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Torsion, energy magnetization, and thermal Hall effect
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We study the effective action of hydrostatic response to torsion in the absence of spin connections in gapped
(2 + 1)-dimensional topological phases at low temperatures. In previous studies, a torsional Chern-Simons term
with a temperature-squared (T 2) coefficient was proposed as an alternative action to describe the thermal Hall
effect with the idea of balancing the diffusion of heat by a torsional field. However, the question remains whether
this action leads to a local bulk thermal response that is not suppressed by the gap. In our hydrostatic effective
action, we show that the T 2 bulk term is invariant under variations up to boundary terms considering the geometry
dependence of local temperature, which precisely describes the edge thermal current. Furthermore, there are no
local boundary diffeomorphism anomalies or bulk inflow thermal currents at equilibrium, and also there is no
edge-to-edge adiabatic thermal current pumping upon changing the gravitational background. These results are
consistent with exponentially suppressed thermal current for gapped phases.
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I. INTRODUCTION

The Chern-Simons term originating from external electro-
magnetic fields is known to be the effective action for the
integer quantum Hall effect, where the quantization of Hall
conductance is guaranteed by gauge invariance [1] or bound-
ary gauge anomalies [2–4]. Based on Luttinger’s seminal
work [5], a torsional field has been introduced to balance the
diffusion of heat [6–8]. Analogously, torsional Chern-Simons
terms have been proposed to describe the torsional viscosity
at zero temperature [9–11] and the thermal Hall effect at
finite temperature [6,12–15]. However, torsional anomalies
are controversial because of their dependence upon ultraviolet
(UV) cutoff [16–24]. A clear physical meaning for torsional
anomalies is thus highly needed.

Recently, the thermal Hall effect was observed experimen-
tally in gapped topological phases [25–27], and it has attracted
much current attention due to the observed large signature
from charge-neutral excitations [28–36]. However, in spite of
the fast evolving experimental techniques, the fundamental
understanding of whether thermal Hall current flows through
the bulk of these systems is still incomplete. For gapped topo-
logical phases, based on anomaly matching and the general-
ized Laughlin argument, it was suggested in Refs. [12,13] that
there can exist a bulk thermal Hall current. This argument con-
tradicts the results in Refs. [8,37,38], where bulk thermal Hall
currents are always exponentially suppressed by the bulk gap.
Hence, we aim to resolve this contradiction here, which will
add a new perspective to investigate the thermal Hall effect.

In this paper, by coupling matter fields to teleparallel
gravity, we study the response of the matter to an inho-
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mogeneous gravitational field at equilibrium. A hydrostatic
effective action is derived, which turns out to be the tor-
sional Chern-Simons term, and its coefficient is the energy
magnetization [39–41]. The energy magnetization can con-
tain a constant UV-dependent piece at zero temperature for
a continuous model such as the massive Dirac fermion [42].
We further show that there can be a temperature-squared en-
ergy magnetization, which corresponds to a finite-temperature
torsional Chern-Simons term in gapped systems. In sharp
contrast with its zero-temperature counterpart, this term can
be recast as a topological θ -term in terms of Kaluza-Klein
gauge fields, such that it is invariant under variations of back-
ground fields, and it manifests itself as boundary currents.
Therefore, the presence of the background field cannot induce
a bulk thermal current. Also, from the boundary perspective,
the resulting boundary energy current does not possess local
diffeomorphism anomalies, hence there is no corresponding
bulk inflow energy current. However, boundary global gravi-
tational anomalies do quantize the change of the coefficient
of this θ -term across the boundary, which reveals the rela-
tive topological meaning [43] of the θ -term between adjacent
materials. Apart from addressing the described debates, our
theory provides a top-down approach for magnetization and
energy magnetization: we show that various properties of
magnetization and energy magnetization can be obtained from
macroscopic effective action with symmetry considerations,
and they are independent of details of the microscopic model.

II. OVERVIEW AND SUMMARY OF RESULTS

Although transport is a nonequilibrium phenomenon, it
is surprisingly simple that certain topological responses can
be characterized from equilibrium aspects. Gaps between
equilibrium and nonequilibrium quantities in quantum Hall
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FIG. 1. Illustration of concepts of a Euclidean field theory on a
two-dimensional manifold describing an equilibrium state. The red
line and the black line stand for time axis and space axis, respectively.
The vector K is a timelike Killing vector pointing along the time
direction, which originates from the static nature of equilibrium
states. The time axis is further compactified to a thermal loop (red
line) so as to describe thermal physics, which in turn yields two
scalars. The first one is the local temperature T (x), defined from the
length of the thermal loop β(x), i.e., T (x) ≡ 1/β(x). The second one
is the local chemical potential μ(x), defined from the Wilson loop of
electromagnetic gauge fields

∮
A0dx0

E , i.e., μ(x) ≡ − ∮
A0dx0

E/β(x).

systems can be bridged by Laughlin’s argument [1] as well
as the Streda formula [44–46]. To be more specific, Laugh-
lin’s argument tells us that the quantum Hall response can
be understood as the adiabatic response of a gapped ground
state (equilibrium state property at zero temperature). Upon
inserting a magnetic flux in a cylinder geometry, the adia-
batic charge-pumping process requires the anomalous edges
to absorb the charge. This absorbing process is described
by the anomaly inflow [2]. For the other aspect, the Streda
formula relates the Hall conductance to the thermodynamic
property of magnetization in equilibrium. These two aspects
are well-established for electric transports, but the validity of
the anomaly inflow aspect for thermal transports is still under
debate. The problems are twofold: On the one hand, the pre-
viously proposed Laughlin argument [12,13] for the thermal
Hall effect requires the existence of bulk thermal Hall currents
so as to absorb the edge quantum anomaly. On the other hand,
for gapped systems there are hardly any bulk excitations, so
as an entropy current the nonzero bulk thermal Hall current is
questionable.

Motivated by these aspects, we study the Euclidean field
theory, which describes the bulk of a quantum Hall system
at equilibrium. In particular, to address the anomaly matching
problem, we need to couple the system with background grav-
itational fields while maintaining the system at equilibrium.
Involving gravitational fields, equilibrium conditions are more
subtle [5,39]: equilibrium is reached only when mechanical
forces are balanced by statistical forces, which stem from
inhomogeneous distributions of charge or energy. Interest-
ingly, it turns out that these equilibrium conditions can be
geometrically visualized in Fig. 1: (i) There exists a timelike
Killing vector K due to the static nature of equilibrium states.
(ii) The time axis along the K direction is compactified to a
thermal loop (red line) so as to capture thermal physics. (iii)
The local temperature turns out to be the inverse of thermal

loop length, and the local chemical potential is the Wilson
loop of electromagnetic fields along the K direction. For
equilibrium states satisfying these equilibrium conditions, a
generic formalism describing the physics at a long lengthscale
is the hydrostatics, or equivalently a Euclidean field theory
equipped with a timelike Killing vector [47,48], where the
thermodynamic properties of the system are captured by a
hydrostatic action from derivative expansions. Built on this
setup, we will derive a hydrostatic action to the linear power
of derivatives [see Eq. (12)]. This action not only reproduces
known results for electric transports, but more importantly it
also clarifies the anomaly-inflow aspect of thermal transports.
Namely, considering the geometry dependence of local tem-
perature, our hydrostatic effective action can be recast as a
topological θ term with no local boundary diffeomorphism
anomalies, so there is no bulk thermal Hall current, in consis-
tency with exponential suppression of bulk thermal currents
in gapped phases.

