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Fractionalization and anyonic statistics in the integer quantum Hall collider
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One remarkable feature of strongly correlated systems is the phenomenon of fractionalization where quasi-
particles carry only a fraction of the charge or spin of the elementary constituents. Such quasiparticles often
present anyonic statistics in two dimensions and lie at the heart of the fractional quantum Hall effect. We discuss
the observation of fractionalization and anyonic statistics already in the integer quantum Hall effect coupled to
a metallic island. A continuous fractional emitter is proposed, which sends dilute beams of noninteger charges,
and its full counting statistics is obtained. The fractional charge is governed solely by the number of ballistic
channels covered by the island and it is one half of the electron charge for a single ballistic channel. We further
characterize the mixing of two such fractional beams through a quantum point contact beam splitter. We predict
negative cross-correlations, in strong contrast with free electrons, that depend on the double exchange phase
between electrons and the fractional charges emulating anyons. The result is similar to a genuine fractional edge
state as recently measured at filling ν = 1/3. We revisit the physical interpretation of this experiment and point
towards a direct braiding measurement rather than a deviation from fermionic antibunching.
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I. INTRODUCTION

The hallmark of the fractional quantum Hall effect [1] is
the existence of quasiparticles which carry a fractional charge
and exhibit anyonic statistics [2]. They are associated with a
topological order and ground state degeneracy [3]. Their ex-
change properties differ from fermions or bosons, possessing
a statistical anyonic phase for Abelian states [4,5]. In the non-
Abelian case, their braiding properties make them building
blocks for realizing fault-tolerant quantum computation [6].
Anyons reside in the bulk or are delocalized at the edge of
the system where they carry an electric current and give a
fractional quantized Hall conductance [7,8]. Aside from these
consistent theoretical constructions, the experimental direct
evidence of anyonic properties posed and still poses its own
challenges [9]. The first strong indication of their existence
was obtained almost 25 years ago [10,11] in seminal noise
measurements in the ν = 1/3 state. The weak tunneling be-
tween opposite edges, via a quantum point contact (QPC),
involves fractional charges detected in the shot noise. The
fractional charge was further confirmed in recent experiments
with finite-frequency noise [12] or photoassisted shot noise
[13], building an overall convincing picture.

Beyond the measurement of the fractional charge and
further successes in observing quantized thermal transport
[14–18], the experimental signature of braiding statistics
of anyons remained for a long time elusive [19], despite
several proposals of interferometric [9,20,21] or correlation
noise [22–26] probes. Two recent breakthrough experiments
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filled this gap and observe convincing signatures of anyonic
statistics for the ν = 1/3 state. In the first experiment [27]
following a theoretical proposal [28], a collider of two dilute
beams of anyons propagating along the edge was realized in
a GaAs/AlGaAs heterostructure. Cross-correlations after the
quantum point contact, i.e., the collider, were measured to be
negative in precise quantitative agreement with theory, in a
way that depends on the anyonic braid phase. For compar-
ison, cross-correlations vanish for fermions as confirmed in
the same experiment. The second experiment [29] measured
the interference fringes of a Fabry-Pérot interferometer in
a two-dimensional electron gas with strong screening. The
path of interference encircles the bulk and thus reflects the
phase accumulated by braiding one anyon on the edge with
each individual bulk anyon. The Abelian braid phase 2π/3,
expected at filling 1/3, was then detected upon adding one
anyon to the bulk.

In this paper, we show that anyonic statistics emerge also in
the integer quantum Hall effect with a metallic island, yielding
a negative cross-correlation in the same collider geometry as
Ref. [27]. We first devise a fractional emitter by connecting a
metallic island to N chiral ballistic channels and one quasibal-
listic channel using a nearby quantum point contact, and prove
that it emits fractional charges e∗ = Ne/(N + 1) and e∗ =
e/(N + 1) with Poissonian statistics. The emitted quasipar-
ticles possess a fractional charge but also emulate fractional
anyonlike commutation relations. This emulation should yield
a measurable exchange phase shift in the interference pattern
of a Mach-Zehnder geometry, as shown in Ref. [30] with a
similar emitter. We characterize in this paper the mixing of
two fractional beams originating from our emitters by com-
puting the output noise cross-correlations. We find them to be
negative in contrast with the result for noninteracting fermions
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and similarly to the fractional quantum Hall case [28].
The obtained cross-correlations depend on the mutual statisti-
cal phase between electrons and emulated anyons and give a
different functional form than in the case of genuine fractional
edge states where only anyons are (braided) exchanged. We
further elaborate on the physical picture behind these cross-
correlations and find that they account directly for the double
exchange between an electron and a fractional charge (anyon),
whereas the (anti)bunching effect in the collision gives only
a subleading neglected term. Interestingly, we find that the
same is true in the fractional quantum Hall state discussed in
Ref. [28], such that the corresponding experiment [27] should
probably be interpreted as a direct consequence of the anyonic
braid phase and not as a deviation to fermionic antibunching,
the corresponding contribution being small.

