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Spin-orbit interactions may relax the rigid conditions leading to flat bands
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Flat bands are of extreme interest in a broad spectrum of fields since, given their high degeneracy, a small
perturbation introduced in the system is able to push the ground state in the direction of an ordered phase of
interest. Hence, the flat-band engineering in real materials attracts huge attention. However, manufacturing a flat
band represents a difficult task because its appearance in a real system is connected to rigid mathematical condi-
tions relating a part of Hamiltonian parameters. Consequently, whenever a flat band is to be manufactured, these
Hamiltonian parameters must be tuned exactly to the values fixed by these rigid mathematical conditions. Here
we demonstrate that taking the many-body spin-orbit interaction into account, which can be continuously tuned,
e.g., by external electric fields, these rigid mathematical conditions can be substantially relaxed. Consequently,
we show that a ∼20%–30% variation in the Hamiltonian parameters rigidly fixed by the flat-band conditions can
also lead to flat bands in the same, or in a bit displaced, position on the energy axis. This percentage can even
increase to ∼80% in the presence of an external magnetic field. This study is made for the case of conducting
polymers. These systems are relevant not only because they have broad application possibilities, but also because
they can be used to present the mathematical background of the flat-band conditions in full generality, in a
concise, clear, and understandable manner applicable everywhere in itinerant systems.

DOI: 10.1103/PhysRevB.105.085103

I. INTRODUCTION

Flat bands are attracting great interest today given the
broad application possibilities of the huge degeneracy they
provide. Indeed, flat bands appear in several circumstances
as chiral edge-mode broadband topological slow light [1],
diffraction-free photonics via collective excited states of
atoms in Creutz super-radiance lattices [2], interaction-
enhanced group velocity in optical kagome lattices [3],
production of topological states in one-dimensional (1D) op-
tical lattices [4], generation of flat bands in non-Hermitian
optical lattices [5], realization of tilted Dirac cones from flat
bands which lead to intricate transport phenomena [6], en-
gineering flat-band PT -symmetric metamaterials [7], use of
singularities emerging on flat bands [8], artificial flat-band
systems [9], and superconducting quantum interference de-
vice (SQUID) metamaterials on Lieb lattices [10]. In addition,
they are of interest because of the emergence of different
ordered phases in flat-band systems such as superconductiv-
ity [11], ferromagnetism [12], semimetal magnetic ordering
[13], excitonic insulator [14], etc. Flat bands also produce
interesting effects as quantized circular photogalvanic effect
[15], ordered quantum dot arrays formed by moire excitons
[16], emergence of noncontractible loop states [17], etc.

Flat bands occur in several types of materials from which
conducting polymers [13,18–22] have broad application pos-
sibilities covering thermal conductivity enhancement [23],
carrier charge transport [24], heat exchangers and energy stor-
age [25], soft high-performance capacitors [26], switchers and
commutators [27], sensors [28], high-performance batteries
[29], biodegradable plastics [30], light-emitting diodes [31],

organic transistors [32], and even life sciences and medicine
[33–35]. This is the reason why in the study of flat-band
characteristics, we exemplify the observed properties in the
case of conducting polymers.

Flat bands can be effective [20,36,37] or bare (i.e.,
provided exclusively by Ĥkin, kinetic energy part of the
Hamiltonian). Their main source of difficulties is that they
are determined by rigid mathematical conditions connected
to the parameters (e.g., hopping matrix elements, coupling
constants) of the Hamiltonian (Ĥ ). Indeed, deducing the band
structure in a lattice, in principle, we obtain from the one-
particle part of the Hamiltonian a secular equation of the form

Q
(
ε, {pi}, {trig j (kxα )}) = 0, (1)

where ε = En(k) provides the energy spectrum, {pi} rep-
resents the set of the parameters of the Hamiltonian (i =
1, 2, . . . , mmax), xα are the Bravais vectors of the lattice,
trig j (z) represent trigonometric functions of sin(nz), cos(nz)
type (where n is an integer) holding in their argument the k
momentum dependence. The notation {trig j (kxα )} represents
the set of all trigonometric functions emerging in the sec-
ular equation (1). In Eq. (1) all trigonometric contributions
trig j emerge in Q additively, with multiplicative coefficients
Tj ({pi}) [i.e., as Vj = Tj ({pi})trig j (kxα )] which depend on the
Hamiltonian parameters {pi}. Eliminating these coefficients

Tj ({pi}) = 0, j = 1, 2, 3, . . . , m (2)

the k dependence disappears from the secular equation (1),
hence, from Q = 0 we find k independent ε values, i.e., flat
bands [see for exemplification Eqs. (13)–(15)]. As seen from
Eq. (2), when flat bands emerge, interdependencies between
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Hamiltonian parameters must be present. If in Eq. (2) one
has j = 1, 2, . . . , m < mmax, these interdependencies rigidly
fix the value of m Hamiltonian parameters. Hence, when a flat
band appears, only (mmax − m) Hamiltonian parameters can
be arbitrarily chosen, and m Hamiltonian parameters remain
rigidly fixed [given and determined by the arbitrarily taken
(mmax − m) Ĥ independent parameters]. One mentions that
Q in Eq. (1) contains additively also a V0 = Tj=0 term which
does not contain k, and explicitly one has Q = ∑m

j=0 Vj [see
also Eq. (25)].

Furthermore, if the Tj coefficients in Q also contain the
parameter ε, we can fix the origin of the energy axis to the
position of the flat band (i.e., ε = 0), and the deduction of
the flat-band conditions can be similarly treated, as presented
above in Eqs. (1) and (2). Usually, the flat-band conditions (2)
are deduced from a given Ĥ describing itinerant systems with
independent orbital and spin degrees of freedom. This state
of facts is motivated by the observation that the many-body
spin-orbit interaction ĤSO = λσ · (∇V × k) is usually small.
Here σ represents the spin of carriers, k is their momentum,
∇V the potential gradient, while λ � 1 is the strength of the
spin-orbit interaction. When the system is interacting (e.g.,
the leading term of the Coulomb interaction in a many-body
system, the onsite Coulomb repulsion U > 0 is present), the
use of HSO introduces supplementary complications since be-
cause λ � U even the perturbative treatment is questionable,
hence enforcing special treatment for obtaining exact results
[38–40].

Even if the spin-orbit interaction (SOI) is small, its effect
is major since it breaks the spin-projection double degeneracy
of each band [41], and leads to several interesting effects:
stable soliton complexes [42], enhanced transport proper-
ties [43], influence of graphene properties [44], coupling of
Hofstadter butterfly pairs [45], topological excitations [46],
provision of stripe and plane-wave phases [47], able to pro-
duce spin-memory loss [48], influence of proximity effects at
interfaces [49], leads to anomalous Josephson effect [50] and
condensed phases [38]. Furthermore, in several circumstances
λ is strongly tunable [51], can be enhanced by Coulomb cor-
relations [52], and can be increased by doping [53], structural
conformation (e.g., altering torsion in conjugated polymers)
[54], twist of the aromatic rings along the conjugation path
[55], and can be even tuned by external electric field [56].

In this paper we show that taking into account ĤSO in
the system Hamiltonian Ĥ , the rigid flat-band conditions in
Eq. (2) can be substantially relaxed. This procedure is tempt-
ing because the strength of SOI can be continuously tuned by
an applied external electric field. Consequently, engineering
a flat band in a real system is in fact more easily achievable
compared to how it was considered before. As we mentioned
previously, we exemplify our results on conducting polymers.
Two spin-orbit couplings are considered, one (denoted by λ)
as in base, and another one (denoted by λc) as interbase contri-
bution. In order to obtain more information, also the external
magnetic field is considered acting via Peierls phase factors.
For the conducting polymer, a pentagon chain is considered
(e.g., polyaminotriazole type of chain) since this was one of
the first produced conducting polymers.