The paper is organized as follows: In Sec. III, we derive
equilibrium conditions for the external field arising from the
balancing between statistical forces and mechanical forces.
We also obtain the conserved charge currents and energy
currents from charge U (1) and temporal translation symme-
try. In Sec. IV, we derive the hydrostatic effective action
for magnetization as well as energy magnetization, whose
relation to the microscopic linear response theory is studied
in details in Sec. V. In Sec. VI, we show that our hydrostatic
effective action for the thermal Hall effect can be recast as a
topological θ term and thus there is no anomaly inflow or bulk
thermal Hall current at low temperature. Finally, in Sec. VI,
we show that the thermal Hall conductance is quantized by
global anomalies.

III. GENERALIZED EINSTEIN’S RELATION
AND CONSERVED CURRENTS

As outlined in the previous section, we will focus on sys-
tems under time-independent external fields varying slowly
in space, which reach their equilibrium when statistical forces
from inhomogeneity of thermodynamic variables are balanced
by mechanical forces. The equilibrium conditions for this bal-
ancing will be derived in this part from hydrostatics, where the
static nature can be rephrased as the existence of translation
symmetry along a timelike Killing vector K . For concreteness,
let us consider a charge-conserved thermal partition function
Z[Aμ, e∗a

μ ] with such a Killing vector K on a Euclidean space-
time manifold, where the vielbein e∗a

μ and the electric field
Aμ vary slowly [49]. Here assuming the Euclidean spacetime
coordinates are xμ

E = (x0
E , xi ), we will use the Wick rotated

coordinates of xμ = (−ix0
E , xi ) to write the tensorial form of

physical observables including the external fields. The benefit
of this convention is that definitions of physical observables
such as the currents and energy currents share the same form
as those of a real-time quantum field theory. Similar notations
can be found for instance in Refs. [48,49].

In this case, the corresponding effective action
Seff[Aμ, e∗a

μ ] = ln Z can be organized in terms of derivative
expansion. In doing so, we can first write down all possible
scalars invariant under symmetries of the system, which can
be constructed from external fields and the Killing vector. For
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clarity, we can denote these scalars as s(n)
i , with the subscript

i labeling its power of derivative and the superscript (n) for
different scalars. From these scalars, the effective action can
be organized as follows [48]:

Seff =
∫ √

| det g|
{

P[s0] +
∑

n

∑
i=1

α
(n)
i [s0]s(n)

i

}
, (1)

where we have used the symbol P for the zeroth-order term
known as the internal pressure. As we shall show later, local
temperature and chemical potential manifest themselves as
zeroth-order scalars due to the temporal translational symme-
try, whose equilibrium values are determined by the balancing
between statistical forces and mechanical forces, and this
yields equilibrium conditions. Combined with the U (1) sym-
metry and the temporal translational symmetry, one can
further define conserved charge currents as well as conserved
energy currents.

Let us now construct the zeroth-order scalars and relate
them to local temperature and local chemical potential. We
first explicitly write down the metric

gμν = e∗a
μ e∗b

ν ηab, (2)

where ηab = diag(1,−1, . . . ) takes the form of a Minkowski
metric as a result of the Wick rotated coordinate xμ =
(−ix0

E , xi ). Greek letters μ, ν and Latin letters a, b stand for
Einstein indices and Lorentz indices, i.e., μ = 0, 1, . . . and
a = 0, 1, . . . We use i, j and I, J for spatial indices of μ and
a, respectively. If we recast e∗0

μ as e∗0
μ = (1 + φg, Agi ), then

φg is Luttinger’s fictitious gravitational field [5], and Agi can
be regarded as the gravitomagnetic field. The imaginary time
axis is compactified to a circle known as the thermal loop so
as to describe thermal effects. In equilibrium, the partition
function should be time-independent, so we have a timelike
Killing vector Kμ = (1, 0, . . . ) in the basis of ∂μ = (i∂E0, ∂i )
in our convention (see Fig. 1), and its normalized counterpart
is

uμ = 1√
K2

(1, 0, . . . ), (3)

where K2 ≡ KμKμ, and uμ thus points along the tangential
direction of the thermal loop. For later convenience, we shall
align e∗0

μ with uμ, which implies that e∗I
μ uμ = 0 and e∗0

0 =√
K2.
Then, due to compactification of the temporal axis, in the

presence of the background vielbein e∗0
μ and U (1) gauge field

Aμ, we can define two scalars [47,48]—the length of the
thermal loop, i.e., β(x), and the Wilson loop along the time
direction—which yield the local temperature as well as the
chemical potential. The local temperature T (x) is defined as
the inverse of β(x), i.e.,

T (x) ≡ 1∫ 1
T0

0 dx0
E

√
K2

= T0√
K2

= T0

e∗0
0

, (4)

where
√

K2 is the induced metric of the thermal loop, x0
E ∈

[0, 1/T0] is the parametrization of thermal loops [50], and
T (x) satisfies the Tolman-Ehrenfest relation [51] T (x)

√
K2 =

const.

The local chemical potential is defined as the temporal
Wilson loop divided by β(x), i.e.,

μ(x) ≡ −T (x)
∫ 1

T0

0
A0dx0

E = − A0√
K2

= − A0

e∗0
0

, (5)

where
∫ β0

0 A0dx0
E is the temporal Wilson loop, and the second

equality is from the transverse gauge [47,52]: ∂E0A0 = 0. One
can also define the spin chemical potential as the Wilson loop
for spin connection ωabμ, i.e., Kμωabμ√

K2
, but as we shall show

later, the spin chemical potential should be set to zero if we
want to have a conserved energy current.

Equations (4) and (5) relate T (x) and μ(x) to the grav-
itational potential and electric potential, respectively. These
equilibrium conditions can be further appreciated by deriving
the generalized Einstein relations. In equilibrium, currents
arising from inhomogeneous particle (energy) distribution are
compensated by those from external electric fields (torsional
electric fields), which are encoded in the time-independent
conditions, i.e., 0 = LK e∗a

μ = LK Aμ, and they yield the
generalized Einstein relations (for details, please refer to
Appendix B)

T ∇ν

μ

T
− uμFμν = 0 (6)

and
1

T
∇μT − T a

σμuauσ = 0, (7)

where Fμν ≡ ∂μAν − ∂νAμ is the electromagnetic field
strength tensor, T a

σμ = ∂σ e∗a
μ + ωa

bσ e∗b
μ − (μ ↔ σ ) is the

torsion tensor, and the spin chemical potential is set to zero.
These generalized Einstein equations are valid even when we
relax the transverse gauge condition.

