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We investigate under which conditions the three-dimensional (3D) multicomponent Abelian-Higgs (AH)
field theory (scalar electrodynamics) is the continuum limit of statistical lattice gauge models, i.e., when it
characterizes the universal behavior at critical transitions occurring in these models. We perform Monte Carlo
simulations of the lattice AH model with compact gauge fields and N-component scalar fields with charge q � 2
for N = 15 and 25. Finite-size scaling analyses of the Monte Carlo data show that the transitions along the
line separating the confined and deconfined phases are continuous and that they belong to the same universality
class for any q � 2. Moreover, they are in the same universality class as the transitions in the lattice AH model
with noncompact gauge fields along the Coulomb-to-Higgs transition line. We finally argue that these critical
behaviors are described by the stable charged fixed point of the renormalization-group flow of the 3D AH field
theory.
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I. INTRODUCTION

Three-dimensional (3D) Abelian U (1) gauge models with
multicomponent scalar fields and SU(N) global symme-
try (N � 2)—the Abelian-Higgs (AH) models—emerge in
many physical situations. They provide effective theories for
superconductors, superfluids, and quantum SU(N) antiferro-
magnets [1–8]. In particular, they are expected to describe
the transition between the Néel and the valence-bond-solid
state in two-dimensional antiferromagnetic SU(2) quantum
systems [9–16], which represents the paradigmatic model for
the so-called deconfined quantum criticality [17]. In this con-
text several studies have focused on systems with two scalar
components [7,9–37].

Classical and quantum Abelian models have been exten-
sively studied with the purpose of identifying their phases
and the nature of their phase transitions. It has been realized
that a crucial role is played by topological aspects, like Berry
phases, monopoles, or the compact/noncompact nature of the
U (1) gauge fields, together with the charge of the scalar fields.
Indeed, the phase diagram and the nature of the transitions is
different in lattice AH models with compact and noncompact
gauge fields [18,38], in AH compact models with charge-one
and higher-charge scalar fields [18,39], and in models with or
without topological defects such as monopoles [19–21,40].

Multicomponent lattice AH models with U (1) gauge
invariance and SU(N) global symmetry are the lattice coun-
terparts of the multicomponent scalar electrodynamics or AH
field theory, in which an N-component complex scalar field
�(x) is minimally coupled to the electromagnetic field Aμ(x).
The corresponding continuum Lagrangian reads

L = |Dμ�|2 + r �∗� + 1

6
u (�∗�)2 + 1

4g2
F 2

μν, (1)

where Fμν ≡ ∂μAν − ∂νAμ and Dμ ≡ ∂μ + iAμ. Its
renormalization-group (RG) flow was investigated
perturbatively, using the ε ≡ 4 − d expansion [41–45],
in the functional RG [46] and in the large-N approach [41,47–
50]. These studies showed that a stable charged fixed point
(CFP) with a nonzero gauge coupling exists only when the
number N of components is larger than N∗

D, where N∗
D depends

on the space dimension D. Close to four dimensions, a stable
CFP exists only in systems with a very large number of
components, since N∗

4 = 90 + 24
√

15 ≈ 183. However, N∗
D

drastically decreases in three dimensions, N∗
3 � N∗

4 . The 3D
value N∗

3 has been estimated by constrained resummations of
the four-loop ε expansion using two-dimensional results [43],
obtaining N∗

3 = 12(4), and from the analysis of Monte Carlo
results for the noncompact lattice AH model [38], obtaining
N∗

3 = 7(2).
On general grounds, one would expect the stable CFP of

the 3D RG flow of the AH field theory to be associated with
the universality class of critical transitions in 3D systems
with local U (1) and global SU(N) symmetry. However, the
behavior of lattice AH models is not so simple. Indeed, they
present different phases and transitions belonging to differ-
ent universality classes, depending on features that are not
present in the continuum field theory. At present we do not
yet satisfactorily understand under which conditions statistical
models have transitions controlled by the field-theory CFP.
In particular, it is not clear which are the key features of
those lattice U (1) gauge models that have critical transitions
described by the field-theory CFP of the RG flow of the AH
field theory.

In general, critical transitions in lattice gauge theories can
be classified into two different groups:

(i) Transitions in which only matter correlations are criti-
cal; at the transition gauge variables do not display long-range
correlations.
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(ii) Transitions in which matter and gauge-field correla-
tions are both critical.