To make contact with previous works, we note that the
fractional emitter can alternatively be seen as a conductor,
defined by the quasiballistic channel, experiencing dynamical
Coulomb blockade from a resistive environment, composed
of the N ballistic channels and the dot [31,32]. The model
can further be mapped onto an impurity in a Luttinger liq-
uid [33–35] where noninteger charges are known to occur
[36–38]. By continuously changing the couplings between the
island and the edge channels, the model for the emitter also
evolves into a charge Kondo model [39–43], and fractional
charges have been discussed in this context too [44] (see also
Ref. [45] for a related discussion in the topological Kondo
model). These different models—dynamical Coulomb block-
ade, Luttinger liquid, and charge Kondo screening—have in
fact been explored experimentally within a single setup [43].
This underlines the experimental relevance of the fractional
emitter we propose. Other sources of fractional emission have
been predicted [46] and measured [47,48] using coupled inte-
ger quantum Hall channels but with a nonrational charge.

The structure of the paper is as follows. Section II in-
troduces a simple model of ballistic edge channels in the
quantum Hall effect covered by a gated island. The principles
of fractionalization and anyonic statistics are discussed in
this example geometry. They underpin the physics at play in
the next sections. In Sec. III, one of the channels is made
quasiballistic by adding a weak backscattering point contact.
It breaks the continuous flow of electrons and provides gran-
ularity to the charge transport. The current and noise show
that a fractional charge is emitted, and Sec. III B proves that it
is Poissonian by determining the full distribution of emission.
The collider, or beam splitter mixing the outputs of two similar
emitters, is investigated in Sec. IV by computing the cross-
correlations. A discussion on the physical interpretation of the
results follows. Section V summarizes and concludes.

II. BALLISTIC CHANNELS

We lay out the principles for realizing an emitter of frac-
tional charges in the integer quantum Hall effect. Under a
strong magnetic field with filling ν = 1, electrons propagate
along the edges of the two-dimensional sample. We first con-
sider for simplicity a set of purely ballistic chiral channels,
denoted by j = 1, . . . , N + 1, with no tunneling between
them. A metallic island is added which covers part of each

FIG. 1. Sketch of the apparatus fractionalizing electrons. N + 1
propagating edge channels (in red) in the integer quantum Hall
regime are partly covered by a gated island (in green) with charging
energy Ec. The correspondence between incoming (L) and outgoing
(R) chiral channels is inconsequential as the decoherence rate below
the island is large. One electron arriving from channel 1 (L) induces
fractional charges e/(N + 1) in all R channels. A voltage Vj is ap-
plied upstream from channel j.

channel as illustrated in Fig. 1. Using that electrons be-
low the island region have a very short coherence time, we
follow Refs. [40,41] and replace each edge path below the
island by two decoupled semi-infinite chiral lines extending
the incoming and outgoing chiral edges, as depicted in Fig. 2.
Employing a bosonized description of the edge modes, the
Hamiltonian has the form H0 = ∑

j H0, j with

H0, j = h̄vF

4π

∫ +∞

−∞
dx [(∂xφL, j )

2 + (∂xφR, j )
2] (1)

where L/R denotes the incoming/outgoing chiral fermions,
x < 0 is the region below the island, and x > 0 is the region
outside the island. The charging energy Hamiltonian Hc =
EcN̂2 involves the total charge below the island, given by

N̂ =
N+1∑
j=1

∫ 0

−∞
(ρL, j + ρR, j ) = 1

2π

N+1∑
j=1

[φR, j (0) − φL, j (0)]

(2)

FIG. 2. Simplified description for the setup of Fig. 1. For each
channel j = 1, . . . , N + 1, the portion below the island in Fig. 1 is
replaced by two semi-infinite lines extending the incoming L and
outgoing R parts. The axis x labels the electron position. x < 0 refers
to the region inside the island and x > 0 refers to outside.
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FIG. 3. Circuit description for the total charge bosonic mode:
two transmission lines with impedance Rq/2 = h/2e2 are in series
with a capacitance C/(N + 1). The other bosonic modes are fully
absorbed by the island. The incoming and outgoing density waves
are scattered by the capacitance with the unitary matrix (5). The left
transmission line describes the incoming L and outgoing R bosonic
channels outside the island, as displayed in Fig. 1. The right trans-
mission line refers to the island. Note the opposite orientation of the
x axis in comparison with Fig. 2.

where the densities in the L and R modes are related to the
bosonic fields through ρR/L, j = ± 1

2π
∂xφR/L, j . Ec = e2/2C is

the charging energy induced by the capacitance C of the
island to the ground. The Hamiltonian H0 + Hc is quadratic
and can be solved. In order to write its explicit solution, it is
convenient to rearrange the bosonic fields φR/L, j , i.e., perform
a rotation to define new chiral fields. We introduce the total
charge field

φ̃R/L,1 = 1√
N + 1

N+1∑
j=1

φR/L, j, (3)

where the other fields φ̃R/L, j with j � 2 are defined to obtain
a fully orthogonal set; details are deferred to Appendix A.
The orthogonal transformation leaves the free part H0 invari-
ant when written in terms of the new bosonic fields. Since
the total charge within the island is N̂ = √

N + 1[φ̃R,1(0) −
φ̃L,1(0)]/(2π ), all the new fields with j �= 1 decouple from
the island. This implies that an incoming electron L has a
decomposition over the new chiral modes ( j �= 1) that is
completely absorbed by the island region, whereas electrons
are independently emitted from the island to the outgoing
channels R ( j �= 1). In other words, these chiral modes have
a vanishing total charge and are therefore not sensitive to the
island.