After obtaining these generalized Einstein relations, we
turn to define the conserved charge current J μ as well as the
conserved energy current J μ

E , which are from U (1) symmetry
and the temporal translational symmetry, respectively. From
U (1) symmetry,

J μ =
√

|det g| jμ, ∂μJ μ = 0, (8)

where jμ ≡ − 1√| det g|
δS
δAμ

satisfies 1√| det g|∂μ(
√| det g| jμ) = 0.

From temporal translational invariance induced by Kμ (see
Appendix B 3 b for details), one can define the energy current
as

J μ
E =

√
| det g|[Kaτμ

a + (AνKν ) jμ
]
, (9)

where τμ
a ≡ − 1√| det g|

δS
δe∗a

μ
is the energy-momentum tensor.

This current is conserved if Kμωabμ vanishes [53], i.e.,
∂μJ μ

E = 0. For later convenience, we shall set spin connec-
tions to zero hereafter so as to have a conserved energy
current, and this corresponds to the teleparallel gravity [54]. In
the absence of external electromagnetic fields and vielbeins,
we have J μ

E = τμ
a Ka − μ jμ. Notice that the conserved en-

ergy current here in the Euclidean theory is essentially the
thermal current in the equilibrium states (up to some regu-
larization subtleties as can be seen in e.g., Appendix C). This
is special to the Euclidean theory at equilibrium and does not
imply that the thermal current is conserved in real-time evo-
lution. However, in our paper, for consistency, we will keep
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the Euclidean theory terminology. Hence our later result of
the energy current and energy magnetization will correspond
to the thermal current and heat magnetization in the literature
of the real-time formalism.

IV. HYDROSTATIC EFFECTIVE ACTION

For the current response, we can look for the derivative
expansion of the first order and write the general covariant
form of the action containing one derivative as

S(1)
eff = −

∫
mg,0ε

μνρe∗a
μ ∂νe∗b

ρ ηab −
∫

mN,0ε
μνρuμ∂νAρ,

(10)

where
∫

is for
∫

d3xE , and both mg,0 and mN,0 are functions
of zeroth-order scalars, i.e., mg,0 = mg,0(μ, T ) and mN,0 =
mN,0(μ, T ). For simplicity, we assume the system has emer-
gent Lorentz symmetry such as in a Chern insulator, while
it is straightforward to generalize to nonrelativistic electrons.
For the nonrelativistic case, we need to treat space indices
and the time index differently, but the main discussion of
charge response and thermal response remains valid and only
requires charge U (1) and temporal translation symmetry. It is
also worth pointing out that the celebrated Chern-Simons term
νH
4π

∫
εμνρAμ∂νAρ (νH ∈ Z) is contained in the second term of

the action above, i.e., − ∫
mN,0ε

μνρuμ∂νAρ [55].
To bring more physical insights, we will justify the un-

derlying physics of magnetization and energy magnetization
for these coefficients in Eq. (10) by deriving this effective
action from conserved currents and making connection with
results in the Cooper-Halperin-Ruzin transport theory [39].
The effective action is derived by coupling J i and J i

E to their
probe fields, Ai and e∗0

i /e∗0
0 , i.e.,

S(1)
eff = −

∫ (
J i

E − A0J i
)( 1

e∗0
0

e∗0
i

)
−

∫
J iAi, (11)

where J i
E − A0J i ≡ √| det g|Kaτ i

a couples to e∗0
i /e∗0

0 , and the
zeroth components of currents are not written down due to
the time-independent condition. This time-independent condi-
tion implies that ∂μJ μ

(E ) = ∂iJ i
(E ) = 0, so these conservation

laws are solved by J i = ∂ jm
i j
N and J i

E = ∂ jm
i j
g , with skew

symmetric mi j
N and mi j

g known as the magnetization and en-
ergy magnetization [39–41], respectively. As we can see from
our hydrostatic theory, (energy) magnetization currents are
equilibrium currents in the presence of inhomogeneous back-
ground fields that do not participate in transport [39,56]. In
particular, it is important to subtract the energy magnetization
current to give the correct thermal Hall response theory [40].
In (2 + 1) dimensions, the magnetization and energy magneti-
zation can be further recast as mi j

N = εi j0mN and mi j
g = εi j0mg.

These solutions of currents J i and J i
E are of at least first-order

dependence in the derivative expansion Eq. (1), so they should
be encoded in the action in Eq. (10). This can be straightfor-
wardly appreciated by recasting the action in Eq. (11) in terms
of magnetization and energy magnetization,

S(1)
eff = −

∫
mg,0ε

μνρe∗0
μ ∂νe∗0

ρ −
∫

mN,0ε
μνρe∗0

μ ∂νAρ, (12)

where mN,0 and mg,0 are defined as

mN ≡
√

K2mN,0, (13a)

mg ≡ K2mg,0 +
√

K2(iK A)mN,0

= K2(mg,0 − μmN,0), (13b)

and this is one of our main results. Notice that K2 = (1 +
φg)2, so Eq. (13) reproduces scaling relations suggested in
Ref. [39]. It is worth pointing out that the action in Eq. (12)
does match the one in Eq. (10), because in our choice
of vielbein and coordinates, e∗I

0 = 0, e∗I
μ uμ = 0, and thus∫

εμνρe∗I
μ ∂νe∗I

ρ = 0. In a general choice of vielbein, the effec-
tive action Eq. (12) is covariantly generalized to Eq. (10). We
will use Eq. (12) as our hydrostatic effective action for later
discussions.

Finally, let us highlight two comments about our effective
action: (i) Our results of magnetization and energy magnetiza-
tion reproduce those in Ref. [39]. Namely, in terms of φg, we
can determine the functional form of the magnetization and
energy magnetization to be mi j

N = ε0i j (1 + φg)mN,0(μ, T ) and
mi j

g = ε0i j (1 + φg)[(1 + φg)mg,0(μ, T ) + A0mN,0], which are
the scaling relations suggested in Ref. [39]. (ii) The discus-
sion from symmetry perspective so far can be applied beyond
gapped systems. For example, for gapless systems such as a
Fermi liquid at finite temperature, due to a finite correlation
length of fermions, we can still describe the long wavelength
physics by a local hydrostatic effective action and its gradient
expansion.