In case (i), although gauge variables are not critical, the
gauge symmetry is crucial for identifying the scalar criti-
cal degrees of freedom. Indeed, gauge symmetry prevents
nongauge invariant correlators from acquiring nonvanishing
vacuum expectation values and developing long-range or-
der: the gauge symmetry hinders some scalar degrees of
freedom—those that are not gauge invariant—from becom-
ing critical. In this case the critical behavior or continuum
limit is driven by the condensation of gauge-invariant scalar
operators, which play the role of fundamental fields in the
Landau-Ginzburg-Wilson (LGW) theory that provides an ef-
fective description of the critical regime, without including
the gauge fields. The lattice CPN−1 model is an example of a
U (1) gauge model that shows this type of behavior [40,51].
Two-dimensional U (1) gauge models with multicomponent
scalar matter [52] and several lattice non-Abelian gauge Higgs
models in two and three dimensions [53–59] also belong to
class (i).

In case (ii), in which both scalar and gauge correlations are
critical at the transition, an appropriate effective field-theory
description of the critical behavior requires explicit gauge
fields. Therefore, one would expect that the field-theory CFP
of the RG flow of the AH field theory is the one that controls
the universal features of the critical transitions of type (ii)
in AH lattice models. Critical behaviors consistent with the
universality classes of the AH field theory have been observed
in the lattice AH model with noncompact gauge fields [38]
(along the transition line that separates the Coulomb and the
Higgs phase), and in the lattice AH model with compact gauge
fields and q = 2 scalar charge [39] (along the transition line
between the confined and the deconfined phase). We also men-
tion that continuous transitions of type (ii) have been observed
in a different lattice U (1) gauge model, in the CPN−1 model
without monopoles [21]. However, they do not belong to the
same universality class as those observed in the noncompact
lattice AH model [38].

In this paper we return to this issue, strengthening previous
results. We provide compelling numerical evidence that, for
a sufficiently large number of components N , N � 10, say,
the continuous transitions between the confined and decon-
fined phase of the lattice AH model with compact gauge
fields and scalar charge q � 2 belong to the same universality
class for any q � 2. Moreover, the critical behavior is the
same as in the noncompact AH model, which is formally
obtained in the limit q → ∞. A detailed finite-size scaling
(FSS) analysis of the Monte Carlo (MC) results allows us
to obtain precise estimates of the critical exponents. They
turn out to be in excellent agreement with the field-theory
predictions, obtained in the large-N expansion [41,48,49].
Therefore, we conclude that the CFP of the AH field the-
ory is associated with a line of critical transitions that is
present in the lattice AH model with compact gauge fields and
any scalar charge q � 2 and in the model with noncompact
gauge fields. In all cases, the field-theory critical behavior
(or continuum limit) is observed along the transition line
that occurs in the small gauge-coupling part of the phase
diagram.

The paper is organized as follows. In Sec. II we define
the compact and the noncompact lattice AH model and sum-
marize the main features of their phase diagram. In Sec. III
we define the observables used in the numerical simulations
and present the results of the numerical analyses. Finally, in
Sec. IV we draw our conclusions.

II. COMPACT AND NONCOMPACT FORMULATIONS
OF LATTICE AH MODELS

In this section we define the compact and noncompact
formulations of the multicomponent lattice AH model on a
cubic lattice, and summarize the known results for their phase
diagrams. In both formulations the scalar fields are unit-length
N-component complex variables zx associated with the lat-
tice sites. The gauge fields are either complex phases λx,μ

(compact model) or real numbers Ax,μ (noncompact model)
associated with the lattice links.

A. AH model with compact gauge variables

In the compact formulation we define a gauge variable
λx,μ ∈ U (1) (|λx,μ| = 1) on each lattice link (it starts at site
x along one of the lattice direction, μ = 1, 2, 3). The compact
AH model with N-component scalar fields of integer charge q
is defined by the partition function

Z =
∑
{z,λ}

e−βHc , (2)

where the Hamiltonian reads

Hc = −JN
∑
x,μ

2 Re
(
z̄x · λq

x,μ zx+μ̂

)
− κ

∑
x,μ>ν

2 Re (λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν ). (3)

Here the two sums run over all lattice links and plaquettes,
respectively. In the following we rescale J and κ by β, thus
formally setting β = 1. The parameter κ � 0 plays the role of
inverse gauge coupling.