The charging energy thus affects solely the total charge
fields φ̃R/L,1. Interestingly, the corresponding Hamiltonian is
exactly the same as the model of two semi-infinite trans-
mission lines connected at the origin through a capacitance
C/(N + 1), as depicted in Fig. 3. The transmission lines
have each an impedance Rq/2 where Rq = h/e2 is the unit
of quantum resistance. One corresponds to the chiral edge
states outside the island and is obtained by combining the
corresponding L and R fields. The second transmission line
describes the region inside the island, with both L and R com-
ponents. Following standard techniques in the field of circuit
quantum electrodynamics, one can develop an input/output
formalism [49,50], by examining the Heisenberg evolution of
the field operators, and describe the scattering of waves in the
transmission lines by the central capacitance C/(N + 1). This
is transparently discussed by expanding the fields over plane

waves:

φ̃L,1(x, t ) =
∫ +∞

0

dω√
ω

(
ain,ωe−iω(t+x/vF ) + H.c.

)
(4)

for x > 0, where the Bose operators ain,ω follow canonical
quantization rules [ain,ω, a†

in,ω′ ] = δ(ω − ω′). Similar expan-
sions hold for φ̃L,1 (x < 0), φ̃R,1 (x < 0 and x > 0) in terms
of, respectively, bout,ω, bin,ω, and aout,ω. The subscript in/out
stands for the incoming/outgoing fields. The scattering by the
capacitance at the origin is described by the unitary S matrix:(

aout,ω

bout,ω

)
=

(
r0 t0
t∗
0 r0

)(
ain,ω

bin,ω

)
. (5)

The corresponding transmission and reflection coefficients
are then functions of ω̄ = π h̄ω/(N + 1)Ec where ω is the
frequency of the wave:

t0(ω̄) = −iω̄

1 − iω̄
, r0(ω̄) = 1

1 − iω̄
, (6)

as derived in Appendix B. For a wave incoming in the L
channel, the transmission coefficient t0 corresponds to elec-
trons being transferred to the island, whereas the reflection
coefficient r0 describes backscattering at the entrance of the
island. For energies or frequencies much smaller than the
charging energy, the transmission coefficient vanishes and
the wave is fully reflected r0 = 1. In circuit terms, the ca-
pacitance is replaced at small frequencies by an open link
and the two transmission lines are disconnected. Eventually,
restricting ourselves to low energies, which will be the case
for the rest of this paper, we find the boundary condition

φ̃R,1(x = 0, t ) = φ̃L,1(x = 0, t ) (7)

where the R field is understood as an outgoing field and the
L field as an input field with respect to the scattering by the
island entrance (capacitance) at x = 0.

The relation (7) has many interesting physical conse-
quences. First, the complete reflection of the charge mode and
the full transmission of the other chargeless modes explain the
quantized reduction [51] of the thermal conductance observed
in Ref. [52]. The second aspect is the restoration of phase
coherence [53,54] at low energy when a single chiral channel
is present, or N = 0. In bosonization, the boson fields describe
the phase of the fermions. Thus the boundary condition Eq. (7)
means that electrons escaping the island are phase-coherent
[55,56] with the electrons impinging the island for N = 0. In
the case of a single edge mode, the total charge mode coin-
cides with the only mode available. Physically, an electron
entering the island violates energy conservation because it
changes the charging energy. It must therefore be compen-
sated immediately, at least on time scales larger than h̄/Ec, by
an electron leaving the island. The restored phase coherence
is a result of a Fermi liquid mechanism [57,58] as the phase
space available for particle-hole excitation vanishes at low
energy. The resulting phase coherence in the electron transfer
across the island, also coined as electron teleportation [54,59],
has been successfully measured [60,61] by embedding the is-
land and edge channel within a Mach-Zehnder interferometer.
We emphasize that the phase coherence is also responsible for
a quantized resistance in the quantum RC circuit [62]. Phase
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coherence and Fermi liquid behavior are lost as soon as we
have more than one channel N > 0.

In this paper, we will focus on another important conse-
quence of Eq. (7), namely, charge fractionalization [30,63,64].
Physically, it arises naturally from the above considerations.
One electron coming from, say, channel 1, has a linear decom-
position over the new chiral modes. As only the total charge
mode is not absorbed by the island, the electron entering the
island triggers the emission of fractional charges e/(N + 1) in
all available output channels. This can be seen by applying
a voltage V to channel 1 and computing the currents. In
the L region before the island, the Bose field is given by
φL,1 − eV t/h̄, where φL,1 is given by Eq. (4) and the field ain,ω

is characterized by a thermal Bose occupation and 〈ain,ω〉 = 0.
The other L fields ( j �= 1) have no applied potential, hence
〈φL, j〉 = 0. The current operator towards the island is given
by ÎL,1 = −(e/2π )∂tφL,1, where e is the electric charge, and
its expectation reads

〈ÎL,1〉 = e2

h
V. (8)

The output field φR,1 in channel 1 can be written in terms of
the new chiral fields:

φR,1 = 1√
N + 1

φ̃R,1 +
√

N

N + 1
φ̃R,2. (9)

The new field with index 2 is chargeless and thus independent
from the incoming electrons. It feels no voltage bias and has
simply 〈φ̃R,2〉 = 0. In contrast, the total charge field with index
1, thanks to Eq. (7), sees a nonzero potential bias, or more
explicitly, Eq. (7) becomes

φ̃R,1 = 1√
N + 1

(
φL,1 − eV t/h̄ +

N+1∑
j=2

φL, j

)
. (10)