The remaining part of the paper is constructed as follows:
Sec. II presents the studied system, Sec. III deduces the band

FIG. 1. The pentagonal unit cell, with the nearest-neighbor hop-
ping matrix elements (t, th, tc, t f ), the Rashba couplings (λ, λc), the
onsite one-particle potentials (ε1, ε2, ε3, ε4), and the external mag-
netic field (B).

structure, and determines the flat bands, Sec. IV (Sec. V) de-
scribes how the mathematically rigid flat-band conditions can
be relaxed by spin-orbit interactions maintaining (not main-
taining) the position of the flat band, Sec. VI. summarizes the
paper, and, finally, Appendixes A–E, containing mathematical
details, close the presentation.

II. THE SYSTEM STUDIED

A schematic plot of the unit cell of the system containing
six sites is presented in Fig. 1. The upper antenna in the
pentagon chain (as, e.g., in polyaminotriazole, see Fig. 2) is
considered simply as the bonds (5,6) on Fig. 1 since this struc-
ture is able to describe qualitatively correct its effect in the
band structure. The external magnetic field is perpendicular
to the plane of the cell. At the level of the Hamiltonian the
system is described by

Ĥ = Ĥkin + ĤSO, (3)

where, denoting by n = 1, 2, . . . , 6, the in-cell position of
atoms Ĥkin is given by

Ĥkin =
∑
i,σ

[
(teiφ1,5 ĉ†

i,1,σ ĉi,5,σ ′ + teiφ2,1 ĉ†
i,2,σ ĉi,1,σ ′

FIG. 2. Schematic plot of the polyaminotriazole cell.
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+teiφ4,3 ĉ†
i,4,σ ĉi,3,σ ′ + teiφ5,4 ĉ†

i,5,σ
ĉi,4,σ ′

+ tceiφ7,4 ĉ†
i+a,7,σ ĉi,4,σ ′ + theiφ3,2 ĉ†

i,3,σ ĉi,2,σ

+ t f eiφ6,5 ĉ†
i,6,σ ĉi,5,σ + H.c.)

+
6∑

n=1

εnĉ†
i,n,σ ĉi,n,σ

]
. (4)

Here, c†
i,n,σ creates an electron with σ spin projection in

the n position of the cell placed at the site i; the t, th, tc, t f

are nearest-neighbor hopping matrix elements, while εn are
the onsite one-particle potentials at the in-cell positions n.
Based on the symmetry of the unit cell, one uses the nota-
tions ε1 = εn=1 = εn=4, ε2 = εn=2 = εn=3, ε3 = εn=5, ε4 =
εn=6. The Peierls phase factors φn,n′ (describing the effect
of the external magnetic field on the orbital motion of the
carriers) are deduced in Appendix A. Based on the obtained
results, one uses the following notations: φ3,2 = φ1, φ4,3 =
φ2,1 = φ2, φ5,4 = φ1,5 = φ3, φ5,6 = φ7,4 = 0.

Concerning HSO = λσ · (∇V × k), it introduces spin-flip-
type hoppings along the bonds of the system [38]. Since
spin-orbit coupling for carbon influences considerably the
physical processes in carbon-made materials [57,58], we take
into consideration HSO on bonds containing carbon atoms.
This choice is supported also by the fact that these bonds pro-
vide the conjugated (i.e., conducting) nature of the polymer.
From these bonds two manifolds can be constructed: in-cell
bonds [(1,5);(2,1);(4,3);(5,4); see Fig. 1], and intercell bonds
[(7,4) in Fig. 1]. Since the strength of the spin-orbit coupling
on intercell bonds can be increased by atom intercalation [59]
and the ending atoms on these bonds are different from the
ending atoms on in-cell bonds, the SOI coupling on these
bonds will be denoted by λc, while the in-cell SOI coupling by
λ. In these conditions, taking into account Rashba interaction
in polymers [56], HSO becomes

ĤSO =
∑
i,σ

(
tσ,−σ
1,5 ĉ†

i,1,σ ĉi,5,−σ + tσ,−σ
2,1 ĉ†

i,2,σ ĉi,1,−σ

+ tσ,−σ
4,3 ĉ†

i,4,σ ĉi,3,−σ + tσ,−σ
5,4 ĉ†

i,5,σ
ĉi,4,−σ

+ tσ,−σ
c ĉ†

i+a,7,σ ĉi,4,−σ + H.c.
)
, (5)

where λ = t↑,↓
5,1 = t↓,↑

1,5 = t↓,↑
1,2 = t↑,↓

2,1 = t↓,↑
3,4 = t↑,↓

4,3 = t↑,↓
4,5 =

t↓,↑
5,4 and λc = t↑,↓

c = t↑,↓
7,4 ; furthermore, t↑,↓

i, j = −t↑,↓
j,i holds.

As mentioned previously, the strength of HSO can be con-
tinuously tuned by an applied external electric field [60,61].
One applies the external E = E �k field in the z direction (per-

b1b2 b3 b'

b

a

ii + r4 i+a

i+ r6

i+ r5

i+ r2
i+ r3

FIG. 3. Notations used for the pentagonal unit cell.

pendicular to the plane of the chain, �k being the unit vector
in z direction). Since the carriers move in the x direction (see
Fig. 3), the first quantized Rashba Hamiltonian becomes ĤR =
−iησykx [56,62] (here kx is the momentum along the x axis,
i.e., along the polymer chain), hence the spin is oriented along
the y axis. After this step, if one couples the external magnetic
field B along the z axis, since the magnetic induction and the
spin vector are perpendicular, the Zeeman term provides zero
contribution, and the external magnetic field acts only via the
Peierls phase factor. If the source of SOI is exclusively the
external electric field, λ = λc, and the connection of λ to E is
given by [63]

λ = K̄E , K̄ = |q|h̄2

4m2c2

2π

λD
, (6)

where in the expression of the coefficient K̄ , q and m are the
charge and (rest) mass of the carriers, λD is their de Broglie
wavelength, and c is the speed of light.

III. BAND STRUCTURE

First, we transform the Ĥ Hamiltonian from Eq. (3) to k
space. The fermionic operators are Fourier transformed via
ĉi,rn,σ = 1√

Nc

∑
k e−ik(i+rn )ĉn,k,σ , where Nc represents the num-

ber of unit cells and k is directed along the x axis (see Fig. 3).
One obtains [see also Eq. (A4)]

Ĥ =
∑

k

∑
σ,σ ′

[
tσ,σ ′
1,5 ĉ†

k,1,σ ĉk,5,σ ′eik(r1−r5 ) + tσ,σ ′
2,1 ĉ†

k,2,σ ĉi,1,σ ′eik(r2−r1 ) + tσ,σ ′
4,3 ĉ†

k,4,σ ĉk,3,σ ′eik(r4−r3 )

+ tσ,σ ′
5,4 ĉ†

k,5,σ
ĉk,4,σ ′eik(r5−r4 ) + tσ,σ ′

c ĉ†
k,1,σ ĉk,4,σ ′eik(a−r4 ) + thĉ†

k,3,σ ĉk,2,σ eik(r3−r2 )

+ t f ĉ†
k,6,σ ĉk,5,σ eik(r6−r5 ) + H.c.