V. EFFECTIVE ACTION AND LINEAR-RESPONSE
THEORY

Our effective action describes the macroscopic property of
a system at a generically inhomogeneous equilibrium state.
Now in this section, we obtain the equations for the (en-
ergy) magnetization by connecting our effective action to
microscopics, and we highlight general constraints of (energy)
magnetization for gapped systems. Starting with our effective
action, these equations do not depend on microscopic details
other than the symmetry of the system. More specifically, the
(energy) magnetization currents must match in calculations by
(i) varying our hydrostatic effective action, and (ii) applying
microscopic linear response theory. For the former, our hydro-
static action yields

J i = εi j0

(
−∂mN,0

∂μ

)
∂ jA0

+ εi j0

(
mN,0 − μ

∂mN,0

∂μ
− T

∂mN, 0

∂T

)
∂ je

∗0
0 ,

(14a)

J i
E = εi j0

(
−∂mQ,0

∂μ

)
∂ jA0

+ εi j0

(
2mQ,0 − μ

∂mQ, 0

∂μ
− T

∂mQ,0

∂T

)
∂ je

∗0
0 , (14b)

where mQ,0 ≡ mg,0 − μmN,0, and we have used Eqs. (4) and
(5) to rewrite the gradient of local temperature and the chem-
ical potential gradient in terms of the gradient of e∗0

0 and A0.
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Equations (14) can also be derived from the definition of mag-
netization currents, i.e., J i = εi j0∂ jmN and J i

E = εi j0∂ jmg.
For the latter, perturbative expansions, or equivalently

Feynman diagrams in momentum space, lead to

J i(q) = −〈J i(q)J 0(−q)〉δA0(q)

− 〈
J i(q)

√
| det g|τ 0

0 (−q)
〉
δe∗0

0 (q), (15a)

J i
E (q) = −〈

J i
E (q)J 0(−q)

〉
δA0(q)

− 〈
J i

E (q)
√∣∣ det g

∣∣τ 0
0 (−q)

〉
δe∗0

0 (q), (15b)

where the expectation values and variations are taken with
respect to the local microscopic state and it is sufficient to only
keep terms from linear perturbations. By comparing results
from these two approaches, we can obtain a set of equations
for mN,0 and mQ,0,

∂mN,0

∂μ
= i

2
εki0∂qk 〈J i(q)J 0(−q)〉, (16a)

(
mN,0 − T

∂mN,0

∂T

)
= − i

2
εki0∂qk

〈
J i(q)J 0

E (−q)
〉
,

(16b)

∂mQ,0

∂μ
= i

2
εki0∂qk

〈
J i

E (q)J 0(−q)
〉
, (16c)

(
2mQ,0 − T

∂mQ,0

∂T

)
= − i

2
εki0∂qk

〈
J i

E (q)J 0
E (−q)

〉
,

(16d)

which reproduce results in Ref. [40]. These are first-order
differential equations, so we can obtain mg,0 and mN,0 unam-
biguously only when reference states are provided. Still, these
differential equations provide valuable insights on constraints
for magnetization in a gapped system. Most importantly, in a
system with a gap �, JE is expected to be exponentially sup-
pressed, i.e., e−β�, because there are hardly any excitations
in the bulk, and thus entropy is exponentially suppressed at
temperatures low compared to the gap. When combining this
exponential suppression with Eqs. (16a) and (16b), we have
mN,0 = νH μ

2π
+ c2T , where c2 is a constant and νH ∈ Z. The

νH μ

2π
term is a well-known result from the integer quantum Hall

effect, and the c2T term is from Eq. (16b) by setting terms on
the right-hand side to zero. As for Eqs. (16c) and (16d) with
terms on the right-hand side equal to zero, their solution is
mQ,0 = c1T 2, and c1 is a constant. By putting these results
together, we have mg,0 = mQ,0 + μmN,0 = c1T 2 + c2μT +
νH μ2

2π
. Three comments are in order: First, c1 and c2 cannot

be determined perturbatively from Eqs. (16) given above,
which, as we shall show in the next section, is because they
are rooted in boundary modes. Second, the μ2 term in mg,0

can give rise to another torsional Chern-Simons term, i.e.,
S = − ∫

μ2νH

2π
εμνρe∗0

μ ∂νe∗0
ρ . It is interesting to notice that cut-

offs in the Hughes-Leigh-Fradkin parity-odd action [9] are
replaced by the chemical potential, and its quantization is
inherited from the integer quantum Hall effect. Finally, it is
worth pointing out that in experimental systems, there can

exist gapless phonons that yield finite contributions to JE

[57,58].

VI. mQ,0 = c1T 2, BULK-EDGE CORRESPONDENCE
AND ITS TOPOLOGICAL MEANING

As we have discussed above, mQ,0 is expected to be c1T 2

for an insulator and thus mg,0 = c1T 2 + c2μT + νH μ2

2π
, where

both c1 and c2 cannot be fixed from bulk perturbative calcula-
tions. In this part, we shall turn to the torsional Chern-Simons
term with mg,0 = c1T 2 + c2μT and explore its topological
meaning as well as bulk-edge correspondence. The c2 term
can be recast as a boundary term [59], but by direct calculation
for edge chiral fermions, one can find that c2 = 0, so we shall
focus on the c1 term hereafter [60]. As we will see, this term
can be recast as a topological θ term and thus endow the
boundary thermal current with topological meaning.

We shall first reveal the topological nature of this c1T 2 and
then show how to extract its physical information. To this end,
we first study its robustness under small perturbations: under
variations of e∗0

μ , the c1T 2 term is invariant up to a boundary
term, i.e., − ∫

εμνρ∂ν (c1T 2e∗0
μ δe∗0

ρ ), so this term is robust
against bulk perturbations, and it cannot be obtained from
bulk perturbative calculations. This is because this c1T 2 term
is secretly a topological θ term, and we can rewrite it as [61]

−
∫

c1T 2
0 ε0i j∂i

(
e∗0

j /e∗0
0

)
, (17)

where e∗0
j /e∗0

0 is the emergent Kaluza-Klein gauge field
associated with temporal translation, as we can see: (i)
Under local spatial translation, (e∗0

j /e∗0
0 ) transforms like

a conventional spatial 1-form. (ii) Under local temporal
translation, i.e., δxμ = ξ 0(x)δμ

0 , we have δ(e∗0
i /e∗0

0 ) = −∂iξ
0,

which is an effective U (1) gauge transformation due to the
identification ξ 0 
 ξ 0 + 1

T0
. Despite the robustness of this

topological theta term against bulk variations, we can still
extract its physical information by considering two adjacent
materials with different values of c1. Around the boundary, the
system is inhomogeneous and c1 can develop a dependence
on the coordinate across the boundary. To be more concrete,
we assume the two materials are located at y > 0 and y < 0
with a smooth boundary, and we model c1 as a function of y
interpolating between these two materials. The corresponding
effective edge theory is thus given as

−
∫

d2xE dy c1(y)T 2
0 ε0i j∂i

(
e∗0

j /e∗0
0

) =
∫

c̃1T 2e∗0
0 e∗0

1 d2xE ,

(18)
where c̃1 ≡ −[c1(+∞) − c1(−∞)]. The lowest-order
approximation of this edge action near e∗0

0 = 1 and
e∗0

i = 0 reproduces results in Refs. [12,13]. However, the
corresponding physical meaning is different in a significant
way. Compared to the results in Refs. [12,13], our bulk
effective action is invariant under local temporal coordinate
transformations, so its effective edge action cannot be
obtained from the usual anomaly matching approach, and
there are no bulk energy currents derived from our bulk action.
In the rest of the paper, we will focus on the effective edge
theory. From here on, our Einstein indices and Lorentz indices
will both take {0, 1}, and the inner product will be taken with
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the induced metric g̃ on the boundary. We will keep the Killing
vector notation for the boundary discussion: Kμ = (1, 0).

