of the eigenvalues of the
dynamical matrix that defines the topology. Interestingly, the
order of band crossings in phonon band structures is almost
always doubled, with the exception of the dispersion of the
acoustic bands at � corresponding to the Goldstone modes of
the system [57].

Because the gauge sign (±1) of the real eigenvectors is
not fixed, the absolute sign of the topological charges is not
uniquely defined. For example, if we flip the gauge signs of

the orthonormal frame of eigenvectors from (|e1〉, |e2〉, |e3〉)
to (|e1〉,−|e2〉,−|e3〉), the sign of the patch Euler class χ2

also flips, and similarly for the frame charges. Therefore, the
sign of the Euler class and of the non-Abelian frame charge is
gauge dependent, and for an individual node taken in isolation
this sign has no physical meaning. However, the relative sign
between two distinct nodes is not gauge dependent as it pro-
vides information on the stability of the nodes. Therefore, we
can compute the Euler class for different patches, and assign
the sign of the topological frame charges to get a consistent
global topological configuration where the relative signs of all
nodes agree with their gauge-invariant relative stability. Such
a global picture can be obtained by fixing the gauge globally
[58]. For this, we introduce in Sec. II C the last conceptual
object that is needed, namely, the Dirac string [48].

C. Dirac strings

If we consider two linear nodes in gap �n, each band eigen-
vector forming the nodes {|en〉, |en+1〉} carries a π Berry phase
on any loop encircling one node at the time, thus indicating
a π disinclination line connecting the two nodes. The gauge
sign of the eigenvectors must then flip when crossing this line
[89]. We can use a Dirac string to visualize the line connecting
the two nodes, in analogy with the Dirac string connecting two
Weyl nodes in 3D indicating the winding of the U(1) gauge
phase of complex eigenvectors.

The trajectory of the Dirac string is not unique because we
can change the gauge signs of the eigenvectors (although such
local change do not affect the topological stability of whether
any pair of nodes can be annihilated when merged). Despite
the fact that we can assign different Dirac strings for the same
pair of nodes, the trajectory of a Dirac string between two
nodes is constrained by the gauge freedoms of all other nodes,
collectively leading to what are known as the “Dirac string
rules” [48,55]:

(1) All linear nodes formed by the same two bands must
be connected by Dirac strings in pairs, whereas the quadratic
nodes can be interpreted as two linear nodes merged together
with an internal Dirac string.

(2) The sign of the frame charge of a node in �n changes
when crossing a Dirac string connecting two nodes in the
neighboring gaps (�n−1 or �n+1). This can be realized either
by moving the node in �n across a fixed Dirac string in
�n−1 or �n+1 [Fig. 3(a)] or by moving a Dirac string in the
neighboring gap across the fixed node [Fig. 3(b)].

(3) All the Dirac strings connecting the nodes in the same
gap can be reassigned by changing their start and end nodes.
For example, in Fig. 4 we can connect node 1 with node 3 and
node 2 with node 4, or connect node 1 with node 2 and node
3 with node 4, or connect node 1 with node 4 and node 2 with
node 3.

By systematically computing the Euler class of every sin-
gle band crossing, and then of every pair of band crossings in
the same gap, we can assign a signed frame charge to every
node, as well as the Dirac strings that connect every pair of
linear nodes, such that we obtain a consistent global topologi-
cal configuration [55,58], as discussed in the next subsection.
This procedure works like a puzzle: we arbitrarily fix the sign,
i.e., the gauge, of an initial node and then we iteratively assign
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FIG. 3. Flipping of the sign of the frame charge by (a) moving
the node across a fixed Dirac string or (b) moving a Dirac string
across the fixed node. We note that these processes amount to the
same thing.

the Dirac strings of the neighboring nodes in a consistent
manner, i.e., under the constraint of the gauge-invariant values
of all the patch Euler classes previously computed.

D. Global topological configuration

To obtain the global topological configuration, we start
by dividing the Brillouin zone into different patches, each
containing a pair of nodes in the same gap, and the patches
cover all the nodes. We then calculate the Euler class for each
patch, which provides information on the relative stability
within each and every pair of the nodes.

We then specify the relative signs of the frame charges
for all the nodes based on the patch Euler class calculations,
and afterwards connect all the linear nodes in pairs by Dirac
strings to make the Euler class for all the patches consistent
with each other. Even within each patch there are two possible
configurations: a patch Euler class of ±1 (0) can either corre-
spond to two nodes with the same (opposite) frame charge(s),
or contain two opposite (same) charge nodes and an extra
Dirac string in the neighboring gap.

We next check whether the assignment of frame charges
and Dirac strings is physically consistent for the global topo-
logical configuration. As long as the frame charges and the
Dirac string of one patch are fixed, the rest of the global
topological configuration can be deduced like a puzzle based
on the computed Euler class for all the patches and the Dirac
string rules.

Because the local gauge sign is not fixed, the start and
end nodes of the Dirac strings, as well as the corresponding
trajectory, are not unique. Therefore, for a given set of patch
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FIG. 4. Dirac strings reassigned by changing the start and end
nodes.

Euler classes, there may be many different (but consistent)
global topological configurations. The difference comes from
the local and global gauge choices. However, the different
global topological configurations capture the same physics,
for example, whether a pair of nodes will annihilate or not,
which is gauge invariant.

We can apply the same strategy, based on the calculated
Euler class and the Dirac string rules, to obtain the topo-
logical configurations during the braiding processes that take
place when the system undergoes a transformation of its band
structure, i.e., during a topological phase transition upon band
inversion. However, once the global topological configuration
of the system is known, the topological configuration of any
other phases reached upon the displacement of the nodes
and band inversions can be readily predicted by applying the
conversion rules presented above.