The compact AH model presents a disordered (confined)
phase for small values of J and one (for q = 1) or two (for
q � 2) low-temperature ordered phases for large values of J .
The transitions between the disordered and the ordered phases
are associated with the breaking of the global SU(N) symme-
try. The corresponding order parameter is the gauge-invariant
bilinear operator

Qab
x = z̄a

xzb
x − 1

N
δab. (4)

For κ = 0 the model is equivalent to a particular lattice formu-
lation of the CPN−1 model, which undergoes a phase transition
at a finite value of J (see, e.g., Ref. [40]). In the κ → ∞ limit
the model reduces to an O(2N) vector model, which presents
a transition at a finite value of J , as well.

For q = 1, only two phases are present, see Fig. 1 (top): A
disordered phase for small J and an ordered phase for large J .
They are separated by a single transition line, along which
only gauge-invariant scalar modes become critical. Gauge
fields do not develop long-range correlations, but they prevent

085112-2



CRITICAL BEHAVIORS OF LATTICE U (1) GAUGE … PHYSICAL REVIEW B 105, 085112 (2022)

κ

J

0 ∞

∞

disordered

ordered

CPN−1

O(2N)

q = 1

κ

J

0 ∞

∞

disordered
confined

ordered
deconfined

ordered
confined

DC-OD line

DC-OC line

O
C

-O
D

lin
eCPN−1

Zq

O(2N)

q > 1

FIG. 1. Sketch of the phase diagram of the 3D compact lattice
AH model, in which a compact U (1) gauge field is coupled to an
N-component unit-length complex scalar field with charge q, for
generic N � 2. In the upper panel we report the phase diagram for
q = 1, with two phases separated by a single transition line. In the
lower panel we report the phase diagram for q = 2, with three phases,
the disordered-confined (DC), the ordered-deconfined (OD), and the
ordered-confined (OC) phases. The AH model is equivalent to the
CPN−1 model for κ = 0, to the O(2N) vector model for κ → ∞. For
J → ∞ and q � 2, we obtain the lattice Zq gauge model.

gauge-dependent scalar correlations, such as the vector cor-
relations 〈z̄x · zy〉, from becoming critical. As a consequence,
the critical behavior is described by a LGW 	4 theory in terms
of a gauge-invariant scalar order parameter. The fundamental
field is a traceless Hermitian matrix field 
ab(x), which can be
formally defined by coarse graining the lattice order parameter
Qab

x , defined in Eq. (4). The LGW field theory is obtained by
considering the most general fourth-order polynomial in 


consistent with the U (N) global symmetry [40,60]:

LLGW = Tr(∂μ
)2 + r Tr 
2

+ w tr 
3 + u (Tr 
2)2 + v Tr 
4. (5)

In this approach, continuous transitions are possible only if
the RG flow in the LGW theory has a stable fixed point. For
N = 2 the Lagrangian (5) is equivalent to that of the O(3)
vector model (in particular, the 
3 term cancels), thus contin-
uous transitions in the Heisenberg universality class [61] can
be observed in the N = 2 AH model. For larger values of N ,
the LGW approach predicts all transitions to be of first order,
because of the presence of the 
3 term [18,40,51].

For q � 2 the phase diagram is more complex, see Fig. 1
(bottom), with three different phases [39,62–68]. They are
characterized by the large-distance behavior of both scalar and
gauge observables. Beside the scalar gauge-invariant observ-

able (4), one may consider the Wilson loop of the gauge fields
that signals the confinement or deconfinement of charge-one
external static sources. As shown in Fig. 1, for small J and
any κ � 0, there is a phase in which scalar-field correlations
are disordered and single-charge particles are confined (the
Wilson loop obeys the area law). For large values of J (low-
temperature region) scalar correlations are ordered and the
SU(N) symmetry is broken. Two different phases occur here:
For small κ , single-charge particles are confined, while they
are deconfined for large κ .