Computing the output (R) current in channel 1, we obtain

〈ÎR,1〉 = − e

2π
〈∂tφR,1〉 = e2

h

V

N + 1
(11)

showing the charge fractionalization. Computing the current
in all other output channels reproduces Eq. (11). Despite
splitting the current, this is not completely what we want for
an emitter because the flow of electrons is continuous and no
granularity is visible. Computing the noise in the output chan-
nel, one easily obtains that it vanishes at zero temperature:
there is no shot noise. This will be remedied in the next section
by adding a weak quantum point contact to channel 1. In the
general case where the potential bias applied to channel j is
Vj , the output current has the form

〈ÎR,1〉 = e2

h

∑
j Vj

N + 1
, (12)

and it vanishes when the sum over all biases is zero. This is
because, in that case, the potentials excite only chiral charge-
less modes which are absorbed by the island and no electrons
leave the island.

In the fractional quantum Hall effect, the presence of
fractional charges is related to the anyonic phase shift from
Laughlin’s gauge argument. Here, we will show that the sim-
ple input/output approach supporting charge fractionalization

also contains the seeds for anyonic statistics. In bosoniza-
tion, the fermionic operators have a nonlinear relation to the
bosonic fields:

ψR/L, j (x) =
√

D

2π h̄vF
eiφR/L, j (x) (13)

D is a high-energy cutoff (bandwidth) for the chiral edge elec-
trons necessary to regularize the theory. It will disappear in the
evaluation of physical quantities. We consider the tunneling
operator

T (t ) = ψ
†
R,1(0, t )ψL,1(0, t ) (14)

in the Heisenberg representation, taking channel 1 without
loss of generality. Using the bosonization formula Eq. (13),
and the new chiral fields with Eq. (9), we obtain

T (t ) = D

2π h̄vF
ei[ 1√

N+1
(φ̃L,1−φ̃R,1 )+

√
N

N+1 (φ̃L,2−φ̃R,2 )] (15)

where we use the notation φ̃R/L, j = φ̃R/L, j (0, t ). The boundary
condition (7) implies that the first term in the exponen-
tial should vanish. In practice, to properly account for the
renormalization of high-energy (≈Ec) modes, we integrate
in Appendix C Eq. (15) over the massive fields φ̃L/R,1 using
the scattering matrix from Eqs. (5) and (6). Exploiting the
Baker-Campbell-Hausdorff formula, we find the low-energy
tunneling operator

T (t ) = N ei
√

N
N+1 (φ̃L,2−φ̃R,2 ) (16)

with the prefactor N = D
2π h̄vF

( eγ (N+1)Ec

πD )1/(N+1) where γ =
0.5772 is Euler’s constant. After this integration, the lo-
cal tunneling operator acquires the anomalous dimension
ν = N/(N + 1), 〈T †(t )T (0)〉 ∼ 1/t2ν . It also obeys frac-
tional statistics with itself, T (t )T (0) = T (0)T (t )e2iπν sgn(t ),
and with the fermionic (outgoing) field:

T (t )ψR,1(0) = ψR,1(0)T (t )e−iπν sgn(t ). (17)

III. FRACTIONAL EMITTER

The flow of electrons is continuous for ballistic channels
and, in the absence of electron backscattering, the granu-
larity of the electric charge is not apparent. It can be seen
as a consequence of the quadratic Hamiltonian with bosonic
variables, although the corresponding fermionic Hamiltonian
is interacting, whereas the current operator is linear in the
Bose fields. In this configuration, there can be no shot noise
revealing elementary charges. We thus realize our emitter by
adding a weakly coupled quantum point contact in channel 1,
as depicted in Fig. 4. The resulting fractional charge emission
is described below.

A. Setup and fractional charges

The quantum point contact is located close to the island, at
x = 0 in channel 1. The corresponding Hamiltonian is

HBS = h̄vF r(T + T †), (18)

with the small backscattering coefficient r � 1. The tunneling
operator has been introduced in Eq. (14) and the total Hamil-
tonian for the emitter is H0 + Hc + HBS. In order to avoid a
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FIG. 4. Principle of the fractional emitter. We add a QPC to
Fig. 1. The QPC directly couples, with a small amplitude r, the two
parts (L and R) of channel 1. When a single electron (black dot)
tunnels via the QPC from L to R, it leaves a hole (white dot) of
charge −e behind. The hole enters the island and fractionalizes into
a multiplet of charges −e/(N + 1) hopping out of the dot. The net
resulting charge e∗ = νe [see Eq. (23)] in channel 1 and − e

N+1 in the
other channels.

continuous flow of electrons and to focus on the fractional
emitted charges, we take the symmetric configuration where∑

j Vj = 0 so that the island emits zero charge in the absence
of HBS and for vanishing temperature.