In real materials, where the crystal symmetries constrain
the movement of the nodes and often collapse the braid tra-
jectories to the high-symmetry points, these rules need to
be complemented with the crystal symmetry rules contained
in the irreducible representations which dictate when a band
crossing can be avoided or not. These concepts are exempli-
fied in Sec. IV, which describes the braiding of phonons in
aluminum oxide.

Overall, this establishes a theoretical framework to study
non-Abelian braiding of any quasiparticle with three bands
in their spectra, as long as the system has C2T symmetry so
that the corresponding Hamiltonian is real [50]. We refer the
reader to Refs. [47,50,54,89] and especially Ref. [58] for more
details. The theoretical formalism we have described can also
be extended to spinless systems of any dimensions with PT
symmetry.

III. COMPUTATIONAL METHODOLOGY

The key quantity in the theoretical formalism described in
the previous section is the Euler form in Eq. (2). Its evaluation
requires the eigenvectors of the quasiparticles as input, and
these eigenvectors can be directly calculated from first princi-
ples for a range of quasiparticles. In this work, we use phonons
as an example quasiparticle to describe how to calculate the
patch Euler class. As discussed earlier, we focus on phonons
because (i) their bosonic nature means the entire spectrum is
accessible (in contrast to the restriction to the Fermi energy in
fermionic systems), and (ii) the time-reversal symmetry T is
hard to break in phononic systems.

A. Lattice dynamics

The ions in solids vibrate around their equilibrium posi-
tions r(lκ) with displacements u(lκ), where l and κ label the
unit cells and the atoms in each unit cell, respectively. Under
the harmonic approximation, the potential energy surface can
be expressed as a quadratic function of the displacements of
the atoms [91,92]

	 = 	0 + 1

2

∑
ll ′κκ ′

∑
αβ

	αβ (lκ, l ′κ ′)uα (lκ )uβ (l ′κ ′), (4)

where α and β are the Cartesian indices, 	0 is the zeroth-order
force constant evaluated at the ionic equilibrium positions,
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and 	αβ (lκ, l ′κ ′) are the second-order force constants which
can be evaluated as the second derivatives of 	 with respect
to ionic displacements, or equivalently as the first derivatives
of the atomic force on atom l ′κ ′ under an atomic displacement
u(lκ) [92,93]:

	αβ (lκ, l ′κ ′) = ∂2	

∂uα (lκ )∂uβ (l ′κ ′)
= −∂Fβ (l ′κ ′)

∂uα (lκ )
. (5)

This can be calculated using the finite-differences method
[94–96] or using density functional perturbation theory [97].

The dynamical properties of the ionic motion are then
determined by the dynamical matrix D(q), which plays the
role of the Hamiltonian, and is obtained from the second-order
force constants as [98–100]

Dαβ

κκ ′ (q) =
∑

l ′

	αβ (0κ, l ′κ ′)√
mκmκ ′

eiq·[r(l ′κ ′ )−r(0κ )], (6)

where q is the wave vector and mκ is the mass of atom κ . The
eigenvalue equation of the Hamiltonian (dynamical matrix) is
then ∑

βκ ′
Dαβ

κκ ′ (q)eβκ ′
qn = ω2

qneακ
qn , (7)

where n is the band index, ωqn are the phonon frequencies,
and eακ

qn are the phonon eigenvectors in matrix form.
The dynamical matrix D(q) is a 3N × 3N matrix, where 3

comes from the three Cartesian directions and N is the number
of atoms in the unit cell. As a result, the eigenvectors eqn,
which are needed to evaluate the Euler form, are complex
column vectors with 3N elements

eqn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex1
qn

ey1
qn

ez1
qn

...

exN
qn

eyN
qn

ezN
qn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

and can be normalized to 1:∑
ακ

∣∣eακ
qn

∣∣2 = 1. (9)

We also note that we use the conventional label q to describe
coordinates in the phonon Brillouin zone, rather than the gen-
eral label k used in Sec. II.

The phonon eigenvectors can be used to obtain the associ-
ated atomic displacements [92,93,98]

[u(l1), . . ., u(lN )]=
[

A√
m1

e1
qneiq·r(l1), . . .,

A√
mN

eN
qneiq·r(lN )

]
,

(10)

where the three-component vectors eκ
qn = (exκ

qn, eyκ
qn, ezκ

qn), and
A is the complex constant [92,93,98].

B. Euler class calculations

After obtaining the phonon dispersion and eigenvectors,
we need to find all the phonon band-crossing points in gap �n.
Then we divide the 2D Brillouin zone into different patches,
and each patch contains either one node or a pair of nodes in
�n. The phonon eigenvectors eqn and eq(n+1) are computed on
a discretized grid over the patch. We clarify that the patch for
nodes in �n should not overlap with the positions of nodes in
the neighboring gaps �n−1 and �n+1.

The Euler form in Eq. (2) is calculated for all the patches
in gap �n with the phonon eigenvectors eqn and eq(n+1) as
input. For each band and q point, the eigenvector is generally
composed of a set of three complex values associated with
each atom along the Cartesian axes. In the presence of C2T
symmetry (or PT symmetry) that squares to the identity, there
always exists a unitary transformation under which the dy-
namical matrix becomes real, and the associated eigenvectors
are then also real. This unitary transformation is obtained
through the Takagi factorization of the matrix representation
of the C2T symmetry, which turns out to be symmetric [50].
Then, isolating the unitary part of the matrix representation
of C2T , the Takagi factorization can be readily obtained
through singular-value decomposition [59,101]. We provide
an explicit example of this procedure in Sec. IV B below for
aluminum oxide.