] +
∑

n

εnĉ†
k,nĉk,n. (7)
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Here, rn represents the in-cell position of the nth atoms in the cell, and r1 = 0 is considered. The terms in the exponents are
obtained via (see Fig. 3)

k(r4 − r3) = k(r2 − r1) = kb2, k(r6 − r5) = 0, k(a − r4) = kb′,

k(r3 − r2) = kb1, k(r5 − r4) = k(r1 − r5) = kb

2
. (8)

Using Eq. (8) in (7) one finds

Ĥ =
∑

k

∑
σ,σ ′

[
tσ,σ ′
1,5 ĉ†

k,1,σ ĉk,5,σ ′ei kb
2 + tσ,σ ′

2,1 ĉ†
k,2,σ ĉi,1,σ ′eikb2 + tσ,σ ′

4,3 ĉ†
k,4,σ ĉk,3,σ ′eikb2

+ tσ,σ ′
5,4 ĉ†

k,5,σ
ĉk,4,σ ′ei kb

2 + thĉ†
k,3,σ ĉk,2,σ eikb1 + t f ĉ†

k,6,σ ĉk,5,σ + tσ,σ ′
c ĉ†

k,1,σ ĉk,4,σ ′eikb′ + H.c.
] +

∑
n

εnĉ†
k,nĉk,n. (9)

One observes that Ĥ in Eq. (9) can be written as

Ĥ =
∑

k

(ĉ†
k,1,↑, . . . , ĉ†

k,6,↑, ĉ†
k,1,↓, . . . , ĉ†

k,6,↓)M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ĉk,1,↑
...

ĉk,6,↑
ĉk,1,↓

...

ĉk,6,↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where M, being a 12 × 12 matrix, can be written in the following form:

M =
(

M1 M2

M3 M4

)
. (10)

Here, the M j , j = 1, 2, 3, 4, contributions are given as follows:

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε1 te−i(kb2+ϕ2 ) 0 tceikb′
te−i( kb

2 −ϕ3 ) 0
tei(kb2+ϕ2 ) ε2 the−i(kb1+ϕ1 ) 0 0 0

0 thei(kb1+ϕ1 ) ε2 te−i(kb2+ϕ2 ) 0 0
tce−ikb′

0 tei(kb2+ϕ2 ) ε1 tei( kb
2 −ϕ3 ) 0

tei( kb
2 −ϕ3 ) 0 0 te−i( kb

2 −ϕ3 ) ε3 t f

0 0 0 0 t f ε4

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −λe−i(kb2+ϕ2 ) 0 λceikb′ −λe−i( kb
2 −ϕ3 ) 0

λei(kb2+ϕ2 ) 0 0 0 0 0
0 0 0 −λe−i(kb2+ϕ2 ) 0 0

−λce−ikb′
0 λei(kb2+ϕ2 ) 0 λei( kb

2 −ϕ3 ) 0
λei( kb

2 −φ3 ) 0 0 −λe−i( kb
2 −ϕ3 ) 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 λe−i(kb2+ϕ2 ) 0 −λceikb′
λe−i( kb

2 −ϕ3 ) 0
−λei(kb2+ϕ2 ) 0 0 0 0 0

0 0 0 λe−i(kb2+ϕ2 ) 0 0
λce−ikb′

0 −λei(kb2+ϕ2 ) 0 −λei( kb
2 −ϕ3 ) 0

−λei( kb
2 −ϕ3 ) 0 0 λe−i( kb

2 −ϕ3 ) 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε1 te−i(kb2+ϕ2 ) 0 tceikb′
te−i( kb

2 −ϕ3 ) 0
tei(kb2+ϕ2 ) ε2 the−i(kb1+ϕ1 ) 0 0 0

0 thei(kb1+ϕ1 ) ε2 te−i(kb2+ϕ2 ) 0 0
tce−ikb′

0 tei(kb2+ϕ2 ) ε1 tei( kb
2 −ϕ3 ) 0

tei( kb
2 −ϕ3 ) 0 0 te−i( kb

2 −ϕ3 ) ε3 t f

0 0 0 0 t f ε4

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Now, the band structure can be deduced from the secular equation of the matrix M, namely, det(M − εI) = 0, where ε

represents the energy eigenvalues, while I is the 12 × 12 identity matrix. This leads to the following equation (see Appendix B):

Q = det(M − εI) = C(A + iV )(A − iV ) = 0, (11)

which represents in the present case (1). Here, C = A2
f ε̄

2
2

¯̄ε2
2 ε̄

2
4

¯̄ε2
3 , ¯̄ε3 = ε̄3 − |t f |2

ε̄4
, ¯̄ε2 = ε̄2 − |th|2

ε̄2
, A f = ε̄1 − (t2 + λ2)( ε̄4

ε̄3 ε̄4−t2
f
+

ε̄2

ε̄2
2 −t2

h
). One has ε̄ j = ε j − ε ( j = 1, 2, 3, 4). The expressions of A and V are detailed in Appendix B, and one has

(A + iV ) = A f − 1

A f

[(
t̄∗
c eiϕk − −λ2 + t2

¯̄ε3
eiϕ + −λ2 + t2

ε̄2 ¯̄ε2
th) + i(λ̄ceiϕk + 2λt

¯̄ε3
eiϕ − 2λt

ε̄2 ¯̄ε2
th

)]

×
[(

t̄ce−iϕk − −λ2 + t2

¯̄ε3
e−iϕ + −λ2 + t2

ε̄2 ¯̄ε2
th) − i(λ̄∗

ce−iϕk + 2λt
¯̄ε3

e−iϕ − 2λt

ε̄2 ¯̄ε2
th

)]
,

(A − iV ) = A f − 1

A f

[(
t̄∗
c eiϕk − −λ2 + t2

¯̄ε3
eiϕ + −λ2 + t2

ε̄2 ¯̄ε2
th) − i(λ̄ceiϕk + 2λt

¯̄ε3
eiϕ − 2λt

ε̄2 ¯̄ε2
th

)]

×
[(

t̄ce−iϕk − −λ2 + t2

¯̄ε3
e−iϕ + −λ2 + t2

ε̄2 ¯̄ε2
th) + i(λ̄∗

ce−iϕk + 2λt
¯̄ε3

e−iϕ − 2λt

ε̄2 ¯̄ε2
th

)]
, (12)

where t̄c = tce2iϕ3 , λ̄c = λce−2iϕ3 , ϕk = ka + ϕ, ϕ = ϕ1 + 2 ϕ2 + 2 ϕ3 holds, and one has in Eq. (11) the expression Q = CI+I− =
0, I± = A ± iV , which cannot be satisfied by C = 0.

In what follows one analyzes the I+ = 0 relation providing Q = 0 (note that the same conclusions are provided by the I− = 0
relation, see Appendix C). In the present situation, for Q = 0 one has

I+ = (A + iV ) = T0 + T1 cos(ϕk ) + T2 sin(ϕk ) = 0, (13)

where

T0 = A f − 1

A f

[(
λ2

c + t2
c

) + (λ2 + t2)2

(
1
¯̄ε2

3

+ t2
h

ε̄2
2

¯̄ε2
2

− th
ε̄2 ¯̄ε2 ¯̄ε3

2 cos(ϕ)

)]
,

T1 = 1

A f

(
− cos(2ϕ3 + ϕ)

2(2λtλc + tc(λ2 − t2))
¯̄ε3

− sin(2ϕ3 + ϕ)
2[−2λttc + λc(λ2 − t2)]

¯̄ε3

+ cos(2ϕ3)
2[2λtλc + tc(λ2 − t2)]th

ε̄2 ¯̄ε2
+ sin(2ϕ3)

2[−2λttc + λc(λ2 − t2)]th
ε̄2 ¯̄ε2

)
,

T2 = 1

A f

(
cos(2ϕ3 + ϕ)

2[−2λttc + λc(λ2 − t2)]
¯̄ε3

− sin(2ϕ3 + ϕ)
2[2λtλc + tc(λ2 − t2)]

¯̄ε3

− cos(2ϕ3)
2[−2λttc + λc(λ2 − t2)]th

ε̄2 ¯̄ε2
− sin(2ϕ3)

2[2λtλc + tc(λ2 − t2)]th
ε̄2 ¯̄ε2

)
. (14)

The here obtained Tj = Tj (pi ), j = 1, 2, are the terms present
in Eq. (2), and in the present case trig1(kxα ) = cos(ϕk ),
trig2(kxα ) = sin(ϕk ) holds. The flat-band conditions become
[see Eq. (2)]

T1 = 0, T2 = 0. (15)

From Eq. (13) and the flat-band conditions (15) one also has
T0 = 0. In general, this relation determines the position of the
flat band.