The three different phases are separated by three tran-
sition lines meeting at a multicritical point: The DC-OD
transition line between the disordered-confined (DC) and the
ordered-deconfined (OD) phases, the DC-OC line between the
disordered-confined and ordered-confined (OC) phases, and
the OC-OD line between the ordered-confined and ordered-
deconfined phases. The transition lines have different features,
since they are associated with different phases. Moreover,
their nature depends on the number N of components and on
the charge q of the scalar matter. The transitions along the
DC-OC line are the same as that in the 3D CPN−1 model
for κ = 0. They are continuous for N = 2, belonging to the
O(3) vector universality class, and of first order for N � 3. For
J = ∞, the model (3) is equivalent to a Zq gauge model [39].
A natural hypothesis is that the transitions along the OC-OD
line belong to the universality class of the Zq gauge model.
This hypothesis has been verified numerically for q = 2 [39],
for which κc = 0.380706646(6) in the limit J → ∞. Finally,
transitions along the DC-OD line are continuous for large
values of N , as we shall see below, and belong to the same
universality class for any q � 2. We shall argue that they
realize the continuum limit of the AH field theory (1).

B. AH model with noncompact gauge variables

In the noncompact formulation the fundamental gauge
variable is the real vector field Ax,μ. The lattice Hamiltonian
reads

Hnc = −JN
∑
x,μ

2 Re (z̄x · eiAx,μ zx+μ̂)

+ κg

2

∑
x,μ>ν

(�μ̂Ax,ν − �ν̂Ax,μ)2, (6)

where the sums run over all links and plaquettes, respectively,
�μ̂Ax ≡ Ax+μ̂ − Ax, and κg � 0 corresponds to the inverse
gauge coupling 1/g2 of the continuum theory (1). The par-
tition function reads

Znc =
∑
{z,A}

e−Hnc . (7)

Unlike the compact case, the charge q of the scalar field is
irrelevant: We can set q = 1 by a redefinition of the gauge
field Ax.

At variance with the compact case, the partition function
(7) is only formally defined. Since the integration domain for
the gauge variables is noncompact, gauge invariance implies
Znc = ∞ even on a finite lattice. If periodic boundary condi-
tions are used, this problem is present even when a maximal
gauge fixing is added. Indeed, the partition function still di-
verges because of the presence of gauge-invariant zero modes:
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FIG. 2. Sketch of the phase diagram of the lattice AH model
with noncompact gauge fields and unit-length N-component com-
plex scalar fields, for generic N � 2. There are three different phases,
the Coulomb, Higgs, and molecular phases, and three transition lines:
The Coulomb-to-Higgs (CH) line between the Coulomb and Higgs
phases, the Coulomb-to-molecular (CM) line, and the molecular-to-
Higgs (MH) line. The model is equivalent to the CPN−1 model for
κg = 0, to the O(2N) vector model for κg → ∞, and to the inverted
XY model for J → ∞.

noncompact gauge-invariant Polyakov operators, i.e., sums
of the fields Ax,μ along nontrivial paths winding around the
lattice [38], are still unbounded. To overcome this problem,
C∗ boundary conditions [69,70] were considered in Ref. [38].
These boundary conditions preserve gauge invariance and
provide a rigorous definition of the partition function in a
finite volume.

In Fig. 2 we sketch the phase diagram of the noncompact
lattice AH model. For any N � 2 the phase diagram is char-
acterized by three phases. For small J we have a Coulomb
phase, in which the global SU(N) symmetry is unbroken
and electromagnetic correlations are long ranged. For large
J , there are two phases characterized by the breaking of the
SU(N) symmetry. They are distinguished by the behavior of
the gauge modes. In the Higgs phase (large κ), electromag-
netic correlations are gapped, while in the molecular phase
(small κ) the electromagnetic field is ungapped.

The Coulomb, molecular, and Higgs phases are separated
by three different transition lines meeting at a multicriti-
cal point: the CM line between the Coulomb and molecular
phases, the MH line between the molecular and Higgs phases,
and the CH line between the Coulomb and Higgs phases.
Their nature crucially depends on the number N of compo-
nents. The transitions along the CM line are the same as that in
the 3D CPN−1 model (κg = 0): they are continuous for N = 2,
belonging to the O(3) vector universality class, and of first
order for N � 3. The transitions along the MH line are ex-
pected to be continuous, and to belong to the XY universality
class, at least for sufficiently large values of the parameter J
[the transition point in the limit J → ∞ is located at κgc =
0.076051(2), obtained by using the estimate βc = 3.00239(6)
reported in Ref. [71] and identifying κc = βc/(4π2)]. Finally,
transitions along the CH line are continuous for a sufficiently
large number N of components. As argued in Ref. [38], they
should realize the continuum limit of the AH field theory (1).