Using the real basis we can directly evaluate the expression
in Eq. (3), which is implemented in a publicly available Math-
ematica code [102]. Alternatively, we note that the patch Euler
class of nodes can be calculated by employing Wilson-loop
methods [50,53]. Because of the random sign gauge +/−
and the presence of the Dirac string with a gauge transfor-
mation, we can smooth the eigenvectors by computing the
Berry phase and fixing the position of the Dirac strings. As
a result, the eigenvectors eqn and eq(n+1) vary smoothly away
from the Dirac strings, with both states flipping their signs
simultaneously when crossing a Dirac string. The Berry phase
calculations also provide information on the positions and the
Berry curvature of the nodes, which helps to verify whether
the patch contains the node(s) we are interested in. For details
we refer the reader to the Supplemental Material of Ref. [50].
The gauged eigenvectors can then be used to compute Eq. (3)
over the patch D.

After evaluating the relative stability of each pair of nodes,
we can assign the frame charges to all the nodes based on the
Euler class of all the patches, as well as the Dirac strings that
connect all the linear nodes. We repeat this procedure until
a global topological configuration is obtained, as outlined
above.

IV. CASE STUDY: PHONON BRAIDING
IN MONOLAYER Al2O3

In this section, we exemplify the calculation of the
Euler class and associated non-Abelian braiding using first-
principles methods. To do so, we explore non-Abelian
braiding in the phonon spectrum of monolayer Al2O3 as con-
trolled by electrostatic doping.
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A. First-principles calculations

Density functional theory (DFT) calculations are per-
formed with the Vienna ab initio simulation package (VASP)
[103,104]. The generalized gradient approximation (GGA)
with the Perdew-Burke-Ernzerhof (PBE) parametrization is
used as the exchange-correlation functional [105]. A plane-
wave basis with a kinetic energy cutoff of 800 eV and a 9 ×
9 k mesh are used for monolayer Al2O3. The self-consistent
field calculations are stopped when the energy difference be-
tween successive steps is below 10−6 eV, and the structural
relaxation is stopped when forces are below 10−3 eV/Å.
A vacuum spacing larger than 20 Å is used to eliminate
interactions between adjacent layers. Electrostatic doping is
simulated by introducing extra charges with a compensating
background. There is no out-of-plane dipole upon electrostatic
doping as the extra charge is distributed evenly on the 2D
plane [106]. We keep the lattice constants fixed upon doping
to mimic the material growth on a substrate, and the ionic
positions remain the same upon doping under structural re-
laxation.

The force constants to determine the phonons are com-
puted using the finite-differences method in a 3 × 3 supercell
(equivalent to a 3 × 3 phonon q mesh) with a 3 × 3 electronic
k mesh using VASP. The phonon dispersion and phonon eigen-
vectors are obtained using PHONOPY [92,93]. Convergence
tests have been performed comparing supercells of sizes be-
tween 3 × 3 and 6 × 6 [106]. We also check the convergence
of the phonon dispersion in doped Al2O3 with respect to the
vacuum spacing, which shows that the phonon frequencies are
independent of the vacuum spacing [106]. This is consistent
with the fact that no out-of-plane dipole is observed upon
doping, and it is therefore sufficient to use the compensat-
ing background charge when introducing the extra charges,
without the need to include a Coulomb cutoff in the vacuum
spacing [107]. We focus on hole doping because imaginary
phonon modes are observed upon electron doping, indicating
that the lattice becomes dynamically unstable in the latter case
[106]. The splitting between the longitudinal and transverse
optical phonons (LO-TO splitting) is neglected because in 2D
materials no LO-TO splitting occurs at � and only the slope
of phonon bands changes [108], which implies that the nodal
structure will remain unchanged.

The phonon band-crossing points for all the bands are
calculated using WANNIERTOOLS [109]. After obtaining all
the nodes in gap �n, we divide the 2D Brillouin zone into
different patches, and each patch contains either one node
or a pair of nodes in �n. Each patch in the 2D Brillouin
zone is sampled with a 30 × 30 q mesh, and the phonon
eigenvectors eqn and eq(n+1) are computed at each of the points
sampled, and subsequently rotated to the real basis. The real
eigenvectors are then used to calculate the patch Euler class
using a modified version of a publicly available Mathematica
code [102], with the calculated real eigenvectors as input.

B. C2T representation and Takagi factorization

In this section we detail the steps to transform the phonon
eigenvectors to a real basis in the case of monolayer Al2O3.
This real representation of the eigenvectors is needed to com-
pute the patch Euler class as explained above.

Before deriving the unitary transformation to the real basis,
we first need to derive the generic condition on the dynamical
matrix that originates from the C2T symmetry. For this we
use the action of symmetries on the displacements u(lκ ) =
[ux(lκ ), uy(lκ ), uz(lκ )] at a given unit cell l and a given
atomic site κ within the unit cell, i.e., for κ ∈ {1, 2, 3, 4, 5} ≡
{Al1, Al2, O1, O2, O3}. It will be convenient to use the ket-
form of the displacement vectors

u(lκ )t = [ux(lκ ) uy(lκ ) uz(lκ )]. (11)

Since the system here has both C2 (rotation by π around the
ẑ axis) and T (time-reversal) symmetries, we consider the
action of each symmetry separately. The action of C2 on the
displacements gives