We are interested in computing the properties of the out-
put current ÎR,1, defined in Eq. (11), which characterizes the
electrons leaving the island region, either because they were
expelled from the island or because they are scattered elec-
trons coming from the chiral branch L of the same channel
1. To proceed with its calculation, we use an interaction
representation with respect to the backscattering term HBS.
We thus time-evolve the bosonic fields according to H0 + Hc

as discussed in the previous section with the input/output
approach, and dress the current with the also time-evolved
backscattering term. The starting point is the formula

ÎR,1(t ) = U †
I (t )Î (I )

R,1(t )UI (t ) (19)

with the evolution operator UI (t ) = e− i
h̄

∫ t
∞ dt ′HBS(t ′ ) and the

current operator in the interaction representation is

Î (I )
R,1(t ) = − e

2π

√
N

N + 1
∂t φ̃R,2(t ). (20)

We have used Eq. (9) and dropped the φ̃R,1 contribution since
this mode is massive at energies well below the charging
energy Ec. Accordingly, we take the low-energy expression
(16), or

T (t ) = N e−ih(t )−ieV t/h̄ (21)

with the effective voltage V = 2NV1
N+1 and the notation h =√

N
N+1 (φ̃R,2 − φ̃L,2). We stress again that the sum over all bias

voltages is chosen to vanish.
We treat HBS perturbatively and expand Eq. (19) to second

order in r, ÎR,1 = Î0 + Î1 + Î2, with Î0 = Î (I )
R,1 and

Î1 = −irvF e∗[T (t ) − T †(t )], (22a)

Î2 = e∗(rvF )2
∫ +∞

−∞
dt ′ [T †(t ′), T (0)] (22b)

where, anticipating the final outcome, we introduced the frac-
tional charge

e∗ = ν e, ν = N

N + 1
. (23)

We are now in a position to evaluate the current I and the
(zero-frequency) current noise S by taking the expectation of
the operator expression from Eq. (22). We obtain

I = e∗r2 eV

h̄

(
Ẽc

νeV

)2(1−ν)

,
�(1 − 2ν) sin 2πν

2π2
(24)

for the current and

S = e∗I (25)

for the noise. We define the renormalized charging energy
Ẽc = NEceγ /π [65]. The result (24) is limited to weak
backscattering r2(Ec/eV )2−2ν � 1 [66]. In computing the
current, only Î2 has a nonzero quantum average whereas only
the product 〈Î1 Î1〉 contributes to the noise at zero frequency.
When the number of channels is infinite, N → +∞, we re-
cover a noninteracting backscattering, I = r2e2V/h and ν = 1,
indicating a dilution of the charging energy into the many
available channels.

The result for the Fano factor F = S/I = e∗ suggests the
emission of fractional charges by the island and the quantum
point contact into the edge channel R. A simple physical
picture can be given. For vanishing r, there is no current
or noise in the lead R so that only backscattering processes
controlled by r trigger the emission of charges. Since r is
small, one expects the train of emitted charges to be dilute and
the corresponding statistics to be Poissonian. We note that the
effective charge e∗ given in Eq. (23) is slightly different from
the fractionalization mentioned in the previous section. There
are indeed two processes for the charge transfer: (i) a single
electron is scattered from the L to the R branch in channel 1
and (ii) the process (i) leaves a hole in the L branch which then
enters the island with a charge −e and must be automatically
compensated by holes with fractional charges −e/(N + 1)
expelled in all channels. The two processes (i) and (ii) add
coherently and trigger the emission of the fractional charge
e∗ = e − e/(N + 1). This coherent sum is in contrast with
the Fano factors measured in Kondo screened islands where
Poissonian processes add incoherently [67–70].

The physical picture drawn here implies that the processes
(i) and (ii) also trigger the Poissonian emission of fractional
charges −e/(N + 1) into all the channels with j � 2. This
is verified in Appendix D by computing the corresponding
current and noise.

B. Poissonian emission of fractional charges

Although the physical picture for the charge emission is
more than reasonable, we confront it by computing the full
counting statistics (FCS) [71] of our fractional emitter. The
FCS is determined by the characteristic function [72]

ln χ (λ) = 〈eiλN̂R,1(t )e−iλN̂R,1(0)〉 (26)

where N̂R,1(t ) = ∫ t dt ′ ÎR,1(t ′)/e is the operator giving the
emitted charge taken at position x = L, sufficiently far from
the island. Using the current expression, it also relates directly
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to the outgoing bosonic field, N̂R,1(t ) = −φR,1(t )/2π . From
χ (λ) we can retrieve all cumulants of the emitted charge.
After standard manipulations, the generating function can be
written as

ln χ (λ) = 〈
TK e− i

h̄

∫
K dtH±λ(t )

〉
(27)

where the time integration follows the Keldysh contour with a
forward branch + and a backward branch −. The Hamiltonian
is dressed by a counting field λ with Hλ = H − h̄λÎR,1/(2e).
λ is nonzero only in the time interval [0, T ] and has opposite
signs on the two Keldysh branches. Similarly to Sec. III, we
work in the interaction representation and include the count-
ing field λ into the Heisenberg evolution for the bosonic fields
φR/L, j . As detailed in Appendix E, we simply obtain that the
rotated chiral fields φ̂R/L,1 are both shifted by -η λ

2
√

N+1
where

η = ± is the Keldysh contour index, whereas φ̂R,2 is shifted by

−η λ
2

√
N

N+1 and φ̂L,2 is left invariant. The expression obtained

for the generating function is

ln χ (λ) = 〈
TK e−ivF r

∫
K dt[T (t )eiηλν/2+T †(t )e−iηλν/2]

〉
(28)

where the tunneling term T (t ) [see Eq. (21)] is dressed by
the counting field. Expanding to second order in r results
in a double time integral. Switching to the time difference
and average, the time difference variable can be integrated by
assuming a sufficiently large time interval T , with the result

ln χ (λ)  − I

e∗ |t | (1 − eiλν ). (29)

Remarkably, this result is exactly the generating function de-
scribing a Poissonian emission by the fractional emitter with
the effective charge e∗ = νe, in agreement with the physical
argument previously presented.