C. Relation between the compact and the noncompact model

It is interesting to note that the compact formulation is
equivalent to the noncompact one for q → ∞. Indeed, if we
rewrite the compact field λx,μ as

λx,μ = eiAx,μ/q, (8)

with Ax,μ ∈ [−πq, πq], the Hamiltonian (3) becomes

Hc = −JN
∑
x,μ

2 Re (z̄x · eiAx,μ zx+μ̂)

− 2κ
∑

x,μ>ν

Re exp

[
− i

q
(�μ̂Ax,ν − �ν̂Ax,μ)

]
. (9)

For q → ∞, the gauge fields Ax,μ become unbounded and the
Hamiltonian is equivalent to that of the noncompact formu-
lation, provided that κg = 2κ/q2. Note that the equivalence
trivially holds as long as the fluctuations of Ax,μ on each
plaquette are bounded and uncorrelated for q → ∞, i.e., for
any point of the phase diagram except possibly at phase
transitions. Therefore, the noncompact formulation (7) should
be recovered from the compact formulation (3) in the limit
q → ∞, keeping κg = 2κ/q2 fixed.

The equivalence of the models also holds for J → ∞. In
this limit the compact formulation reduces to the Zq model

Hq = −κ (q)
∑

x,μ>ν

Re (λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν ), (10)

where κ (q) = 2κ and the gauge field takes the values λx,μ =
ei 2π

q n, with n ∈ 0, 1, . . . , q − 1. If the limit q → ∞ is smooth,
the critical value of the coupling κ (q) should scale as

κ (q)
c � κgc q2 (11)

for large q, where κgc = 0.076051(2) is the critical coupling
of the inverted XY model that represents the J → ∞ limit
of the noncompact model [71]. The q dependence of κ

(q)
c has

been numerically investigated in Refs. [72,73]. Reference [73]
determined the large-q behavior, obtaining

κ (q)
c � Cq2, (12)

with C = 0.076053(4) [we use the estimate A = 1.50122(7)
reported in Ref. [73], identifying C = A/(2π2)], which is in
excellent agreement with the estimate of κgc.

The argument presented above only proves that the com-
pact model converges to the noncompact one as q → ∞, but
does not provide us with any information on the critical be-
havior. For the Zq transition observed for J → ∞, numerical
results [73] indicate that the transition belongs to the XY
universality class for any q � 5. Thus, for these values of
q, the compact Zq model and the noncompact inverted XY
model have a transition in the same universality class. In the
next section we will present numerical results showing that
the same occurs at the transitions controlled by the CFP of
the AH field theory. For N large enough and any q � 2, the
transitions along the CH line of the noncompact model and
along the DC-OD line of the compact model belong to the
same universality class, controlled by the CFP.
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III. NUMERICAL ANALYSES

We have performed MC simulations of the compact AH
model with N = 15 and N = 25 and some values of q � 2.
We use C∗ boundary conditions, as we did for the noncompact
model [38]. This allows us to compare the FSS results—
universal scaling curves depend on boundary conditions—for
the compact model with those for the noncompact one. The
results of the FSS analyses of the MC data will provide strong
evidence that, for any q � 2, the continuous transitions along
the DC-OD transition line, running up to κ → ∞, belong to
the same universality class as those along the CH transition
line of the noncompact formulation.

We will also compute the correlation-length exponent ν

and the exponent ηq that characterizes the singular behavior
of the susceptibility of the bilinear field Qx. The results will
be compared with the large-N predictions [41,48]

ν = 1 − 48

π2N
+ O(N−2), (13)

ηq = 1 − 32

π2N
+ O(N−2). (14)

The good agreement of the numerical estimates of the critical
exponents with the large-N field-theory expressions demon-
strates that these continuous transitions are associated with the
CFP of the AH field theory (1).