One can read off a boundary energy-momentum tensor
from our effective edge theory and then study the edge
conservation laws. Namely, τ 1

0 = − c̃1T 2 1√| det g̃|e
∗0
0 and

τ 0
0 = c̃1T 2 1√| det g̃|e

∗0
1 , and it is rather interesting to find that it

satisfies the corresponding Noether theorem in the presence
of torsion (see Appendix A), i.e., 1√| det g̃|∂ν (

√| det g̃|τ ν
a ) −

eμ
a (τ ν

b T b
μν ) = 0. Namely, there is no perturbative diffeomor-

phism anomaly at the edge. As for the edge energy current,
by definition, it is J i

E ,boundary = √| det g̃|Kaτ i
a = −c̃1T 2

0 ,
so it is clearly conserved. Compared to the Chern-Simons
action for the integer quantum Hall effect, this c1T 2 torsional
Chern-Simons term fails to cause thermal currents flowing
from the bulk to the edge. It was claimed in Ref. [12] that
a bulk thermal Hall current is needed to compensate for
boundary anomalies. We would like to stress that the energy
current J μ

E is different from τ
μ
0 . Hence, one cannot interpret

1√| det g̃|∂ν (
√| det g̃|τ ν

a ) = eμ
a (τ ν

b T b
μν ) as nonconservation of

the energy current. Furthermore, in the lab frame where the
system is at rest, the edge energy density (not to be confused
with J 0

E ,boundary) is Kμ√
K2
J μ

E ,boundary = 0, which does not depend
on the background gravitational field. This indicates that no
thermal energy is pumped in or out of the boundary upon
adiabatic change of the gravitational background. Still, energy
pumping between boundaries through the bulk is possible if
there exist gapless modes, e.g., phonons [57,58].

Due to the robustness of the temperature-squared term in
our effective action, a natural question is how we can calculate
this term from a microscopic model and fix the coefficient
c1 in the bulk of a homogeneous material. The answer is
that mg,0 can be uniquely fixed only when reference states
are given, which is because Eqs. (16) for mg,0 are first-order
differential equations. For example, we can take the condition
mg,0|μ→−∞ = 0 with a physical meaning of setting energy
magnetization of a state with no electrons to zero. Alterna-
tively, we can impose the condition ∂mg, 0

∂T |T →∞ = 0 because
all states are excited in the T → ∞ limit (temperatures much
higher than the width of energy spectrum). For a demonstra-
tion of the approach on (2 + 1)-dimensional massive Dirac
fermions, interested readers are referred to Appendix C for
details.

In reality, we can implement the comparison to reference
states by putting two different materials with different μ or
T adjacent to each other, for example, μ = 0 and μ = −∞,
respectively. Assuming μ smoothly interpolates between
these two materials, in the same spirit as Eq. (18), our effective
action

∫
c1T 2εμνρe∗0

μ ∂νe∗0
ρ manifests itself as energy currents

flowing in the interface determined by the difference of c1 in
the bulk of two materials. Since the variation of the action
in the bulk is zero, only the edge physics determined by the
difference of c1 is observable, so the torsional effective action∫

c1T 2εμνρe∗0
μ ∂νe∗0

ρ is topological in a relative sense [43].

VII. mQ, 0 = c1T 2 AND GLOBAL ANOMALIES

After revealing the topological meaning of torsional Chern-
Simons terms, a natural question is whether c1 is quantized

after considering the scale invariance of the edge theory sim-
ilarly as in Ref. [13] and fixing the energy magnetization of
a trivial insulator to be 0. We shall explore this by study-
ing boundary energy-momentum tensors from the point of
view of perturbative calculations and nonperturbative global
anomalies.

To this end, consider the boundary between a topologically
nontrivial material at y > 0 and a trivial insulator at y < 0,
which traps right-handed chiral fermions at y = 0 if the Chern
number equals 1 for the topological material. Now we demon-
strate that we can fix the c1 for the topological material by
studying edge chiral fermions. For example, we can directly
compare the boundary action Eq. (18) with microscopic calcu-
lation of the energy-momentum tensor of right-handed chiral
fermions (see Appendix D for details):

〈
τ 1

0

〉 =
(

�̃2 + π

12
T 2

0

)
+ O

[(
δe∗a

μ

)2]
. (19)

Here, �̃2 is the UV cutoff, and its specific value depends
on regularization schemes. For example, by using the di-
mensional regularization so that we have, �̃2 = 0, and the
corresponding conserved energy current is the thermal cur-
rent. From Eq. (19), and compare with our edge action
Eq. (18), we can further conclude that c1 = π

12 for this topo-
logical material.

Alternatively, we can fix the value of c1 nonperturbatively
by compactifying the spatial dimension and considering the
global anomaly of the edge theory on a torus. One reason
for doing so is to compare with Ref. [13]. In addition, this
approach will not refer to microscopic details of the edge
theory, and therefore it is a more general argument. Now the
idea is to connect the global anomaly of the partition function
under the modular transformation of the torus to the field
theory response to an inserted gravitomagnetic flux, as can be
described by our boundary action. The compactification to a
torus is done by identifying spacetime coordinates in the fol-
lowing way: (x0

E , x1) ∼ (x0
E + β0, x1) ∼ (x0

E , x1 + L), where
β0 ≡ 1

T0
. Boundary conditions for fermions are (anti)periodic

along the (temporal) spatial direction.
We then insert a gravitomagnetic flux to deform this space-

time torus and mimic the modular transformation, as shown
in Fig. 2. This process is implemented as the insertion of a se-
ries of infinitesimal gravitomagnetic fluxes (e.g.,

∮
δe∗0

1 dx1 =
−i β0

N , N → ∞, with the imaginary number i from our con-
vention of writing tensors in the Wick rotated basis of ∂μ =
(i∂E0, ∂i )), where each step can be geometrically represented
as an infinitesimal deformation of the spacetime torus (see
Fig. 2). The infinitesimal deformation changes our boundary
action by δS = − ∫