C2 u(lκ )t = u(C2[lκ])t · �(vec)(C2), (12)

where �(vec)(C2) is the vector representation of the point group
of the system for C2, i.e.,

�(vec)(C2z ) = diag(−1,−1, 1), (13)

while C2[lκ] stands for

C2r(lκ ) = r(l ′κ ′) = r(lκ ′) + �ll ′ , (14)

where �ll ′ = Rl ′ − Rl is a Bravais vector and r(lκ ′) is the po-
sition of the κ ′th atomic site within the lth unit cell determined
through the permutation

C2(Al1 Al2 O1 O2 O3) = (Al1 Al2 O1 O2 O3) · Uperm

= (Al2 Al1 O1 O2 O3), (15)

where Uperm = σx ⊕ 13. The action of T simply gives

T u(lκ )t = Ku(lκ )t = u(lκ )tK, (16)

where K is the complex conjugation, and the last equality
follows from the assumption that the displacements are real.
Let us now rewrite the displacement in the Bloch form

u(lκ ) =
∑
q∈BZ

eiq·r(lκ )εq(κ ) (17)

(BZ is the Brillouin zone), through which the potential energy
takes the form∑

ll ′
u(lκ )t · �(lκ, l ′κ ′) · u(lκ )

∝
∑
q∈BZ

εq(κ )† · Dκκ ′ (q) · εq(κ ′), (18)

where we have used εq(κ )∗ = ε−q(κ ) that follows from the
reality of u(lκ ). Then, we get the C2T -symmetry constraint on
the dynamical matrix from the symmetry action on the Bloch
components εq(κ ).

Ordering the Bloch components into a (1 × 15) complex
vector, i.e.,

|εq〉 = [εq,x(1) εq,y(1) εq,z(1) . . . εq,x(5) εq,y(5) εq,z(5)]∗,
(19)

the q component of the potential energy takes the form

|εq〉 · D(q) · 〈εq|, (20)
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and from Eqs. (12)–(16) we get the C2T -symmetry action

C2T |εq〉 = |ε−C2q〉 · UC2TK = |εq〉 · UC2TK, (21)

with

UC2T = Uperm ⊗ �(vec)(C2). (22)

The invariance of the potential energy under C2T symmetry
then gives the following constraint on the dynamical matrix:

C2T (	 − 	0) = (	 − 	0),

⇔ UC2T · [D(q)]∗ · U †
C2T = D(q). (23)

First, we verify that the double action of C2T gives an
identity, i.e.,

〈εq|[C2T ]2 |εq〉 = UC2T · (UC2T )∗ = 115. (24)

Then, by unitarity (UC2T )∗ = [(UC2T )t ]
−1

, and we readily ob-
tain that the matrix is symmetric, i.e., UC2T = (UC2T )t . We
can therefore perform a Takagi factorization, given by UC2T =
Utf · � · (Utf )t where � is diagonal, from which we define the
unitary matrix W = √

�∗ · (Utf )†. We describe below how to
derive the unitary matrices � and Utf .

We now define the rotated basis ε̃ through

|εq〉 = |̃εq〉 · W, (25)

in which the dynamical matrix is real. Indeed, the representa-
tion of C2T in the new basis reads as

C2T |̃εq〉 = |̃εq〉 · (
WUC2T W t

)
K = |̃εq〉K, (26)

i.e., the unitary part of C2T is now a unit matrix. Rotating the
dynamical matrix in the new basis, i.e.,

W · D(q) · W t = D̃(q), (27)

the C2T -symmetry constraint (23) becomes

[D̃(q)]∗ = D̃(q). (28)

We conclude that the eigenvectors of D̃(q) must be real (and
symmetric).

We end with the derivation of W . Because UC2T is uni-
tary on top of being symmetric, the Takagi factorization is
readily given through a singular-value decomposition [101],
i.e., UC2T = Usvd · � · Vsvd with � = 1, from which we get
Utf = Usvd ·

√
(Usvd )† · (Vsvd )∗. The unitary matrix that rotates

to the new basis is finally given by W = (Utf )†.
We note that the above derivation is completely general,

with only UC2T being system dependent (for another example
of this procedure applied to an electronic band structure prob-
lem, see Ref. [59]).

C. Crystal structure and phonon dispersion

Monolayer Al2O3 is predicted to crystallize in a honey-
comb lattice [110]. The aluminum and oxygen atoms are in the
same plane, with the oxygen atoms forming a kagome lattice
in 2D, as shown in Fig. 5(a). The calculated lattice constant of
5.842 Å agrees well with previous calculations [110]. Mono-
layer Al2O3 belongs to the P6/mmm space group (No. 191),
which has C2 rotation symmetry. In addition, in phonons the
time-reversal symmetry T is automatically satisfied. With C2T

Γ M K Γ

(a)

(b)

Al

O
a

b

c

FIG. 5. (a) Crystal structure and (b) phonon dispersion of mono-
layer kagome Al2O3.

symmetry, phonons in monolayer Al2O3 can be described by
a real Hamiltonian (dynamical matrix), and consequently we
can assign non-Abelian frame charges to different nodes in
any three-band subsystem in the entire phonon spectrum.

Figure 5(b) shows the calculated phonon dispersion. No
imaginary phonon modes are observed, indicating the dynam-
ical stability of monolayer Al2O3. There are 5 atoms in the
unit cell, leading to 15 phonon branches. We focus on the top
three bands, i.e., bands 13–15 marked in the blue area between
30 and 35 THz in Fig. 5(b), because they are isolated from
other phonon bands and are more sensitive to electrostatic
doping [106], thus providing an ideal platform to explore
multigap topology and non-Abelian braiding.