A. Observables and finite-size scaling

To characterize phase transitions associated with the break-
ing of the SU(N) symmetry, we consider correlations of the
gauge-invariant bilinear operator Q defined in Eq. (4). Since Q
is periodic when using C∗ boundary conditions, its two-point
correlation function can be defined as

G(x − y) = 〈Tr QxQy〉. (15)

The corresponding susceptibility and correlation length are
defined as χ = ∑

x G(x) and

ξ 2 ≡ 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (16)

where G̃(p) = ∑
x eip·xG(x) is the Fourier transform of G(x),

and pm = (2π/L, 0, 0).
In our analysis we consider RG invariant quantities, such

as Rξ = ξ/L and the Binder parameter

U =
〈
μ2

2

〉
〈μ2〉2

, μ2 =
∑
x,y

Tr QxQy. (17)

At a continuous phase transition, any RG invariant ratio R
scales as [61]

R( j, L) = fR(X ) + L−ωgR(X ) + · · ·, (18)

where

X = ( j − jc)L1/ν . (19)

Here ν is the correlation-length critical exponent, ω is the
leading correction-to-scaling exponent, j is the Hamiltonian
parameter driving the transition, and jc is the critical point
(we will perform simulations varying J at fixed κ or κg for the

compact and noncompact model, respectively, so that j should
be identified with J). The function fR(X ) is universal up to a
multiplicative rescaling of its argument. Assuming that Rξ is
a monotonically increasing function of j, we can combine the
RG predictions for U and Rξ to obtain

U ( j, L) = F (Rξ ) + O(L−ω ), (20)

where F depends only on the universality class, boundary
conditions, and lattice shape, without nonuniversal factors.
Equation (20) is particularly convenient because it allows us to
test universality-class predictions without requiring a tuning
of nonuniversal parameters.

The exponent ν will be determined from the FSS behavior
of Rξ and U , assuming the scaling behavior (18). The expo-
nent ηq will be computed from the scaling behavior of the
susceptibility χ . In the FSS limit, it scales as

χ ( j, L) = L2−ηq [ fχ (X ) + L−ωgχ (X ) + · · · ], (21)

where X is defined in Eq. (19).

B. Monte Carlo results

Let us first report our results for N = 25. We have con-
sidered two values of q, q = 2 and 3, and, for each of them,
we have performed simulations at a fixed value of κ , chosen
so that the transition belongs to the DC-OD line. For q = 2,
simulations were already performed [39] fixing κ = 1 and
using periodic boundary conditions, identifying the transition
at Jc = 0.29333(3). For q = 3, the results of Ref. [73] indicate
that the OC-OD line ends at κc = 0.5422(1) for J → ∞. To
be on the safe side, we have performed simulation keeping
κ = 2 fixed, observing a transition for J = Jc ≈ 0.2945.

To verify whether the transitions for q = 2 and q = 3 be-
long to the same universality class as the transitions in the
noncompact model along the CH line, in Fig. 3 we report the
Binder parameter U versus the ratio Rξ . The compact-model
data fall on top of the curve obtained from simulations of the
noncompact model [38]. The agreement is excellent for both
values of q. These results demonstrate that the continuous
transitions in the compact model (DC-OD line) and in the non-
compact model (CH line) all belong to the same universality
class.

For q = 2 we also estimated the critical exponents, per-
forming the same analysis we did in Refs. [38,39]. To estimate
the exponent ν, we perform combined fits of U and Rξ to
Eq. (18). We parametrize the scaling functions fR(X ) and
gR(X ) with polynomials (we use 24th-order and 8th-order
polynomials for the two functions, respectively). We perform
fits including only data with L � 16, varying the exponent
ω in the range [0.6,1.2] (results depend marginally on the
value of this exponent). We only consider data in the interval
X ∈ [Xmin, Xmax], varying Xmin (between −0.5 and −0.3) and
Xmax (between 0.15 and 0.25). Results are stable. We obtain
Jc = 0.293331(2) (in excellent agreement with the estimate
of Ref. [39] reported above) and

ν = 0.817(7). (22)

The error includes the statistical error and also takes into
account the variation of the estimate as the fit parameters are
changed.
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FIG. 3. Estimates of U versus Rξ for the compact AH model
with N = 25 and C∗ boundary conditions. Top: Results for q = 3,
κ = 2; bottom: results for q = 2, κ = 1. The continuous line in each
panel is an extrapolation of data for the noncompact AH model [38];
noncompact-model data for L = 48 and L = 64 are also reported to
provide an estimate of the accuracy of the extrapolation.

To estimate ηq we have performed fits to

ln χ = (2 − ηq) ln L + h1χ (X ) + L−ωh2χ (X ), (23)

parametrizing h1χ (X ) and h2χ (X ) with polynomials. In this
case fits are sensitive to the value of ω. We end up with ω =
1.05(10) and

ηq = 0.882(2). (24)

The estimates (22) and (24) are significantly more accurate
than, but consistent with, previous determinations. Refer-
ence [38] obtained ν = 0.802(8) for the compact model
with q = 2, while Ref. [39] reported ν = 0.815(15) for the
noncompact model. As for ηq, previous estimates are ηq =
0.88(2) (compact model with q = 2), and ηq = 0.883(7)
(noncompact model).