IV. RELAXING THE RIGID FLAT-BAND
CONDITIONS WHILE MAINTAINING THE POSITION

OF THE FLAT BAND

A. Rigidly fixed flat-band conditions

Let us start with the flat-band conditions (15) in the absence
of SOI (i.e., λ = λc = 0) and external magnetic field [i.e.,
ϕi = 0 at i = 1, 2, 3, see also Eq. (A3), i.e., φ = 0 as well].

In doing this job we fix the origin of the energy axis to the
position of the flat band (i.e., ε = 0). From Eq. (15) we find

|t f | =
√

ε4
[
ε3th − (

ε2
2 − t2

h

)]
√

th
, (16)

while the T0 = 0 condition, by fixing the flat-band position to
the origin, provides

|tc| = (ε2 + th)[ε1(ε2 − th) − t2]√(
ε2

2 − t2
h

)2
. (17)

These results are in agreement with the conditions deduced
previously in literature [20]. One notes that the sign of the
(t f , tc) hopping amplitudes influences the relative position of
the flat band in the band structure of the system. For exam-
ple, for (t f > 0, tc > 0) the flat band appears as the lowest
band in the band structure [for Nb number of atoms in the
base (in our case Nb = 6) one has Nb bands in the band
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structure], for (t f < 0, tc < 0) the flat band appears in the up-
per position of the band structure, etc. From Eqs. (16) and (17)
the meaning of rigid flat-band conditions can be clearly ex-
emplified: All Hamiltonian parameters excepting t f , tc can be
arbitrarily chosen [however, the positivity conditions ε4[ε3 −
(ε2

2 − t2
h )/th] > 0, (ε2 + th)[ε1 − (ε2 − th) − t2] > 0 seen in

Eqs. (16) and (17) must be satisfied]. But, the t f value is
rigidly fixed by Eq. (16). Furthermore, Eq. (17), by fixing
the flat-band position to ε = 0, fixes the tc value as well.
In order to exemplify (see Set 1 of data in Appendix D),
if one takes, e.g., ε1 = 0.17, ε2 = 0.49, ε3 = 0.22, ε4 =
3.36, th = 1.5 (as arbitrarily taken Hamiltonian parameters)
for the emergence of the flat band, we rigidly need t f =
2.289 41, and in order to have ε = 0, we also need to have
“rigidly” tc = 1.1601. This rigidity is considered to be the
main difficulty in obtaining the flat band in practice. One notes
(that it often happens) that at ε = 0, the rigid conditions relat-
ing the Hamiltonian parameters provided by Tj = 0, j > 1,
and T0 = 0 become interdependent.

What we do now is as follows: Maintaining the arbitrar-
ily taken Hamiltonian parameters, we modify t f = t rfbc

f value
from the rigid condition (16), and tc = t rfbc

c value provided
by Eq. (17) leading to flat band at ε = 0, where rfbc means
“rigid flat-band condition.” By this, the studied band becomes
dispersive (details presented in Appendix D). But, we show
that now taking into account the SOI spin-orbit coupling, the
relaxed t f = t rfbc

f + 
t f , tc = t rfbc
c + 
tc values are able to

provide a flat band again. Consequently, not only t rfbc
f , t rfbc

c

are able to provide the flat band, but also t f = t rfbc
f + 
t f ,

tc = t rfbc
c + 
tc do the same job, hence, the rigid flat-band

conditions can be relaxed by SOI. By this, taking into account
that λ, λc can be tuned [even continuously, e.g., by an external
electric field, see Eq. (6)], the setup of a flat band in practice
becomes an easier job. In this section, in this process, by
keeping ε = 0, the flat band which emerges by reflattening
(i.e., in the presence of 
t f 
= 0; 
tc 
= 0; λ, λc 
= 0) will be
placed at the origin of the energy axis again. Hence, here
we relax the rigid flat-band conditions but we maintain the
position of the flat band at the same time. We do this job first
in the absence of the B external magnetic field.

B. Relaxing the rigid flat-band conditions by SOI at B = 0

At B = 0 and SOI present, based on Eq. (14), the flat-band
condition at ε = 0 presented in Eq. (15) becomes

T1(B = 0) = − 2

A f

[
2λtλc + tc(λ2 − t2)

](ε4

εz
− th

ε2
2 − t2

h

)
= 0,

T2(B = 0) = − 2

A f

[
2λttc − λc(λ2 − t2)

](ε4

εz
− th

ε2
2 − t2

h

)
= 0,

(18)

while the T0 = 0 relation maintaining the flat band in the
origin provides

T0(B = 0) = A f − 1

A f

[(
λ2

c + t2
c

) + (λ2 + t2)2

(
1
¯̄ε2

3

+ t2
h

ε̄2
2

¯̄ε2
2

− 2
th

ε̄2 ¯̄ε2 ¯̄ε3

)]
= 0. (19)

FIG. 4. (a) The λ values necessary to achieve a flat band with
different fixed λc values, after changing the tc = t rfbc

c value defined
by the rigid flat-band conditions by 
tc. (b) The λc values necessary
to achieve a flat band with different fixed λ values, after changing the
tc = t rfbc

c value defined by the rigid flat-band conditions by 
tc. For
exemplification, we have used the Set 1 of Hamiltonian parameter
data from Appendix D.

One notes that the notations A f , ε̄ j, ¯̄ε j, are given below in
Eq. (11). Furthermore, because of ε = 0 one has ε̄ j = ε j , and
εz = ε3ε4 − t2

f holds.
In the two lines of Eq. (18) the simultaneous zero value

of the two brackets containing λ, λc requires not allowed
complex SOI coupling values. Hence, Eq. (18) is satisfied only
by ε4(ε2

2 − t2
h ) = εzth, which leads to the t f = t r f bc

f value pre-
sented in Eq. (16). Consequently, if we would like to maintain
the position of the flat band (i.e., ε = 0 has been fixed), t rfbc

f

cannot be relaxed by SOI couplings. But, t rfbc
c [presented in

Eq. (17)] can be relaxed by SOI couplings. In order to see this,
first one modifies tc to the value tc = t rfbc

c + 
tc and makes the
flat band dispersive. What is happening explicitly in this step
is presented in details in Appendix E, where the dispersive
band obtained from the flat band at 
tc 
= 0 and missing SOI
is characterized (e.g., see Fig. 12).

In the second step we turn on the SOI which, according
to Eq. (19), is able to turn the dispersive band, obtained in
the first step, back to a flat band at the same position on the
energy scale. What one obtains is exemplified in Fig. 4.
The arbitrarily chosen Hamiltonian parameters, together with
t rfbc

f and t rfbc
c , are those used in Appendix D. One observes

that even 50% change in t rfbc
c can be easily compensated by

λ or λc in reproducing the flat band in its initial position.
One further observes that the in-base SOI (λ) is more efficient
than its interbase (λc) counterpart since smaller λ values are
able to compensate the same 
tc values in reproducing the
flat band. As seen, indeed the rigid flat-band condition is
substantially relaxed by SOI, at least at the level of tc. The
price of the reflattened band to remain in the same position
is that not all rigidly fixed Hamiltonian parameters can be
relaxed (such as t rfbc

f in the present case). In such a situation
traditional procedures can be combined with SOI in order to
achieve the reflattening after the application of the 
tc 
= 0
rigid flat-band condition relaxation. In this case 
t f can be
obtained by changing the side group connected to the pen-
tagon [see Fig. 2, where the side group NH2 appears in the
top (apical) part of the figure]. In the same time with this step,
the counterapical (i.e., the N-N bond in Fig. 2) hopping matrix
element th must be modified, which can be achieved, e.g.,
by doping polyaminotriazole with ClO4 (PAT ClO4), fluorine
(PAT F), HF2 (PAT HF2), etc. What is obtained is exemplified
in Fig. 5. We must here underline that higher λc values allow
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FIG. 5. The λ, λc values necessary to achieve a flat band after
changing the tc = t rfbc

c value defined by the rigid flat-band conditions
by 
tc. The changed 
t f values were obtained by changing the th

hopping magnitude, therefore, the value of th is continuously chang-
ing along the solid lines, from the original th to 1.5th. In case (a) one
has λ = constant, while in the case (b) λc = constant holds. For
exemplification, we have used the Set 1 of Hamiltonian parameter
data from Appendix D.

higher 
t f values to be achieved in the attempt to transform
the band back to a flat band. Consequently, we mention that
by introducing heavy ions on intercell bonds we are able to
increase the SOI coupling along the interbase bonds [59], and
as seen here, this step would allow to increase the deviation
from “rfbc” values in the process of band flattening.