IV. COLLIDER OF FRACTIONAL BEAMS

So far we have shown how to realize an emitter of dilute
fractional charges by using an island and quasiballistic edge
channels in the integer quantum Hall regime. The emitter also
entails exchange relations with a statistical anyonic phase.
We now consider two such fractional emitters, which we
will denote with the letters A and B, and study the regime
of e2V/h � IA/B in which the fractional emitters send dilute
beams to a collider setup. Here IA/B = 〈Î in

A/B〉 is the current (24)
generated by the emitter A/B. The collider, a quantum point
contact positioned far enough from the islands, acts as a beam
splitter which partitions the incoming fractional charges. The
corresponding device is depicted in Fig. 5.

We denote tP and rP the transmission and reflection ampli-
tude coefficients for the collider. We use the notation hA/B for
the field entering the tunneling in Eq. (21) and ψA,B (φA,B) for
the chiral fields ψR,1 (φR,1) at the output of each emitter.

A. Collision of free electrons

Before delving into the fractional case, we first review
the collision with free fermions. The cross-correlation at the
output of the beam splitter follows from Landauer-Büttiker

FIG. 5. Sketch of the full collider device probing the noise prop-
erties of fractional beams. The two emitters, named A and B, are
realized according to Fig. 4 with N ballistic channels each. The col-
lider acts as a beam splitter for the output channels R of both emitters.
We denote L the distance between each emitter and the collider. The
blue regions represent the gates defining the three quantum point
contacts.

formalism [73]:

〈δÎAδÎB〉 = TP(1 − TP )
e2

h

∫
dε[ fA(1 − fA)

+ fB(1 − fB) − fA(1 − fB) − fB(1 − fA)] (30)

or 〈δÎAδÎB〉 = −TP(1 − TP ) e2

h

∫
dε( fA − fB)2, where δÎA =

ÎA − 〈ÎA〉 and TP = |tP|2. fA/B(ε) is the energy distribution
of the beam incoming from emitter A/B. The derivation of
Eq. (30) relies crucially on a Gaussian density operator for the
use of Wick’s theorem. It is the case for instance in the out-of-
equilibrium situation where the incoming beam is obtained by
coherently mixing, with an upstream quantum point contact,
two fermionic populations with different chemical potentials.

For identical distributions fA/B, the cross-correlation (30)
exactly vanishes. This cancellation can also be understood by
invoking current conservation [73]. The noise before the col-
lider is equal to the noise after, including the cross-correlation:〈

δÎ in
A δÎ in

A

〉 + 〈
δÎ in

B δÎ in
B

〉 = 〈δÎAδÎA〉 + 〈δÎBδÎB〉 + 2〈δÎAδÎB〉.
(31)

Since the fermionic fields after the collider are linear combi-
nation of the incoming fields, i.e., ψA = tPψ in

A + rPψ in
B , they

inherit the same energy distribution, hence 〈δÎ in
A/BδÎ in

A/B〉 =
〈δÎA/BδÎA/B〉, such that the cross-correlation has to be zero.
The lesson here is that negative cross-correlations for identical
colliding beams must be a signature of interaction: electrons
are dressed with clouds of electron-hole pairs as it is the case
for a fractional quasiparticle. After the collision, the sum of
noises in the outgoing channel is increased by −〈δÎAδÎB〉.

An alternative picture can be proposed for the cross-
correlation noise [28]. In Eq. (30), the first two terms are
proportional to the noise present in each dilute beam. As
part of the incoming beam is reflected by the collider, cross-
correlation measures some of its shot noise. The third and
fourth terms are partition noise at the quantum point contact
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as electrons leave holes behind and give negative cross-
correlations. The Fermi statistics plays a role in partition noise
when electrons arrive simultaneously: they cannot exit the
collider on the same edge because of the Pauli principle. This
has the effect of reducing the magnitude of partition noise.
As a consequence, violation of Pauli by anyonic statistics
increases partition noise and tilts the balance towards an over-
all negative cross-correlation in a way that depends on the
statistical phase.

This is why the collider setup has been expected to be use-
ful for detecting anyonic statistics. As shown below, however,
this effect is masked by another striking partition mechanism
that involves double exchange (braiding) between a fractional
charge and an electron, hence, twice the mutual fractional sta-
tistical phase in Eq. (17). This mechanism has no counterpart
for free electrons.

B. Tunneling current and noise at the collider

We now turn to our fractional emitters and examine the
mixing of their output beams as represented in Fig. 5. In order
to evaluate the resulting noise properties, we treat the electron
tunneling at the collider (the central QPC) perturbatively with

HT = h̄vFtPψ
†
AψB + H.c., (32)

and the corresponding current, from A to B, is described by
ÎT = ievFtP(ψ†

AψB − H.c.).
The tunneling current IT = 〈ÎT 〉,

IT = ev2
F TP

∫ +∞

−∞
dt〈[ψ†

A(t )ψB(t ), ψ†
B(0)ψA(0)]〉, (33)

involves the time correlation functions for the fields ψA/B and
the transmission probability TP = |tP|2 of the QPC. Taking ad-
vantage of the linear relations between the fermionic operators
before and after the QPC collider [73], the average tunneling
current between the A and B channels is readily obtained:

IT = TP(IA − IB) (34)

where IA/B = 〈Î in
A/B〉 is the current (24) generated by the emit-

ter A/B. As expected by symmetry, it vanishes when the
emitters are identical.