D. Band inversion upon electrostatic doping

Bulk Al2O3 is a well-known dielectric material used in
electronic devices. Therefore, electrostatic doping of mono-
layer Al2O3 by gate voltage can be easily incorporated into the
existing microelectronics industry. We simulate the phonon
spectra of Al2O3 upon electrostatic doping. As shown in
Fig. 6, the phonon frequencies of bands 13–15 at the � point
have only slight changes upon doping. On the other hand, the
highest phonon bands at the K point with double degeneracy
move to much lower frequency with increasing doping con-
centration, whereas the frequency of the nondegenerate single
band at K remains nearly the same. Therefore, the band order
at K is inverted at −0.14 e/f.u., with the double-degenerate
band becoming lower than the single band.

Such phonon band inversion redistributes the band nodes
in two neighboring gaps �13 and �14, and consequently in-
duces conversions of the frame charges. The transfer of frame
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Γ M K Γ

FIG. 6. Evolution of phonon bands 13–15 upon electrostatic
doping.

charges between different gaps is accompanied by the non-
Abelian braiding of the nodes. It is, however, important to
note that the crystalline symmetries of the system constrain
the movements of the nodes over the Brillouin zone with, as
a consequence, the collapse of the braid trajectories onto the
high-symmetry points � and K . In the next subsections we
first investigate the topological configurations at different dop-
ing concentrations individually, and then obtain the complete
picture of the braiding processes upon electrostatic doping.

E. Frame charges of undoped Al2O3

We first investigate the phonon band-crossing points
formed by bands 13, 14, and 15 of undoped Al2O3. To be
consistent with the notation introduced in the theoretical back-
ground section (Sec. II), we use squares to represent single
nodes in gap �13 formed by bands 13 and 14, and circles
for single nodes in gap �14 formed by bands 14 and 15. As
shown in Fig. 7(a), a band-crossing point is formed when the
two crossing bands belong to different irreducible representa-
tions (irreps), whereas two bands with the same irrep remain
gapped. To be specific, the violet square node along � − M
formed by bands 13 and 14 [red and blue lines in Fig. 7(a)]
is not gapped as the two bands belong to irreps �1 and �2,
but these two bands have an avoided crossing along K − �

because in that case they belong to the same irrep �4. In
addition, there are two circle nodes at � and K formed by
bands 14 and 15 [blue and yellow lines in Fig. 7(a)] with 2D
irreps �−

6 and K5, respectively.
Figure 7(b) shows the position of all the nodes. We first

compute the Euler class for single nodes, as indicated by
patches 1–3 in Fig. 7(b). In patch 1, the dark yellow circle
at the � point has a Euler class of −1, indicating a quadratic
node. This agrees well with the quadratic dispersion near �.
Consistent with Sec. II, we label the quadratic node by a small
circle inside a large circle because it can be viewed as two
linear nodes merged together. On the other hand, the Euler
class for the dark green circle in �14 at the K point (patch 2)
and the violet square in �13 along the � − M high-symmetry
line (patch 3) is ± 1

2 , indicating two linear nodes. Note that
for a single node the sign of the Euler class has no physical
meaning due to the +/− sign freedom, but the relative signs
of two nodes in the same gap provide information on their

FIG. 7. (a) Phonon band-crossing points and (b) patch Euler
class of undoped Al2O3. We use squares (circles) to represent the
nodes formed by the lower (upper) two bands, open (closed) symbols
to represent the nodes with negative (positive) frame charges, and one
symbol (two concentric symbols) to represent the linear (quadratic)
node.

stability. To be consistent with Sec. II, we use open (closed)
symbols to represent the nodes with negative (positive) frame
charges, as shown in Fig. 7(b).

We next compute the Euler class for all the patches con-
taining pairs of linear nodes. For the neighboring dark green
circles in patch 4, χ14 = 0, indicating that these two nodes can
either carry opposite frame charges or have the same frame
charge with a nearby Dirac string in �13. For convenience, we
connect the neighboring pair of violet nodes in �13 in patch 5
with a violet Dirac string, and assign the same frame charge
to the dark green nodes in patch 4. We also connect the pair of
dark green nodes with a dark green Dirac string.

We then calculate the Euler class for all the patches con-
taining all neighboring pairs of the violet square nodes in �13.
For patch 5, χ13 = 1, indicating that the two nearest nodes
along � − M can either carry the same frame charge or have
opposite frame charges with a nearby Dirac string in �14.
Because of the presence of a dark green Dirac string in their
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FIG. 8. (a) Phonon band-crossing points and (b) patch Euler
class of −0.08 e/f.u. doped Al2O3.

neighboring gap �14 that crosses patch 5, we can assign the
opposite frame charges to the violet nodes in �13 in patch 5. In
patch 6, χ13 = 0, and we can assign the same frame charges
to the corresponding violet nodes as there is a Dirac string
in �14 crossing patch 6. We then assign the Dirac strings for
the neighboring violet squares, and obtain the complete global
topological configuration shown in Fig. 7(b).

Finally, we check the consistency of the global topologi-
cal configuration by computing the Euler class for patch 7.
The calculated χ14 = − 3

2 is consistent with the presence of
a quadratic node with χ14 = −1 at � and a linear node with
χ14 = − 1

2 .