Often, it happens that one has a pentagon polymer chain
in which external side groups (apical atoms) are not present,
doping is not used, and also heavy-ion introductions on inter-
base bonds is missing. In this case λ = λc = λ̄ values can be
tuned by external electric field as specified in Eq. (6). In such
conditions, deviations 
tc 
= 0 from t rfbc

c can be compensated
by λ̄ as shown in Fig. 6 in order to create back the flat band at
the origin of the energy axis.

C. Relaxing the rigid flat-band conditions by SOI at B �= 0

When B 
= 0 holds, the flat-band conditions (15) can be
written as

1

A f
(−Kgv − Sgu) = 0,

1

A f
(Kgu − Sgv) = 0, (20)

where the following notations have been introduced:

Kg = cos(4ϕ3 + ϕb)
¯̄ε3

− th
cos(2ϕ3)

ε̄2 ¯̄ε2
,

FIG. 6. The λ̄ = λ = λc value necessary to compensate the devi-
ation 
tc 
= 0 from t rfbc

c in order to recreate the flat band at the origin
of the energy axis. For exemplification, we have used the Set 1 of
Hamiltonian parameter data from Appendix D.

Sg = sin(4ϕ3 + ϕb)
¯̄ε3

− th
sin(2ϕ3)

ε̄2 ¯̄ε2
,

v = 2[2λλct + tc(λ2 − t2)], u = 2[−2λttc + λc(λ2 − t2)],

ϕ = ϕb + 2ϕ3, ϕb = ϕ1 + 2ϕ2. (21)

Since for the Rashba interaction considered here λ, λc must
be real, Eq. (20) allows solutions only for Kg = Sg = 0, which
provide

Ic = Is = Iϕ, Iϕ = Xϕ,

Ic = cos(2ϕ3)

cos(4ϕ3 + ϕb)
, Is = sin(2ϕ3)

sin(4ϕ3 + ϕb)
,

Xϕ = ε4

th

(
ε2

2 − t2
h

)
(
ε3ε4 − t2

f

) . (22)

For solving Eq. (22) one studies the equality Is = Ic. Before
starting this job, let us underline that in the limit of zero
external magnetic field, this equality gives Iϕ = Xϕ = 1 and
we reobtain the B = 0 flat-band condition deduced previously
in Eq. (16). For B 
= 0, using sin(α − β ) = sin(α) cos(β ) −
cos(α) sin(β ), the Is = Ic relation gives

sin[(4ϕ3 + ϕb) − 2ϕ3] = sin(ϕ) = 0, i.e., ϕ = ±nπ,

(23)

where n is an integer number or zero. Hence, at Is = Ic, one
obtains Is = sin(2ϕ3)/ sin(±nπ + 2ϕ3), consequently, Iϕ =
Xϕ = ±1, where the upper sign is obtained at n = 0, while the
lower sign is obtained at other n values. One further observes
that when Eq. (23) holds, Eq. (19) remains true, so the first
line of Eq. (14) reduces to Eq. (19) when the flat band appears
in the presence of the external magnetic field in the same
position of the energy axis. Since Xϕ = 1, as mentioned above,
reproduces the B = 0 results (i.e., 
tc = 
t f = 0 holds in
this case), the B 
= 0 characteristics can be derived from the
Xϕ = −1 relation. Based on the last equality of the second
line of Eq. (22), we obtain four different possible deviations

t f from the t rfbc

f value, which are able to reflatten the band
at B 
= 0 in the same position of the energy axis in which was
placed the flat band at B = 0:


t f = ±
√

ε4
[
ε3th − (

ε2
2 − t2

h

)]
√

th
±

√
ε4

[
ε3th + (

ε2
2 − t2

h

)]
√

th
.

(24)

How 
tc modifies as a function of the spin-orbit coupling
in flattening the band at B 
= 0 (placing the flat band in the
same position of the energy axis in which the flat band for
t f = t rfbc

f , tc = t rfbc
c was placed at B = 0) is exemplified in

Fig. 7. The presented |
tc|/tc results were deduced from
the T0 expression of Eq. (14) in condition of Eq. (23). The
λ̄ = λ = λc results are similar, and are presented in Fig. 8.

Based on the results presented in this section relating the
B 
= 0 case, the following observations can be made: (1) It
can be observed that only discrete nonzero external magnetic
field values provide reflattening effects [see Eq. (23)]. (2) As
shown by Fig. 7 and Eq. (24), huge 
tc/tc and 
t f /t f values
can be achieved at B 
= 0 [allowed by the point (1)] in relaxing
the rigid flat-band conditions necessary for obtaining a flat
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FIG. 7. (a) λ and (b) λc spin-orbit coupling values deduced at B 
= 0 (upper) and B = 0 (lower) necessary to compensate the deviation

tc 
= 0 from t rfbc

c in order to recreate the flat band at the origin of the energy axis. For exemplification, we have used the Set 2 of Hamiltonian
parameter data from Appendix D.

band in the same position of the energy axis. Figure 7 shows
that 80% deviations from t rfbc

c can be easily compensated by
relatively small spin-orbit interaction values, and based on
Eq. (24) it can be checked that 40%–50% deviations from t rfbc

f
can be achieved in producing a flat band at nonzero B. (3)
The requirement to maintain a fixed flat-band position on the
energy axis is relatively restrictive since it does not allow all
rigidly fixed flat-band conditions to be continuously relaxed.
In the present case, at B 
= 0, the t rfbc

f can be only discretely
modified when flat bands are intended to be manufactured.
(4) Since the condition in Eq. (23) is connected only to the
total flux threading the unit cell, it results that in distorting
the unit cell, new aspects in the band flattening via spin-orbit
interaction are not encountered.

V. RELAXING THE RIGID FLAT-BAND CONDITIONS
WITHOUT MAINTAINING THE POSITION OF THE

FLAT BAND

Let us consider that one has a flat band at B = λ = λc = 0
which is placed in the origin of the energy axis, i.e., at ε =
e1 = 0. As described previously, for the Hamiltonian param-
eters, this flat-band emergence requires rigidly fixed flat-band
conditions, e.g., in the present case t f = t rfbc

f , tc = t rfbc
c . Now,

we modify t f and tc with 
t f and 
tc relative to t f = t rfbc
f

FIG. 8. The λ̄ = λ = λc spin-orbit coupling values deduced at
B 
= 0 (upper) and B = 0 (lower) necessary to compensate the de-
viation 
tc 
= 0 from t rfbc

c in order to recreate the flat band at the
origin of the energy axis. For exemplification, we have used the Set
3 of Hamiltonian parameter data from Appendix D.

and tc = t rfbc
c , the studied flat band becoming dispersive as

exemplified in Appendix E. After this step we turn on the SOI
such to transform back the dispersive band obtained in the
previous step into a flat band placed in the position ε = e2.
In the preceding Sec. IV, we have analyzed the character-
istics of this reflattening process for e1 = e2 = 0, i.e., for
the case in which the reflattened band emerges in the same
position of the energy axis. Contrary to this, in this section we
will analyze the case e1 
= e2, i.e., the situation in which the
starting flat-band position e1 obtained at t f = t rfbc

f , tc = t rfbc
c ,

and B = λ = λc = 0, will be different from the position ε2

of the flat band obtained via SOI at the end of the process.
As it will be seen from the results, this situation allows to
considerably relax all rigidly fixed flat-band conditions, hence
allows to manufacture flat bands in real systems under easier
conditions.