We have performed a similar analysis for N = 15. In this
case we have considered q = 2, q = 3, and q = 4, performing
simulations at fixed κ along the DC-OD line. For q = 2 and
q = 3 we have performed simulations at κ = 1 (transition at

-1 -0.5 0 0.5

(J-Jc)L
1/ν

0

0.1

0.2

0.3

0.4

0.5

Rξ

L=8
L=16
L=32
L=48
L=64

q=2, N=15, κ=1

FIG. 4. FSS plot of Rξ for q = 2 and N = 15 at κ = 1, obtained
by using the values Jc = 0.306957 and ν = 0.728 for the critical
coupling and the critical exponent, respectively.

J ≈ 0.307) and at κ = 2 (transition at J ≈ 0.308), respec-
tively, as we did for N = 25. For q = 4 we have chosen κ = 4.
Given that the OC-OD line ends at [72,73] κ = 0.76135(2),
J = ∞, this choice should guarantee that the transition we
observe for J ≈ 0.304 belongs to the DC-OD line.

To compute the critical exponents in the N = 15 case we
consider only the data with q = 2, since scaling corrections
appear to be smaller than for q = 4 and only a limited number
of lattice sizes is available q = 3. The combined analysis of
the Binder parameter and of Rξ gives Jc = 0.306957(4) and

ν = 0.728(5), (25)

which is in agreement with the noncompact-model estimate
ν = 0.721(3), obtained in Ref. [38]. The excellent quality of
the scaling obtained in this way is shown in Fig. 4. Again the
error on ν takes into account statistical errors and how the
estimate changes as the fit parameters are varied. In particular,
the quoted result is consistent with an exponent ω varying be-
tween 0.6 and 1. We also estimate the exponent ηq, obtaining

ηq = 0.815(3), (26)

which is in full agreement with the estimate 0.815(10),
obtained in the noncompact model [38].

The results for the Binder parameter as a function of Rξ

are reported in Fig. 5 for q = 2 and q = 3. Once again, data
for the noncompact lattice AH model with N = 15 (from
Ref. [38]) are also shown for comparison. In this case scaling
corrections are larger than for N = 25. To provide further
evidence that the data approach the universal curve computed
in the noncompact model, in the inset of Fig. 5 we report
the deviations from the universal curve rescaled with Lω. We
use ω = 1 in the plot, but values in the range 0.6 � ω � 1,
as suggested by the fits, give qualitatively similar plots. Re-
sults fall approximately on the same curve that has the same
qualitative features both for q = 2 and q = 3, as expected
on the basis of universality. Results for q = 4 are shown in
Fig. 6. In this case, corrections to scaling are large and, in spite
of the large lattices considered—we performed simulations
up to L = 64—the compact-model data are not yet close to
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FIG. 5. Estimates of U versus Rξ for the compact AH model
with N = 15 and C∗ boundary conditions. Top: Results for q = 3
and κ = 2, bottom: results for q = 2 and κ = 1; The continuous
line is an extrapolation of the data for the noncompact model [38];
noncompact-model data for L = 48 and L = 64 are also reported to
provide an estimate of the accuracy of the extrapolation. The insets
show the deviations from the extrapolated results: we report Lω�U ,
where for each data point �U = U − fU (Rξ ) and fU (Rξ ) is the
extrapolation of the data for the noncompact model (continuous line
in the main panels). We set ω = 1, but little changes if we decrease
ω as far as ω � 0.6.

the noncompact-model curve, although they show the correct
trend as L increases. Most probably, this is a crossover effect
due to the O(2N) fixed point that controls the critical behavior
for κ = ∞. Indeed, its presence gives rise to crossover effects
that increase with κ and that can become particularly strong
for the simulations that have been performed along the line
with κ = 4.

C. Comparison with the large-N computations

The estimates of the critical exponents for N = 15 and
25 are displayed in Fig. 7, together with the leading-order
large-N estimates Eqs. (13) and (14). They would predict ν =
0.805, ηq = 0.870 for N = 25 and ν = 0.676, ηq = 0.784

0 0.1 0.2 0.3 0.4 0.5

Rξ

1

1.02

1.04

1.06

1.08

1.1

U

L=16
L=32
L=48
L=64
L=48
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q=4, N=15, κ=4

non comp.