τ 1
0 δe

∗0
1 with δe∗0

1 = −i β0

NL and we have
used | det g̃| = 1. After this process, the torus is mapped to it-
self (see Fig. 2), but with the coordinate basis changed, which
is known as the modular transformation [62]. The ensuing
action transformation is δS = − ∫

τ 1
0 δe∗0

1 , with δe∗0
1 = −i β0

L
and τ 1

0 = c1T 2
0 from our effective boundary action. Notice that

τ 1
0 does not change during the described process, and we have

used this property.
Now we are ready to fix the coefficient c1 by considering

the global gravitational anomaly. As a result of the global
gravitational anomaly, the modular transformation changes
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FIG. 2. Gravitomagnetic flux insertion and modular transfor-
mation. Left panel: an infinitesimal deformation of a torus cor-
responding to δe∗0

1 = −i β0
NL , where the imaginary number comes

from our notation of writing tensors in the Wick rotated basis of
∂μ = (i∂E0, ∂i ). We start with the vielbein: e∗0

1 = 0 and e∗0
0 = 1. The

compactification directions (equal x0
E and x1) of the deformed torus

are along the dashed lines. Right panel: a modular transformation
that maps a torus onto itself after the gravitomagnetic flux insertion.
This corresponds to δe∗0

1 = −i β0
L . We have | det g̃| = 1 through the

process, i.e, the deformation preserves area.

the partition function for chiral fermions by a phase factor
[13,62,63], i.e., Z → ei π

12 Z . Comparing to the change of our
effective boundary action upon the described gravitomagnetic
flux insertion, we find ei π

12 = ei
∫

c1T 2
0

β0
L d2xE , and thus again we

conclude c1 = π
12 , which shows that c1 is quantized by global

anomalies. Since the c1 is from the topological state of Chern
number +1, we can conclude that for the topological state
of Chern number +1, the energy magnetization is π

12 T 2, and
from the thermal generalization of the Streda formula [64], the
thermal Hall conductivity is κH = −π

6 T .

VIII. CONCLUSIONS

In summary, we have derived the general effective
hydrostatic action for gapped quantum matter coupled to
teleparallel gravity. The action up to linear order of the
derivative expansion captures the static response of charge
and energy currents. The linear order in derivative terms
include a torsional Chern-Simons term, with its physical
meaning as the energy magnetization. For a gapped system,
there can exist a temperature-squared torsional Chern-Simons
term in our hydrostatic effective action, which is topological,
and its quantization is inherited from boundary global
gravitational anomalies. In contrast to previous literature
discussing the torsional Chern-Simons term, in our theory
there are no local boundary diffeomorphism anomalies or
bulk inflow thermal currents. In addition, we have derived
various properties for the magnetization as well as the energy
magnetization from our effective action.

ACKNOWLEDGMENTS

The authors wish to thank Barry Bradlyn, Jing-Yuan Chen,
Haoyu Guo, Kristan Jensen, Biao Lian, Laimei Nie, Atsuo
Shitade, and Mike Stone for useful discussions, especially
Mike for invaluable feedback. Z.-M.H. was not directly sup-

ported by any funding agency, but this work would not be
possible without resources provided by the Department of
Physics at the University of Illinois at Urbana-Champaign.
B.H. was supported by ERC Starting Grant No. 678795 Top-
InSy. X.-Q.S. acknowledges support from the Gordon and
Betty Moore Foundation’s EPiQS Initiative through Grant No.
GBMF8691.

APPENDIX A: DERIVATION OF NOETHER IDENTITY
FROM DIFFEOMORPHISM

In this Appendix, we shall derive the Noether identity
arising from general coordinate invariance. For a given action
S, we define the charge current as

jμ ≡ − 1√|det g|
δS

δAμ

, (A1)

the energy-momentum tensor as

τμ
a ≡ − 1√|det g|

δS

δe∗a
μ

, (A2)

and the spin current as

Sabμ ≡ 1√|det g|
δS

δωabμ
, (A3)

where Aμ, e∗a
μ , and ωabμ are the U (1) gauge field, the vielbein,

and the spin connection, respectively. We use eμ
a to denote the

inverse vielbein, which is defined through eμ
a e∗b

μ = δb
a. In ad-

dition, we define ∇μ as the total covariant derivative acting on
both Einstein indices μ and Lorentz indices a, which contains
both the spin connection ωabμ and the affine connection �μ

νρ .
Dμ is used for the covariant derivative, and it only contains
spin connections.

We consider a coordinate transformation generated by vec-
tor ξμ. The variations of fields e∗a

μ , ωabμ, and Aμ are

δe∗a = Lξ e∗a = iξ T a + Dξ a − (
iξω

a
b
)
e∗b, (A4)

δωa
b = Lξω

a
b = iξ�

a
b + D

(
iξω

a
b
)
, (A5)

and

δA = Lξ A = iξ F + diξ A, (A6)

where A = Aμdxμ, e∗a = e∗a
μ dxμ, ωa

b = ωa
bμdxμ, iξ de-

notes interior products, and �a
b ≡ dωa

b + (ω ∧ ω)a
b is the
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curvature. The variation of action is

δS =
∫ √

|det g|
[
−

(
− 1√|det g|

δS

δe∗a
ν

)
δe∗a

ν + 1√|det g|
δS

δωabν
δωabν −

(
− 1√|det g|

δS

δAν

)
δAν

]

=
∫ √

|det g|[ξμ
(−τ ν

a T a
μν + Sabν�abμν − jνFμν

) + (∇ν + T ρ
νρ )τ ν

a ξ a
]

+
∫ √

|det g|(iξωa
b)

[
e∗b
ν τ ν

a − 1√|det g|Dμ

(√|det g|Sa
bμ

)] +
∫ √

|det g|(iξ A)

(
1√|det g|∂μ

√
|det g| jμ

)
. (A7)

Because of U (1) symmetry, we have 1√| det g|∂μ

√| det g| jμ = 0, and the Noether identity from general coordinate invariance is

(∇ν + T ρ
νρ )τ ν

a − eμ
a

(
τ ν

b T b
μν − Scdν�cdμν + jνFμν

) = −ωc
da

[
e∗d
ν τ ν

c − 1√|det g|Dμ

(√|det g|Sc
dμ

)]
. (A8)

If there exists internal rotational symmetry among indices a, then one can prove that

ωa
bc

[
e∗b
ν τ ν

a − 1√|det g|Dμ

(√|det g|Sa
bμ

)] = 0, (A9)

and the Noether identity in Eq. (A8) becomes

(∇ν + T ρ
νρ )τ ν

a − eμ
a

(
τ ν

b T b
μν − Scdν�cdμν + jνFμν

) = 0, (A10)

which matches the results in Refs. [8,11].