Figures 9 (at 
tc/tc < 0) and 10 (at 
tc/tc > 0) exemplify
the obtained results at λ = 0. In these figures, the (a) plots
show the B = 0 case, while the (b) plots the B 
= 0 situation.
It can be seen that even 20% modification of t rfbc

c or t rfbc
f

can be compensated by the presence of λc in reproducing the
flat band in a shifted position 
E presented in the inset. It
can be observed that all rigidly fixed Hamiltonian parameters
can be relaxed in this case. In the presence of the external
magnetic field B, larger 
t f /t f deviations can be compensated
by smaller λc values, which underlines the importance of the
consideration of B in this process. In this case, λc can be mod-
ified by atom intercalation in the intercell bonds, structural
conformation, or twist application [51,53–55].

When one considers the intrinsic λ and λc small, and we
tune both of them by external electric field, the λ = λc = λ̄

case must be considered as presented in Fig. 11, which is
plotted at nonzero and constant B. It can be observed that, e.g.,
almost 30% positive displacements in 
tc/tc and 
t f /t f can
be compensated by relatively small λ̄/t values of order 10−2.

VI. FURTHER REMARKS

We would like to add several observations and remarks in
what follows.

(a) We approach the presented subject, in a mathematical
language, since this allows to show how the flat bands can be
detected in general terms in an arbitrary case, how the flat-
band conditions can be deduced in a general case, and how a
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FIG. 9. The λc spin-orbit coupling values necessary to compensate at λ = 0 the common deviations 
tc 
= 0 and 
t f 
= 0 at (a) B = 0 and
(b) B 
= 0, in order to recreate a flat band placed originally (at λ = λc = B = 0) in the origin of the energy axis ε = 0. The new position of
the flat band is at ε = 
E . In this figure 
tc/tc < 0 holds. For exemplification, we have used the Set 4 of Hamiltonian parameter data from
Appendix D.

FIG. 10. The λc spin-orbit coupling values necessary to compensate at λ = 0 the common deviations 
tc 
= 0 and 
t f 
= 0 at (a) B = 0
and (b) B 
= 0 in order to recreate a flat band placed originally (at λ = λc = B = 0) in the origin of the energy axis ε = 0. The new position
of the flat band is at ε = 
E . In this figure 
tc/tc > 0 holds. For exemplification, we have used the Set 4 of Hamiltonian parameter data from
Appendix D.

FIG. 11. The λc = λ = λ̄ spin-orbit coupling values necessary to compensate the common deviations 
tc 
= 0 and 
t f 
= 0 at B 
= 0 and
(a) 
tc/tc < 0 and (b) 
tc/tc > 0, in order to recreate a flat band placed originally (at λ̄ = B = 0) at the origin of the energy axis ε = 0. The
new position of the flat band is at ε = 
E . For exemplification, we have used the Set 4 of Hamiltonian parameter data from Appendix D.
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TABLE I. The Sets 1 and 2 of Hamiltonian parameter data.

Set 1 Set 2

The parameters The parameters
calculated from calculated from

The unrestricted the flat-band The unrestricted the flat-band
parameters conditions parameters conditions

ε1 ε2 ε3 ε4 t th t rfbc
c t rfbc

f ε1 ε2 ε3 ε4 t th t rfbc
c t rfbc

f

0.17 0.49 0.22 3.36 1 1.5 1.16 2.29 0.87 1.22 0.82 0.36 1 0.9 2.21 0.14

part of the flat-band conditions enumerated in the literature in
fact provide the position of the flat band on the energy scale.

(b) We have used different input parameters in Tables I
and II presented in Appendix D in order to underline that our
findings, observations, and technical approach to the problem
are not related only to one given material, but have an ex-
tremely broad application spectrum. The used Hamiltonian
parameters are not new, and have not been introduced in
this paper: all of them have a broad literature. Consequently,
how these parameters affect the band structure is known. For
example, in the case of conducting polymers, how the hopping
parameters (ti) and onsite one-particle potentials (εi) influence
the band structure is seen, e.g., in [18,20,64,65], etc. How
the Peierls phase factors, describing the action of the external
magnetic field on the orbital motion of itinerant electrons,
act on the band structure is seen, e.g., in [21,66,67], etc.
How the many-body spin-orbit interaction acts on the band
structure (in most cases the main effect is that it breaks the
spin projection double degeneracy of each band) is seen, e.g.,
in [38,39,68,69], etc. This is why in this paper we concentrate
on a single band not satisfying, but being in the absence
of, spin-orbit interaction closely placed to the rigid flat-band
conditions.

(c) In order to exemplify inside the whole band structure
the many-body SOI flattening effect we present Fig. 12, where
the polyaminotriazole case is exemplified in zero external
magnetic field. The used Hamiltonian parameters are t f /t =
1 (see Refs. [18,64]), and th/t = 0.93, tc/t = 1.06, ε1/t =
ε2/t = 0.33, ε3/t = 1.66, ε4/t = 0.8 (see Ref. [70]). The
rigid flat-band conditions require in the absence of external
fields and λ = λc = 0 the values t rfbc

f = 1.406, t rfbc
c = 1.996

(in t units). As seen, λ/t = 0.17 provides 
t f /t f = 0.40,

tc/tc = 0.88 relaxation of rigid flat-band conditions. In the
presented case, the flat band emerges at the position of the
third band ([ee Fig. 12(a)]. One notes that, in general, sign

changes in the Hamiltonian parameters change the position of
the resulting flat band.

(d) Concerning the contribution of terms not taken into
account in the Hamiltonian presented in Eq. (3), the following
aspects must be underlined: First, as mentioned previously
in the text following Eq. (5), in the used configuration the
Zeeman term provides zero contribution because when the
external magnetic field B is applied, the carrier spin is perpen-
dicular to the magnetic field, hence, the scalar product B · σ =
0 holds. Second, if electric dipole moment p is present, it
provides a supplementary contribution to the applied external
electric field. In the case of the described conducting poly-
mers, the dipole moment vector (if exists) is placed inside
the plane x-y of the polymer. The dipole moment itself origi-
nates usually from the inside of the unit cell, being relatively
small, as order of magnitude around or below 1 debye [71].
Our analyzed external electric field E is perpendicular to the
plane of the polymer, so E · p = 0, consequently, the Stark
contribution is also missing from the Hamiltonian.

But, it must be mentioned that, in special cases, in order to
enhance special applications (e.g., in energy storage or solar
cell manufacturing), it is possible to attach to the polymer
[72] group of atoms with high dipole moment, even oriented
outside of the polymer plane. In such cases, the presented
results and findings remain true, but the external electric field
is additively renormalized by the electric field created by the
dipole moments.

(e) If we concentrate on the question why the flat bands
emerge, the answer to this question underlined in this paper
is as follows: The band structure is given by the secular
equation [Q = 0, see Eq. (1)] of the one-particle part of the
Hamiltonian transformed in the k space. As explained, always

Q = T0 +
m∑

j=1

Tj trig j (kxα ), (25)

TABLE II. The Sets 3 and 4 of Hamiltonian parameter data.