F. Frame charges of −0.08 e/f.u. doped Al2O3

At −0.08 e/f.u., several band inversions take place around
the � and M high-symmetry points, as shown in Fig. 8(a).
Along � − M the top two bands with irreps �1 and �2 start to
be inverted, and the top two bands along K − � with irreps
�1 and �4 are inverted as well. Because these two bands
along both � − M and K − � have different irreps, there are
two new circle nodes in �14 formed along these two high-
symmetry lines, and we label the nodes along � − M in blue

and those along K − � in green. In addition, at the M point,
bands 13 and 14 are also inverted, as the band with irrep M+

1
now becomes lower than that with irrep M+

2 . As a result, the
nodes in �13 transfer from � − M to M − K . These band
inversions significantly change the number and positions of
the band nodes in gaps �13 and �14, and the distribution of the
topological frame charges is completely different from that in
undoped Al2O3.

We start the Euler class calculations from the patches con-
taining single nodes. The Euler class of the quadratic node at
� and the linear node at K remains the same. All other nodes,
created by the band inversions, are linear nodes as their patch
Euler class is ± 1

2 .
For the pink square nodes in �13 along M − K , the Eu-

ler class for the two pink patches, containing the first- and
second-nearest neighbors in Fig. 8(b), is 1 and 0, respectively.
Because there is no Dirac string in �14 crossing these two
patches, we can assign the same frame charge for all the
nearest pairs of pink square nodes, while keeping the second
nearest pairs either with the opposite frame charges or with
the same frame charge and a nearby Dirac string in �14.

We then calculate the Euler class for pairs of the neighbor-
ing green circles in �14, and obtain χ14 = 1 for all the patches.
Because the green circle nodes are far away from the square
nodes in �13 (and their Dirac strings), we can safely assign
the same frame charge for all the green circle nodes.

For the blue circle nodes along � − M, the patch Euler
class for the nearest pair around M is 0, while the second-
nearest neighbor of nodes has a patch Euler class of χ14 =
−1. Thus, we can assign all the blue circles with the same
negative frame charge, with a Dirac string in �13 connecting
the two pink square nodes around M. We can also connect
the second-nearest neighbors of the blue circle nodes in pairs
with the Dirac strings, without influencing the topological
configurations in �13.

The consistent global topological configuration is summa-
rized in Fig. 8(b), which is also consistent with the conversion
of frame charges from undoped Al2O3 to −0.08 e/f.u. doped
Al2O3 (as discussed later).

G. Frame charges of −0.10 e/f.u. doped Al2O3

At −0.10 e/f.u., the top two bands are inverted at M, and
the M+

2 band becomes higher than the M−
4 band [Fig. 9(a)].

Consequently, the top two bands along � − M are fully in-
verted as well, as the �2 band is the highest all along the
� − M high-symmetry line. As a result, the blue circle nodes
in �14 along � − M disappear.

As the inversion of bands 14 and 15 occurs at M, the two
nearest blue nodes in �14 meet each other at M. Before they
meet at M, one of them must cross the pink Dirac string in
�13, which flips the sign of its frame charge. Therefore, the
two blue nodes, now with the opposite frame charge, can
annihilate when brought together at M. The Dirac strings of
three pairs of the blue nodes now merge into a closed loop
connecting the three neighboring M points, encircling the
K point in the middle. By shrinking the closed Dirac string
towards K , we can make it disappear, and this also flips the
sign of the frame charges of the three pink nodes inside the
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FIG. 9. (a) Phonon band-crossing points and (b) patch Euler
class of −0.10 e/f.u. doped Al2O3.

loop. Consequently, the two nearest pink square nodes along
M − K now carry opposite frame charges.

To verify this, we compute the patch Euler class in
Fig. 9(b). The calculated Euler class for the pink nodes is
consistent with our deduction that the two nearest pink nodes
have opposite frame charges. In addition, as the braiding only
takes place around M, the topological frame charges remain
unchanged for other nodes away from M. This is also con-
firmed by our Euler class calculations.

H. Frame charges of −0.20 e/f.u. doped Al2O3

At −0.14 e/f.u., the doubly degenerate band with K5 irrep
becomes lower than the K4 band, and upon further doping
the topological configurations remain the same as no addi-
tional band inversion occurs. We show the phonon dispersion
and the corresponding global topological configuration at
−0.20 e/f.u. in Fig. 10 because the bands are well separated
from each other at this doping density, so we can label the
irreps more clearly.

We compute the Euler class for all the single nodes first,
and the calculated χ14 = −1 at � and χ13 = − 1

2 at K indicate

FIG. 10. (a) Phonon band-crossing points and (b) patch Euler
class of −0.20 e/f.u. doped Al2O3.

a robust quadratic node in �14 at � and a linear node in �13 at
K . We also compute the Euler class for the patch containing
two nearest K points, and obtain χ13 = 0. Therefore, we can
assign opposite frame charges to the K points, and connect
each pair of them with a Dirac string.

I. Complete picture of braiding upon doping

The complete picture, summarized in Fig. 11, provides a
detailed description of the conversion of non-Abelian frame
charge upon electrostatic doping from −0.06 to −0.14 e/f.u.

From the undoped case to a doping concentration of
−0.06 e/f.u., the band inversion between bands 13 and 14
[red and blue lines in Fig. 11(a)] becomes stronger along
� − M, pushing the violet square nodes along � − M closer
to the M high-symmetry point.