APPENDIX B: DERIVATIONS OF EQ. (6), EQ. (7),
AND CONSERVED ENERGY CURRENT

In this Appendix, we shall give a detailed derivation of the
generalized Einstein relation from equilibrium conditions, i.e.,
LK (· · · ) = 0 and K = Kμ∂μ, where (· · · ) stands for external
fields, including Aμ, gμν , and so on. In addition, the deriva-
tions of conserved energy currents are also presented in detail.

1. Derivation of Eq. (6)

We impose the following equilibrium condition:

LK (A + dθ ) = 0, (B1)

where dθ is a gauge transformation, and this says that A
satisfies LK A = 0 up to a gauge transformation. Equation (B1)
can be recast as

0 = LK (A + dθ ) = iK dA + d (iK A + iK dθ ). (B2)

Following conventions in Ref. [52], we define �K ≡ iK dθ

and chemical potential −T0
μ

T (x) = iK A + �K . Correspond-
ingly, we find

0 = KμFμν − T0∂ν

μ

T
= uμFμν − T ∂ν

μ

T
. (B3)

For simplicity, one usually uses the transverse gauge condi-
tion, i.e., iK dθ = 0. This says that a gauge-fixing condition
is imposed to get rid of the time dependence in the gauge
transformation parameter θ .

2. Derivation of Eq. (7)

Similar to Eq. (6), we can derive Eq. (7) by imposing the
following condition:

LK uμ = 0. (B4)

To be more specific, LK uμ can be calculated as follows:

0 = 1√
K2

LK uμ

= uν∇νuμ + 1√
K2

∇μKνuν − 1√−K2
T σ

μρuσ Kρ

= uν∇νuμ − 1

T
∇μT − T σ

μρuσ uρ, (B5)

where we have used

LK uμ = Kν (∂νuμ − �α
μνuα )

+(∂μKν + �ν
αμKα )uν − T ν

μαKαuν

= Kν∇νuμ + ∇μKνuν − T ν
μαuνKα. (B6)

Notice that uμdxμ = e∗0
μ dxμ, so we have

∇νuμ = ∂νe∗0
μ − �α

μνe∗0
α = −ω0

bνe∗b
μ (B7)

and

Kν∇νuμ = −ω0
bνe∗b

μ Kν, (B8)

where we have used the following identity:

∂μe∗a
ν − �α

νμe∗a
α + ωa

bμe∗b
ν = 0. (B9)

For a metric

ds2 = ηabe∗a
μ e∗b

ν dxμdxν, (B10)

with e∗0
μ = uμ, we have e∗I

μ uμ = 0. This means that
Kν∇νuμ = −(iKω)0

μ, and thus

1

T
∇μT − T a

σμuauσ + (iuω)0μ = 0. (B11)

If the spin chemical potential is set to zero, the equation above
becomes

1

T
∇μT − T a

σμuauσ = 0. (B12)
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3. Conserved energy current

a. Conserved energy currents from diffeomorphism and temporal translation symmetry

The Noether identity from diffeomorphism is (see Appendix A for details)

1√|det g|Dν

(√|det g|τ ν
a

) − eμ
a

(
τ ν

b T b
μν − Scdν�cdμν + jνFμν

) = −ωc
da

[
e∗d
ν τ ν

c − 1√|det g|Dμ

(√|det g|Sc
dμ

)]
, (B13)

where Dμ is the covariant derivative with only spin connections, but not �. By using 0 = LK e∗a
μ = LK Aμ = LKωabμ, we have

the following identities:
1√|det g|∂μ[

√
| det g|(iK e∗b)τμ

a ] = −(iK T a)μτμ
a + (iK e∗a)

1√|det g|Dμ

(√|det g|τμ
a

)
, (B14)

1√|det g|∂μ[
√

|det g|(iK A) jμ] = −FνμKν jμ, (B15)

and
1√|det g|∂μ[

√
|det g|(iKω)abSabμ] = −(iK�ab)μSabμ + (iKω)ab

1√|det g|Dμ(
√

|det g|Sabμ). (B16)

They lead to

1√|det g|∂μ

√
|det g|[(iK e∗a)τμ

a +
√

|det g|(iK A) jμ
] = −Sμab(iK�ab)μ − ωc

da

[
e∗d
μ τμ

c − 1√|det g|Dμ

(√|det g|Sc
dμ

)]
(B17)

or
1√|det g|∂μ

√
|det g|[(iK e∗b)τμ

b + (iK A) jμ − (iKω)abSabμ
] = −(

iKωc
d
)
e∗d
μ τμ

c , (B18)

which has the form of current conservation if we set the back-
ground spin connections to zero. We thus define the conserved
energy current as

J μ
E =

√
|det g|[(iK e∗a)τμ

a + (iK A) jμ
]
. (B19)

b. Conserved energy currents from temporal translation symmetry

The energy current J μ
E defined above can be understood

from global translation symmetry directly. In equilibrium,
under temporal translations, we have

0 = δe∗a
μ = δAμ (B20)

and

δψ = Kμ∂μψ, (B21)

where we have set ωabμ = 0. Correspondingly, the Noether
current associated with temporal translation is

J μ
E = −

(
∂
√| det g|L
∂∂μψ

δψ + H.c. − Kμ
√

| det g|L
)

, (B22)

where L is the Lagrangian density and g is a metric. As-
suming that action S depends on vielbeins through det g and
Da = eμ

a (∂μ + Aμ), we can recast J μ
E as

J μ
E = −

[
∂
√| det g|L
∂∂μψ

Kα (∂α + iAα )ψ + H.c.

]

+Kμ
√

| det g|L + (KαAα )

(
i
∂
√| det g|L
∂∂μψ

ψ + H.c.

)

= −
[
∂
√| det g|L
∂Dαψ

∂Dαψ

∂e∗a
μ

Ka + H.c.

]

+Kμ
√

| det g|L +
√

|det g|(KαAα ) jμ

= − δS

δe∗a
μ

Ka +
√

|det g|(KαAα ) jμ

=
√

|det g|[(iK e∗a)τμ
a + (iK A) jμ

]
, (B23)

where the U (1) Noether current is defined as jμ ≡
1√| det g| (i

∂S
∂∂μψ

ψ + H.c.). This matches with our results ob-
tained before.

APPENDIX C: ENERGY MAGNETIZATION FOR
(2 + 1)-DIMENSIONAL DIRAC FERMIONS

In this Appendix, we shall provide a detailed derivation
of the energy magnetization for (2 + 1)-dimensional massive
Dirac fermions.