Set 3 Set 4

The parameters The parameters
calculated from calculated from

The unrestricted the flat-band The unrestricted the flat-band
parameters conditions parameters conditions

ε1 ε2 ε3 ε4 t th t rfbc
c t rfbc

f ε1 ε2 ε3 ε4 t th t rfbc
c t rfbc

f

0.11 0.10 0.92 0.86 1 0.85 1.44 1.23 0.65 0.49 1.4 0.86 1 2 1.31 1.68
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FIG. 12. The many-body spin-orbit interaction effect on the
whole band structure: (a) the λ = λc = B = 0 case providing dis-
persive bands, and (b) at B = 0 the λ/t = 0.178 providing a
double-degenerate flat band (see Appendix C). For the Hamiltonian
parameters, see text.

where xα are the Bravais vectors, k the momentum, and the
prefactors T0, T1, . . . , Tm depend only on the Hamiltonian pa-
rameters {pi} and the energy ε. The bands are given by ε =
En(k) solutions of the Q = 0 secular equations. Flat bands are
obtained always when all Tj = 0 [see Eq. (2)], hence, ε be-
comes k independent (and the flat-band position will be given
by the T0 = 0 relation). This is the mathematical origin of the
flat bands. How do we achieve all the Tj = 0 requirements?
We simply tune the Hamiltonian parameters {pi}. We under-
line that the here described procedure can be applied always. It
also means that flat bands are not the privilege of some special
systems since flat bands can be obtained from each system
by a proper tuning of the Hamiltonian parameters, a proce-
dure which is effectively often used (see, e.g., Refs. [7,73]).
For example, for a simple cubic lattice in a simple tight-
binding approximation, from Q = 0 one obtains for the
lowest band the relation ε − A0 − A1[cos(xkx ) + cos(yky) +
cos(zkz )] = 0, where T0 = ε − A0, T1 = A1 ∼ t holds, t be-
ing the nearest-neighbor hopping integral. The T1 = A1 = 0
condition provides a flat band at the position ε = A0.

Now, if we ask what it happens physically when all Tj = 0
relations hold, the answer to this question varies from case to
case. For example, in the simple cubic lattice case exemplified
above, A1 = 0 occurs when the nearest-neighbor overlap be-
comes zero (e.g., when we increase the lattice constant at fixed
itinerant carrier number, i.e., decrease the carrier concentra-
tion), and we reach a low-concentration insulating localized
state (e.g., Wigner lattice, since the Coulomb repulsion is
always present). The problem becomes complicated also be-
cause there are flat bands with itinerant (i.e., nonlocalized)
carriers (see, e.g., Ref. [13]). In the situation when carriers
are localized in the flat band, often all the Tj = 0 relations
are considered related to destructive interference caused by
frustration or lattice geometry (see, e.g., Refs. [7,73]). In
the conducting polymer case exemplified in this paper, one
knows that in the flat band, the one-particle Wannier states are
extended over two cells but are localized (see, e.g., Fig. 1 of

Ref. [64]). These Wannier states can be expressed as a linear
combination of extended Bloch states. Hence, in explaining
the two-cell extension of the Wannier states, the destructive
interference argument can be invoked also here.

It is important to stress that independent of how we in-
terpret physically Eq. (2), i.e., all the Tj = 0 relations, the
here described procedure in deducing the flat-band emergence
always works.

VII. SUMMARY AND CONCLUSIONS

One knows that in a real system, the emergence of a flat
band is connected to rigid mathematical conditions (i.e., flat-
band conditions) relating a part of the Hamiltonian parameters
(which we denote here by ξi, e.g., in the presented paper,
ξ1 = tc, ξ2 = t f ). Because of these rigid and restrictive con-
ditions, the engineering of a flat band in a real system is a
quite difficult task. Indeed, for this to be possible, the rigidly
fixed Hamiltonian parameters must be tuned exactly to the
values fixed by the flat-band conditions in order to obtain a flat
band in the system. From the other side, given by their high
(practically infinitely large) degeneracy, there is a huge need
for flat bands in different systems because introducing a small
perturbation in such a case, the ground state of such materials
can be easily pushed in the direction of several ordered phases
of interest in different applications. Because of these reasons,
the study of procedures that are able to relax the rigid flat-band
conditions is an important task.

Along these lines, in this paper we demonstrate that the
many-body spin-orbit interaction (SOI) is able to substantially
relax the rigid flat-band conditions, and at the same time can
be continuously tuned by external fields. Consequently, taking
SOI into account, the flat-band manufacturing in real systems
becomes an easier task.

The problem detailed above is analyzed in the case of
conducting polymers. Aside from the broad application pos-
sibilities of these materials, the motivation of this choice is
the fact that the mathematical background of the flat-band
conditions can be presented in this case in full generality but
in a clear, visible, and understandable manner. One even has
the possibility to analyze the action of in-cell (λ) and intercell
(λc) SOI contributions separately. The procedure we use is
simple: First, fixing the position of the flat band at the origin
of the energy axis ε = 0, we deduce the flat-band conditions
at zero external fields and zero SOI. Then, for a fixed set
of Hamiltonian parameters that can be arbitrarily chosen, we
deduce the rigidly fixed values of Hamiltonian parameters
ξi = ξ rfbc

i . After this step we destroy the flat band (transform-
ing it into a dispersive band) by modifying ξi from ξ rfbc

i to
ξ ′

i = ξ rfbc
i + 
ξi, and analyze what SOI values transform the

dispersive band back into a flat band placed in the position
ε′. In this manner, at the appearance of the flat band, the
parameters ξi are no longer rigidly fixed to ξ rfbc

i , but take the
values ξ ′

i , hence, are relaxed by 
ξi = ξ ′
i − ξ rfbc

i .
In the first step we analyze the case ε = ε′, so the destroyed

flat band, after the application of SOI, arrives back in its
original position. This situation is usually considered in the
literature, and is in fact restrictive since it does not allow to
relax all rigidly fixed flat-band conditions. The relaxed param-
eters, however, calculated as 
ξi/ξi, can be easily changed by
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20%–30% relative to their initial value. The application of an
external B magnetic field increases (at fixed SOI) the possible

ξi/ξi values even to 80% (see, e.g., Fig. 7). Comparing to
the case mentioned above, we also analyze the case ε′ 
= ε

in the second step. In this situation, in fact, mathematically,
one of the flat-band conditions is missing, so the rigid flat-
band conditions are not so restrictive. In this case, the relative
flat-band position displacement on an arbitrary scale |
ε/ε|
is relatively small (i.e., 10%–20%), and contrary to the first
case, all rigidly fixed Hamilton operator parameters ξ rfbc

i can
be relaxed by 20%–30% with relatively small SOI coupling
values [see, e.g., Fig. 11(b), where even λ/t < 0.1]. Also in
this case, the presence of the external magnetic field enhances
the relaxation process of the rigidly fixed Hamiltonian param-
eter values.

Concerning the question as to how the SOI couplings can
be modified and tuned, several possibilities exist. One has
discrete tuning possibilities, as for example intercalation of
elements with high spin-orbit coupling on bonds connecting
cells (e.g., intrachain heavy atoms), hence modifying λc. But,
more promising possibilities are provided by continuous mod-
ification possibilities as, for example, via torsioning, twisting,
or application of external electric field. From these, the last
possibility seems to be the most attractive [from the data
published in the literature (see, e.g., [56]), λ ∼ 0.02 eV is
attained usually by electric fields of order E ∼ kV/cm].

We hope that the presented results will considerably en-
hance the flat-band engineering of real materials.