The noise of the tunneling current is written as

〈δÎT δÎT 〉
(evF )2TP

=
∫ +∞

−∞
dt〈{ψ†

A(t )ψB(t ), ψ†
B(0)ψA(0)}〉. (35)

The noise is determined by the long-time behavior for which
a nonperturbative evaluation with respect to r or IA/B is nec-
essary. The time correlation functions may be written in the
Keldysh framework as

〈ψA(t )ψ†
A(0)〉 = 〈

TKψA(t−)ψ†
A(0+)e− i

h̄

∫
K dt ′HBS(t ′ )〉 (36)

where the expectation value and the time evolution of HBS(t )
are governed by the Hamiltonian H0 + Hc. The time t (resp.
zero) is taken on the backward (resp. forward) Keldysh path.
The field ψA is taken at the position x = L where L is large
enough, while the tunneling HBS(t ) in the emitter A is at x =
0. The integral in Eq. (36) is dominated by times, irrespec-
tive of the Keldysh branch, between −L/vF and −L/vF + t ,
which are both smaller than zero and t for sufficiently large L.

L/vF is the time needed for an electron to propagate between
the island and the collider.

Expanding Eq. (36) to second order in r, one finds the
perturbed correlation function (t > 0)

〈ψA(t )ψ†
A(0)〉 = 1

2πvF

1

a + it

[
1 −

(
vF rN
a−ν

)2

K(t )

]
, (37)

with the short-time cutoff a = h̄/D and

K(t ) =
∑
η1/2

η1η2

∫ t

0
dt1

∫ t

0
dt2

eieV (t1−t2 )/h̄

[a + i(t1 − t2) χ1,2]2ν

×
(

a − it2 η2

a − it1 η1

)ν(a + i(t − t1) η1

a + i(t − t2) η2

)ν

, (38)

where the time integrals have been shifted to absorb the transit
time L/vF . Here χ1,2 = η2 (−η1) for t1 > t2 (t2 > t1). The
integral is dominated by t1  t2. Switching to the time differ-
ence and time average variables, similarly to the computation
done for the FCS, we perform the integration over the differ-
ence and find for t > 0 (see Supplemental Material [74])

〈ψA(t )ψ†
A(0)〉  1

2πvF

1

a + it

[
1 − IA

e∗ (1 − e−2iπν ) t

]
, (39)

where IA is the current (24) generated by the emitter A. For t <

0, we can use the relation 〈ψA(t )ψ†
A(0)〉 = 〈ψA(−t )ψ†

A(0)〉∗.
The finding Eq. (39) shows that the perturbative correction

dominates the long-time asymptotic and a nonperturbative
calculation (in r) is necessary. It can be done in the present
case order by order [74] and the resummation leads to

〈ψA(t )ψ†
A(0)〉  1

2πvF

e− IA
e∗ (1−e−2iπν ) t

a + it
. (40)

Equations (36) and (40) were derived in the long-time limit,
largely exceeding the time spread of an electron wave packet
t � h/eV [76]. Therefore, the short-time cutoff a should be
replaced by h/eV in Eq. (40). The exponential decay occurs
over the time scale e/IA � h/eV . This last separation of time
scale is equivalent to having r2(Ec/eV )2−2ν � 1 controlling
the perturbative calculation of the last section [see Eq. (24)].
Exchanging ψ by ψ† in Eq. (40), one obtains the same ex-
pression with ν → −ν.

The exponential term in Eq. (40) comes from the double
exchange between fractional charges and an electron [74] [see
Eq. (17)], hence, from their fractional mutual statistics. It is
the average of the double exchange phase e−i2πmν over the
Poissonian distribution p(m) of m fractional charges in the
time interval t :

e− IA
e∗ (1−e−2iπν ) t = 〈e−i2πmν〉 =

∑
m

p(m)e−i2πmν, (41)

where p(m) = (m̄m/m!)e−m̄ and m̄ = IAt/e∗ is the average
number of fractional charges in the interval. Therefore, this
expression coincides with the FCS characteristic function for
λ = 2π given Eq. (29). This identification follows readily [28]
from the bosonization formula (13) for ψA, the generating
function Eq. (26), and the charge N̂A = −φA/2π .

The combination (1 − e−2iπν ) appears to each order in per-
turbation theory for the correlator 〈ψA(t )ψ†

A(0)〉. Its physical
meaning will be clarified later in Sec. IV D. It vanishes in
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the free electron case of ν = 1 where the double exchange
is trivial. In this case, including the subleading corrections
to Eq. (40), given in Eq. (F2) in Appendix F, is necessary to
retrieve the free fermion form.

The field correlation function (40) is finally used to com-
pute the partition noise in Eq. (35). After performing the
time integral, we arrive at the dominant contribution to the
tunneling noise:

〈δÎT δÎT 〉
e2TP

 2I+ sin2 πν

π2e∗ ln

(
e∗eV/h

2| sin πν|Ĩ (ν)

)
, (42)

where Ĩ (ν) =
√

I2
+ sin2 πν + I2

− cos2 πν and I± = IA ± IB.
The dependence on ν originates from the double exchange
between fractional charges and an electron.