We consider the following action for (2 + 1)-dimensional
Dirac fermions in the Minkowski spacetime:

S =
∫

d3x
√

|det g|
[

1

2

(
ψ̄γ aieμ

a ∂μψ − ψ̄ i
←−
∂ μγ aeμ

a ψ
)

−mψ̄ψ

]
, (C1)

where both the chemical potential and the external electro-
magnetic field are set to zero. The energy-momentum tensor
is

τ ν
b = 1

2 (ψ̄γ ν i∂bψ + H.c.) − δν
bL, (C2)

and we have set the spin connection to zero. In addition, we
are most interested in the (thermal) Hall effect, so the δν

bL
term is neglected hereafter, and we define τ̃ ν

b = τ ν
b + δν

bL.
Then, values of the Feynman diagram in Fig. 3 in a homo-
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geneous equilibrium state of temperature T0 imply that the
response energy current is

J μ
E ,equ = −Cequm

4π
εμαν∂αe∗0

ν , (C3)

where

Cequ = T0

[ |m|
T0

tanh

(
1

2

|m|
T0

)
− �

T0
tanh

(
1

2

�

T0

)]
, (C4)

with the UV cut-off � large compared to T0. Here J μ
E consists

of two parts, one from the zero-point energy depending on
the UV cut-off, and the other from thermal excitations. In
particular, as far as thermal responses are concerned, terms
from the zero-point energy can be neglected, for the following
reasons: (i) Eqs. (16) in the main text are linear differential
equations of energy magnetization, tracing back to the fact
that energy (magnetization) currents depend on energy mag-
netization linearly. In turn, energy magnetization comprises
of two pieces from the zero-point energy and thermal exci-
tations, respectively. (ii) Only the latter piece contributes to
the thermal Hall effect. Motivated by this, J μ

E in the main
text stands for the thermal current with the zero-point energy
part subtracted. Let us proceed by setting the term on the
right-hand side of Eq. (16d) to − m

4π
Cequ. By solving Eq. (16d),

one can obtain the energy magnetization, i.e.,

mg, 0 = c1T 2
0 − mT0

8π

{( |m|
T0

− �

T0

)
+ 4

[
T0

�
Li2(−e− �

T0 )

− T0

|m|Li2
(−e− |m|

T0
)] + 4 ln

(
1 + e−|m|/T0

1 + e−�/T0

)}
, (C5)

where c1 cannot be determined by solving Eq. (16d). In
the zero-temperature limit, i.e., T0 → 0, we have mg,0 

− 1

8π
(m|m| − m�), so the effective action in Eq. (12)

becomes −m(|m|−�)
8π

∫
εμνρe∗0

μ ∂νe∗0
ρ , which matches the tor-

sional Chern-Simons term obtained in Refs. [9,10]. Sim-
ilarly, at finite temperature, the c1T 2

0 term suggests that
there exists a thermal torsional Chern-Simons term, i.e.,
−c1

∫
T 2

0 εμνρe∗0
μ ∂νe∗0

ρ .
Now let us determine the value of c1 by taking the

high-temperature limit as a reference state. Consider a UV
complete model at high temperature. We expect all quasiparti-
cles to be excited, so mg,0 should be temperature-independent.
In this limit, mg,0 = c1T 2

0 − [ m(|m|−�)
8π

+ π sgn(m)
24 T 2

0 ] with m �
�, which, combined with the temperature-independent condi-

FIG. 3. Feynman diagram for 〈τ̃ μ
a (−p)τ̃ ν

b (p)〉. τ̃ μ
a is defined as

τ̃ μ
a ≡ τμ

a + δμ
a L, where the −δμ

a L term in τμ
a is subtracted. Double

wavy lines stand for external vielbeins.

tion, yields

c1 = π sgn(m)

24
. (C6)

This means that we have fixed c1 by imposing physical condi-
tions, even though it cannot be determined from perturbative
calculations of Feynman diagrams.

In summary, mg,0 in the low-temperature limit is

mg,0 = sgn(m)
π

24
T 2

0 − m(|m| − �)

8π
, (C7)

and the ensuing effective action is

Seff = −
∫ [

π sgn(m)

24
T 2

0 + m(� − |m|)
8π

]
εμνρe∗0

μ ∂νe∗0
ρ

+ O[(φg)2], (C8)

where the first term in the square bracket originates from ther-
mal excitations, while the second term is from the zero-point
energy and depends on the UV cut-off.

APPENDIX D: CALCULATIONS OF
ENERGY-MOMENTUM TENSOR 〈τ1

0〉 IN
(1 + 1)-DIMENSIONAL SPACETIME

In this Appendix, we shall present calculations of the
edge energy-momentum tensor in flat spacetime. For chiral
fermions with chirality s, the energy-momentum tensor is

〈
τ 1

0

〉 =
〈
ψ̄γ 1

(
1 + sγ5

2

)
i∂0ψ

〉

= 1

2

∫
d p1

2π

(∑
n

1

β0

)
(iωn)2

(iωn)2 − p2
1

tr(sγ 0γ 1γ5)

= s
∫

d p1

2π

(∑
n

1

β0

)
(iωn)2

(iωn)2 − p2
1

, (D1)

where s = ±1 is for chiralities of Weyl fermions, ωn =
(2n+1)π

β0
is the Matsubara frequency, and gamma matrices are

defined as γ 0 = σ 1, γ 1 = iσ 2, and γ 5 = −σ 3.

1. Hard-cutoff regularization

Now we shall calculate the integral above by using a hard-
cutoff regularization, i.e.,∫

d p1

2π

(∑
n

1

β0

)
(iωn)2

(iωn)2 − p2
1

=
∫

d p1

2π

[
−1

2
εnF (−ε) + 1

2
εnF (ε)

]

= 2π

∫
dε

2π

ε

2π
nF (ε)

= 2π

{ ∫ +∞

−∞

dε

2π

ε

2π
[nF (ε) − θ (−ε)]

+
∫ +∞

−4π�̃

dε

2π

ε

2π
θ (−ε)

}

=
(

π

12β2
0

+ �̃2

)
, (D2)
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where ε ≡ |p1| is the energy for Weyl fermions, nF ≡ 1
eβ0ε+1

is the Fermi-Dirac distribution function, and �̃ is a cutoff.

2. Dimensional regularization

If we use dimensional regularization instead, the �̃2 term
vanishes, i.e.,∫

d p1

2π

(∑
n

1

β0

)
(iωn)2

(iωn)2 − p2
1

= 1

2β0

∑
n

|ωn|

= πβ−2
0 (1 + 3 + 5 + · · · ) = π

12β2
0

, (D3)

where in the second line, we have integrated over p1 by using
dimensional regularization. In the last line, we have used
(1 + 3 + 5 · · · ) = 1

12 , which is because
∑+∞

n=1 n = − 1
12 and

2
∑+∞

n=1 n + (1 + 3 + · · · ) = − 1
12 . Note that

∑
n |ωn| is the

vacuum energy of fermions.

3. Results

In summary, we have derived

〈
τ 1

0

〉 = s

(
π

12β2
0

+ �̃2

)
. (D4)
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