APPENDIX A: PEIERLS PHASE FACTORS

In calculating the ϕ ji Peierls phase factors, one follows
Fig. 1. In the presence of the external magnetic field B 
= 0
they modify the hopping matrix elements according to the
relation

t j←i(B) = t j←i(0)ei 2π
φ0

∫ j
i

�A �dl = t j←i(0)eiϕ ji , (A1)

where φ0 = hc
e is the flux quantum. One has ϕ ji = 2π

φ0

∫ j
i

�A �dl ,
and t j←i(0) are the B = 0 hopping matrix elements. Since B =
rot( �A) holds, and B points to the z direction, we use the gauge
Ax = −By, Ay = Az = 0. After this step all exact ϕ ji Peierls
phase factors can be calculated for each bond. One observes
that ϕ56 = 0 since the scalar product is zero ( �A ⊥ �dl), and ϕ47

is also 0 because y = 0 holds (see Fig. 1). One obtains

ϕ3←2 = 2π

φ0
(−By2), ϕ3←2 = ϕ1,

ϕ4←3 = 2πB

φ0

|y2|b2

2
, ϕ2←1 = ϕ4←3 = ϕ2,

ϕ5←4 = 2π

φ0
B

y1b

4
, ϕ5←4 = ϕ1←5 = ϕ3. (A2)

FIG. 13. The flat band originally placed at the origin of the en-
ergy axis becomes dispersive under the action of 
tc at zero SOI
couplings. The line in the middle of the dispersive band (at position

Ēmedian) shows the median of the band, while 
Ēmin and 
Ēmax

denote the minimum and maximum positions in the dispersive band
relative to the median. The 
Ēα , α = median, min, max, values are
indicated in t units. For exemplification, we have used the Set 1 of
Hamiltonian parameter data from Appendix D.

One further has

ϕ = ϕ1 + 2ϕ2 + 2ϕ3 = 2π

φ0
φ, (A3)

where φ = BS represents the flux trough the unit cell S =
|y2|b1 + 2 |y2|b2

2 + 2 y1b
4 .

Taking these results into account, the following hopping
terms are present in the Hamiltonian:

t↑,↑
32 = theiϕ1 , ϕ1 = 2π

φ0
(−By2),

t↑,↑
21 = teiϕ2 , t↑,↑

43 = teiϕ2 , t↑,↓
21 = λeiϕ2 , t↑,↓

43 = λeiϕ2 ,

ϕ2 = 2π

φ0
B

|y2|b2

2
,

t↑,↑
54 = teiϕ3 , t15 = teiϕ3 , t↑,↓

54 = −λeiϕ3 , t↑,↓
15 = −λeiϕ3 ,

ϕ3 = 2π

φ0
B

y1b

4
, (A4)

while t↑,↑
i, j = t↓,↓

i, j , t↑,↓
i, j = −t↓,↑

i, j holds since we have taken only
Rashba spin-orbit interactions into account [56].

APPENDIX B: SECULAR EQUATION

The secular equation (11) in which Eq. (10) has been intro-
duced can be mathematically reduced to the diagonalization
of the following 4 × 4 matrix:

⎛
⎜⎜⎝

A f e−ikb
(
tceika − W1

)
0 e−ikb

(
λceika − W2

)
eikb

(
tce−ika − W ∗

1

)
A f eikb

(−λce−ika + W ∗
2

)
0

0 e−ikb
(−λceika + W2

)
A f e−ikb

(
tceika − W1

)
eikb

(
λce−ika − W ∗

2

)
0 eikb

(
tce−ika − W ∗

1

)
A f

⎞
⎟⎟⎠, (B1)

where W1 f = (λ2 − t2)( 1
ε̄2 ¯̄ε2

the−iϕ − 1
¯̄ε3

), W2 f = 2λt ( 1
ε̄2 ¯̄ε2

the−iϕ − 1
¯̄ε3

).
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Furthermore, the A and V expressions present in Eq. (12) are defined as

A = A f − 1

A f

(
λcei(ϕk−2ϕ3 ) + 2λtξ

)(
λce−i(ϕk−2ϕ3 ) + 2λtξ ∗) − 1

A f

[
tcei(ϕk−2ϕ3 ) − (t2 − λ2)ξ

][
tce−i(ϕk−2ϕ3 ) − (t2 − λ2)ξ ∗], (B2)

where

ξ =
(

ε̄4

ε̄3ε̄4 − t2
f

eiϕ − th
ε̄2

2 − t2
h

)
(B3)

and

V = − 1

A f

(
λcei(ϕk−2ϕ3 ) + 2λtξ

)[
tce−i(ϕk−2ϕ3 ) − (t2 − λ2)ξ ∗] − 1

A f

(−λce−i(ϕk−2ϕ3 ) − 2λtξ ∗)[tcei(ϕk−2ϕ3 ) − (t2 − λ2)ξ
]
. (B4)

APPENDIX C: FLAT-BAND CONDITIONS DERIVED FROM THE (A − iV ) EXPRESSION

The studied expression can be written as

(A − iV ) = T0 + T̄1 cos(ϕk ) + T̄2 sin(ϕk ) = 0, (C1)

where T0 is the same as seen in (14), and T̄1, T̄2 are given by

T̄1 = 1

A f

(
− cos(7ϕ3)

2[2λtλc + tc(λ2 − t2)]
¯̄ε3

+ sin(7ϕ3)
2[−2λttc + λc(λ2 − t2)]

¯̄ε3

+ cos(2ϕ3)
2[2λtλc + tc(λ2 − t2)]th

ε̄2 ¯̄ε2
− sin(2ϕ3)

2[−2λttc + λc(λ2 − t2)]th
ε̄2 ¯̄ε2

)
= 0,

T̄2 = 1

A f

(
− cos(7ϕ3)

2[−2λttc + λc(λ2 − t2)]
¯̄ε3

− sin(7ϕ3)
2[2λtλc + tc(λ2 − t2)]

¯̄ε3

+ cos(2ϕ3)
2[−2λttc + λc(λ2 − t2)]th

ε̄2 ¯̄ε2
+ sin(2ϕ3)

2[2λtλc + tc(λ2 − t2)]th
ε̄2 ¯̄ε2

)
= 0. (C2)

Using the same notation as in Eq. (20) this expression pro-
vides

T̄1 = 1

A f
(−Kgv + Sgu) = 0, T̄2 = 1

A f
(−Kgu − Sgv) = 0.

(C3)

As in the case of Eq. (20), only the solution Kg = Sg = 0
exists, hence, we reobtain the solutions derived from the
(A + iV ) expression. This is an important result because of
the following reason: It is known that usually the many-body
spin-orbit interaction breaks the spin-projection double de-
generacy of each band [38,41]. But, here one observes that
if one creates a flat band using SOI, the flat band will remain
double degenerated.

APPENDIX D: SETS OF HAMILTONIAN PARAMETER
DATA

We note that in the Sets 1–4 in Tables I and II all parameters
presented are given in t units, and the rigidly fixed flat-band
conditions have been deduced at B = λ = λc = 0. In the cases
of the Sets 2 and 4, when B 
= 0 plots are done, the B value
was deduced from Eq. (22), i.e., Iϕ = Xϕ = −1. For example,
for ϕb = 3ϕ3 (regular pentagon), one has at minimum B the
relation ϕ3 = (1/5)π . For connection to B, see also Eq. (A4).

APPENDIX E: DISPERSIVE BANDS FROM FLAT BANDS

Let us consider that at B = λ = λc = 0 one modifies the
tc = t rfbc

c rigid flat-band condition value. What happens to the

FIG. 14. The different 
Ēα quantities from Fig. 12 as function of 
tc normalized to tc = t rfbc
c . The presented cases: (a) the median

(
Ēmedian), (b) the maximum (
Ēmax), and (c) the minimum (
Ēmin). For exemplification, we have used the Set 1 of Hamiltonian parameter
data from Appendix D.
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band is exemplified in Fig. 13, where 8.62% modification has
been taken into account relative to t rfbc

c . As seen, the flat band
becomes a dispersive band. How 
Ēmedian, 
Ēmin, and 
Ēmax

change as function of 
tc is exemplified in Fig. 14. One notes

that the original flat band placed in the origin of the energy
axis was double degenerated relative to the spin projection,
and since λ = λc = 0, this double degeneracy remains valid
also in the case of the dispersive band emerging at 
tc 
= 0.
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