Further increasing the doping concentration to
−0.08 e/f.u. brings the two neighboring violet nodes together
at M. At M, each neighboring pair of violet nodes carries the
same frame charge because the nodes with opposite frame
charges must cross the dark green Dirac string and the charge
of one of the pairs is flipped. Therefore, the pairs of violet
nodes do not annihilate. Instead, they “bounce” to the M − K
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FIG. 11. Phonon spectra (top panel) and topological configurations (middle panel) of monolayer Al2O3 upon electrostatic doping at
(a) −0.06 e/f.u., (b) −0.08 e/f.u., (c) −0.10 e/f.u., (d) −0.12 e/f.u., and (e) −0.14 e/f.u. For the topological configurations in the middle
panel, we use squares (circles) to represent the nodes formed by the lower (upper) two bands, open (closed) symbols to represent the nodes
with negative (positive) frame charges, and one symbol (two concentric symbols) to represent the linear (quadratic) node. The edge states
along the (100) direction are also shown in the bottom panel, corresponding to the gray area of the phonon spectra in the top panel.

high-symmetry lines with each pair carrying the same frame
charge, and we now label them as pink squares in Fig. 11(b)
because their trajectories change. The inversion between
bands 14 and 15 also creates three pairs of same charged
blue nodes and three pairs of same charged green nodes
along � − M and K − �, respectively, indicating that the blue
nodes must carry opposite frame charge with the green nodes
so they can be created at the same time at �, or be annihilated
simultaneously when brought back to � by decreasing the
doping concentrations from −0.08 to −0.06 e/f.u.

At −0.10 e/f.u. the nearest pairs of the blue nodes along
� − M are brought together to M when the bands are fully
inverted at M. During this process, one of the blue nodes in
each pair must cross a Dirac string of the pink nodes and
thus flips its sign. Now that each nearest pair of the blue
nodes near M has the opposite frame charge, they will be
annihilated when meeting at M. As shown in Fig. 11(c), at
−0.10 e/f.u. the blue nodes and their corresponding Dirac
strings disappear. The disappearance of the blue Dirac string
also flips the sign of the three pink nodes around the K point
inside the Dirac string.

At −0.12 e/f.u., the inversion between bands 13 and 14
further increases, and as a result the pink nodes move further
from M to K . Similarly, the green nodes move further from
� to K . During this process there is no conversion between
the frame charges as no nodes meet together and no adjacent
Dirac strings are crossed. As shown in Fig. 11(d), the global

topological configuration is nearly the same, except that the
pink and green nodes move closer to K .

The braiding process ends at −0.14 e/f.u., when all the
bands are fully inverted and no further inversion occurs with
increasing doping concentration. When the three pink nodes
and three green nodes meet at K , there are two open pink
squares, one closed pink square, and three closed green cir-
cles, as well as the open dark green circle at K . We can braid
the two closed green nodes with one open pink node and one
closed pink node so their charges are flipped. Eventually, we
will have one open pink square, two closed pink squares, one
open green circle, two closed green circles, and one open dark
green circle. There are two open and two closed circles in
total, so the circles can be annihilated when brought together
at K . The remaining open square and two closed squares can
also recombine to form a closed square. Therefore, we have a
closed dark green square at K in the middle of the 2D Brillouin
zone in Fig. 11(e). The braiding processes around other K
points are similar.

J. Topological edge states

Despite the fact that the bulk-boundary correspondence for
multigap topologies has not yet been fully characterized (and
is beyond the scope of this work), we can still investigate the
evolution of the topological edge states of monolayer Al2O3

upon electrostatic doping. The surface local densities of states
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FIG. 12. Topological edge states along the (100) direction for (a)
undoped and (b) −0.20 e/f.u. doped Al2O3.

(LDOS) are calculated from the imaginary part of the surface
Green’s function as implemented in WANNIERTOOLS [109]. We
first compare the edge states for undoped and −0.20 e/f.u.

doped Al2O3 in Fig. 12.
For undoped Al2O3, the edge states connecting the projec-

tions of a pair of bulk nodes in �14 at K (dark green circles)
are clearly visible, as shown in Fig. 12(a). In addition, we
can see the projections of the flat bulk band across the entire
edge Brillouin zone, ending at the projections of a pair of bulk
nodes in �14 at � (dark yellow circles). The emergence of the
edge states can be understood by computing the Zak phase
γ [111]. In �13, we obtain γ13 = 0 along the entire edge
Brillouin zone except at �̄. In �14, γ13 = 0 corresponds to
emerging edge states between the projections of dark green
nodes at K , while γ13 = π corresponds to vanishing edge
states.

For −0.20 e/f.u. doped Al2O3, the flat band has the highest
energy, and the projections of the pair of bulk nodes at �

(dark yellow circles) are also higher than the projections of
other bulk nodes, as shown in Fig. 12(b). The edge states
merge from the projections of dark yellow circles in �14 at
�. The projections of the other pair of bulk nodes at K (dark
green squares) are inverted to lower frequencies, redistributing
their non-Abelian frame charges from �14 to �13. Similar to
the Zak phase in the undoped case, for −0.20 e/f.u. doped
Al2O3, γ13 = 0 and γ14 = 0 correspond to emerging edge
states, while γ13 = π corresponds to vanishing edge states.

This is consistent with the fact that the oxygen atoms, as
the atomic centers, are on the boundary of the unit cell. The
Zak phase measures the displacement between the Wannier
functions and the atomic centers. In our case, a Zak phase of
zero indicates that the phonon Wannier functions occupy the
center of the unit cell and are localized away from the atomic
centers on the unit-cell boundary, leading to an “anomaly”
with localized edge states [55,57]. On the other hand, a Zak
phase of π indicates that the phonon Wannier states and the
atoms are at the same places on the unit-cell boundary, cor-
responding to vanishing edge states. While this Z2-quantized
Berry phase is a good quantum number for 1D edge states
[111] and traces in some gaps the edge states faithfully, we
repeat that a full bulk boundary relation describing topological
phases obtained by non-Abelian processes is still subject to
intense research activity.