FIG. 6. Estimates of U versus Rξ for the compact AH model
with N = 15 and C∗ boundary conditions. Results for q = 4 and
κ = 4. The continuous line is an extrapolation of the data for the
noncompact model [38]; noncompact-model data for L = 48 and
L = 64 are also reported to provide an estimate of the accuracy of
the extrapolation.

for N = 15, to be compared with the previously obtained
numerical results ν = 0.817(7), ηq = 0.882(2) for N = 25
[see Eqs. (22) and (24)], and ν = 0.728(5), ηq = 0.815(3) for
N = 15 [see Eqs. (25) and (26)]. The values of the critical
exponents for N = 25 are very close to their leading-order
large-N estimates, and deviations from the O(N−1) asymp-
totic behavior are consistent with a next-to-leading O(N−2)
correction. If we assume

ν = 1 − 48

π2N
+ aν

N2
,

ηq = 1 − 32

π2N
+ aη

N2
. (27)

and we fix the unknown parameters by requiring these expres-
sions to be exact for N = 25, we obtain the estimates aν =
7(4) and aη = 7(1). Using these values, we would predict
ν = 0.708(19) and ηq = 0.816(6) for N = 15, in agreement
with the estimates (25) and (26). For N = 10 we would predict
ν = 0.59(4) and ηq = 0.749(13), again in substantial agree-
ment with the results ν = 0.64(2), ηq = 0.74(2) of Ref. [38]
for the noncompact model. By fitting to Eq. (27) all the re-
sults for ν and ηq obtained in this work, in the noncompact
model [38], and in compact model with periodic boundary
conditions (only q = 2, N = 25) [39] we obtain

aν = 10.5(5), aη = 7.0(5), (28)

and the results of this phenomenological interpolation are
shown in Fig. 7.

IV. CONCLUSIONS

We have investigated whether and under which conditions
the 3D multicomponent AH field theory (scalar electrody-
namics) is realized as the continuum limit of statistical lattice
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FIG. 7. Critical exponents ν (top) and ηq (bottom) versus 1/N .
We report: results (N = 10, 15, 25) for the noncompact model [38];
results (N = 25 only) for the compact model with q = 2 and periodic
boundary conditions (pbc) [39]; the results for N = 15 and 25 of
the present work (q = 2); the leading-order (LO) large-N predictions
[Eqs. (13) and (14)]; the phenomenological next-to-leading (NLO)
interpolations, Eq. (27) with aν = 10.5, aη = 7.0.

gauge models. For this purpose we consider a lattice model
with unit-length degenerate N-component scalar fields of
charge q coupled to compact gauge fields with U (1) local and
SU(N) global invariance.

The FSS analyses of the MC results show that, for q � 2,
the transitions along the line that separates the confined and
deconfined phases, see Fig. 1 (bottom), are continuous for
a sufficiently large number of components (we perform a
detailed study for N = 15 and 25) and that they belong to
the same universality class for any q � 2. Moreover, they are
in the same universality class as the transitions along the CH
line (see Fig. 2), in the lattice AH model with noncompact
gauge fields. Since both scalar and gauge correlations are
critical along the CH line, the effective field-theory descrip-
tion of these transitions is provided by the AH field theory
with Lagrangian (1), with explicit gauge fields. The stable
CFP point of the RG flow of the AH field theory, which is
present for N � N∗

3 with N∗
3 = 7(2), should characterize the

universal features of these transition lines (the OC-OD line in
the compact model with q � 2, see Fig. 1 (bottom), and the
CH line in the noncompact model, see Fig. 2).

We believe that these results improve our understanding
of the critical behavior (continuum limit) of gauge field the-
ories in dimension lower than four, which are relevant in
condensed-matter physics, see, e.g., Refs. [74–76]. In partic-
ular, they shed light on the conditions under which we may
expect to observe transitions controlled by the CFP of the RG
flow of 3D gauge field theories. This issue is also relevant
for non-Abelian gauge theories with matter fields; see, e.g.,
Refs. [54,55,77,78] for related discussions. We believe that
further investigations are called for, to achieve a satisfactory
understanding of the nonperturbative regimes of Abelian and
non-Abelian gauge field theories.
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