We also show the evolution of the edge states under
phonon braiding upon electrostatic doping from −0.06 to
−0.14 e/f.u. in the bottom panel of Fig. 11, which can provide
information on the conversion of non-Abelian frame charges
in the bulk states. Because the bulk nodes are distributed in a
narrow frequency range between 31.8–32.8 THz, the topolog-
ical edge states are not well separated from each other.

V. DISCUSSION

Our findings of Sec. IV suggest a broad relevance to
the fields of topology, phonons, dielectrics, first principles-
modeling, and information storage.

From a topological perspective, we find that phonons
can be a primary platform to study multigap topologies.
When studying multigap topologies in electronic systems,
all three neighboring bands must be near the Fermi level,
which severely limits the potential material candidates. On
the other hand, phonons do not have the restriction of the
Fermi level because they are bosonic excitations. In addition,
the time-reversal symmetry T in phononic systems is hard to
break, making it more convenient to find material candidates
with C2T symmetry or PT symmetry. As phonons can be
treated as spinless systems, we can apply several existing
models, such as the three-band spinless model with a kagome
lattice [55], to phononic systems. We can also extend the
ideas of non-Abelian braiding to other quasiparticles such as
magnons [112] and excitons [113]. An open question is the
bulk-boundary correspondence of multigap topologies, and
phonon dispersions with fewer, cleaner band crossings, e.g.,
phonon systems with only one or two atoms in the unit cell,
could provide an ideal platform for its study.

For the phonon community, we open a research direction
for these emergent excitations. Traditional studies of phonons
mainly involve conventional superconductivity [114,115],
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electrical and thermal transport [116–120], carrier thermal-
ization [121,122], structural phase transition [123,124], and
charge density waves [125,126]. Here, we show that the re-
ciprocal space braiding of phonon band-crossing points can
also form the basis for next-generation phononic computation.
Several strategies could be used to experimentally verify the
non-Abelian braiding of phonons, including inelastic neutron
scattering [69,127,128], inelastic x-ray scattering [66], and
high-resolution electron energy-loss spectroscopy [129]. Ad-
ditionally, our first-principles evaluation of the band inversion
processes can provide references for the experimental ob-
servation of the evolution of the phonon band nodes upon
electrostatic doping. Another open question is whether the
band inversion at K can be measured by double-resonance
Raman modes [130] when the energy and momentum con-
servations are fulfilled [106].

For dielectrics, we provide an experimentally realizable
way to control the braiding in a well-known dielectric
material upon electrostatic doping. Monolayer Al2O3 has
been widely used as a gate dielectric in electronic devices
[84–87]. Therefore, electrostatic doping of monolayer Al2O3

can be experimentally feasible and has the potential to be
incorporated into existing devices based on Al2O3, open-
ing the door for studying topology-related phenomena in
this otherwise well-studied material. In addition, electrostatic
doping-induced phonon shifts have been intensively studied
in low-dimensional materials, which can be probed directly
using Raman spectroscopy [107,131]. We would also like to
highlight that applying an electric field of 0.65–0.95 eV/Å
has similar effects on phonon band inversion and the corre-
sponding braiding processes [106]. It is therefore interesting
to investigate how doping or gating redistributes the charge
density and how the redistributed charge couples to the lattice
vibrational modes.

For first-principles modeling, we note that the compu-
tational techniques described in this paper offer a route to
understand non-Abelian braiding of any quasiparticle. The
Euler class can be computed using the eigenvectors and eigen-
states of these quasiparticles as input. We offer a detailed
description of all the theoretical background and computa-
tional methodology to analyze the non-Abelian frame charges
formed by any three-band subsystems in the spectra of any
quasiparticle, as long as the symmetry requirements are ful-

filled. We anticipate that the potential braiding processes
rely on control of band inversion and the corresponding
redistribution of non-Abelian frame charge. Future simulation
work could focus on various strategies to control the phonon
braiding, including nonlinear effects [132–135], anharmonic-
ity [127,136–139], and ultrafast pumps [140–143].

Finally, as a further distant and more speculative perspec-
tive, the braid processes might find use in storing information.
The idea is that information may be robust against pertur-
bations from the environment because the nontrivial frame
charges can only become trivial by unbraiding the non-
Abelian frame charges via introducing a third phonon band.
In addition, we can control these non-Abelian frame charges
and their braiding by electrostatic doping, offering new op-
portunities for a conceptually new computation hardware
based on phonons. Moreover, the braiding of multiple nodes
takes place simultaneously when these nodes are related
to each other by the space-group symmetry, suggesting the
possibility of storing information in the frame charges com-
bining the topological and the symmetry information together.
While we foresee that such information could be encoded in
phonons, this nevertheless leaves open the exciting question
of whether phonons could be suitable to implement quantum
algorithms.
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[45] B. Peng, I. Bravić, J. L. MacManus-Driscoll, and B.
Monserrat, Phys. Rev. B 100, 161101(R) (2019).

[46] S. A. Díaz, J. Klinovaja, and D. Loss, Phys. Rev. Lett. 122,
187203 (2019).

[47] A. Bouhon, T. Bzdušek, and R.-J. Slager, Phys. Rev. B 102,
115135 (2020).

[48] J. Ahn, S. Park, and B.-J. Yang, Phys. Rev. X 9, 021013
(2019).

[49] J. Ahn and B.-J. Yang, Phys. Rev. B 99, 235125 (2019).
[50] A. Bouhon, Q. Wu, R.-J. Slager, H. Weng, O. V. Yazyev, and
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