C. Cross-correlation

For obtaining the cross-correlation between the output sig-
nals, we also need the calculation of the correlation 〈δÎT δÎ in

A/B〉
where Î in

A/B are the current operators before the collider. This
is readily done by examining how current fluctuations in the
incoming beams are transferred to the tunnel current ÎT . The
linear form of Eq. (34) justifies the linear expansion

δÎT = δÎ0
T + ∂IT

∂IA
δÎ in

A + ∂IT

∂IB
δÎ in

B (43)

for current fluctuations. δÎ0
T is a notation for the part of the

tunnel current fluctuations independent of the input beam
fluctuations and IT = 〈ÎT 〉. Using that the beams generated by
the fractional emitters are Poissonian and independent from
each other, 〈δÎ in

A/BδÎ in
A/B〉 = e∗IA/B, we obtain

〈
δÎT

(
δÎ in

A − δÎ in
B

)〉 = e∗ ∑
±

∂IT

∂I±
I∓ = e∗TPI+ (44)

with the notation I± = IA ± IB. We have all pieces now to
compose the output cross-correlations. It is given by

〈δÎAδÎB〉 = −〈δÎT δÎT 〉 + 〈
δÎT δÎ in

A

〉 − 〈
δÎT δÎ in

B

〉
(45)

with Eqs. (42) and (44). The expectations values are taken at
zero frequency such that the ordering of operators does not
matter.

Comparing Eqs. (42) and (44), we see that the partition
noise logarithmically dominates the reflected shot noise and
the total cross-correlation noise is negative. As discussed
above, it implies a production of noise caused by the scattering
of electrons in a genuinely noninteracting out-of-equilibrium
state. The cross-correlation can be written in a normalized
form, following Refs. [27,28]:

〈δÎAδÎB〉
e∗I+∂I− IT

 1 − 2 sin2 πν

(πν)2
ln

(
e∗eV/h

2| sin πν|Ĩ (ν)

)
. (46)

This expression has been obtained in the regime e2V/h �
IA/B; the argument of the log is therefore large and these
fluctuations are always negative. We analyze hereafter this
result in the two cases of IB = 0, where fractional charges
are solely injected from the emitter A, and the balanced case
IA = IB.

D. Cross-correlation at IA �= 0 and IB = 0

The case IB = 0, where Eq. (46) reduces to

〈δÎAδÎB〉
e∗IA∂IA IT

 1 − 2 sin2 πν

(πν)2
ln

(
e∗eV/h

2IA| sin πν|
)

, (47)

is an insightful limit to consider. It excludes collisions be-
tween fractional charges as all charges originate from the
same emitter A. We illustrate the underlying partition pro-
cesses at the QPC in the weak backscattering limit r � 1
where fractional charges are injected very rarely from the
emitter. A fractional charge is a composition of many particle-
hole pair excitations; hence, its injection triggers electron
tunneling at the collider QPC from the channel A to B with
rate WA→B and from B to A with rate WB→A. They relate
to the current IT = e(WA→B − WB→A) and noise 〈δÎT δÎT 〉 =
e2(WA→B + WB→A), and they are both proportional to r2. The
tunneling from A to B leads to a partition of the fractional
charge e∗ = νe into a charge e∗ − e on the channel A and
another e on B, while the tunneling from B to A results in
another partition into e∗ + e on A and −e on B, yielding the
cross-correlation

〈δÎAδÎB〉 = −e2(1 − ν)WA→B − e2(ν + 1)WB→A + O(r4)
(48)

up to leading order in r2. This expression, combined with
Eqs. (34) and (44), agrees with Eq. (45).

The tunneling with rate WA→B can be further decom-
posed into separate processes. In the “Conventional partition,”
shown in Fig. 6(a), the A to B electron tunneling occurs
simultaneously with the arrival of the fractional charge at
the QPC. Instead, the new processes a1 and a2, shown in
Fig. 6(b), correspond, respectively, to an early or delayed
arrival of the fractional charge with respect to the electron
tunneling. The two processes a1 and a2 add coherently, yield-
ing the combination (1 − e−2iπν ) appearing in Eqs. (40). Their
interference a∗

2a1, shown in Fig. 6(b), represents the double
exchange between an electron and a fractional charge with
the braiding phase e−2iπν [74]. The electron tunneling in the
process a1 (resp. a2) occurs at time t (resp. time zero). Their
time separation t must be longer than the temporal width
h/eV of a fractional charge if one wants the double exchange
process a∗

2a1 to involve a full fractional charge. Appendix F
provides the identification between these physical processes
and the evaluation of the fermionic time correlator.

In the general case of ν < 1, the conventional partition
gives a subdominant contribution to the cross-correlation
noise ∝ TPIA [see Eq. (F3)] with respect to the new processes
a1/2. The latter corresponds to keeping t1  t2 between zero
and t in the evaluation of the fermionic time correlator of
Eq. (38) as done in Sec. IV B. Therefore, the double exchange
process between an electron and the fractional charges of
the Poissonian distribution in Eq. (41) results in the cross-
correlation noise given in Eq. (47), in which the conventional
partition has been neglected. We note that the evaluation of
the transferred current IT [see Eq. (34)] involves in contrast
short-time separation of t  0 (see Appendix F).

In the noninteracting case ν = 1, the free electron result is
recovered from the conventional partition alone of Fig. 6(a).
In this case, 1 − ν = 0 and WB→A = 0 in Eq. (48), hence the
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FIG. 6. Partition at IA �= 0, IB = 0, and r � 1. (a) Conventional partition. When a fractional charge e∗ arrives at the collider QPC, an
electron tunneling (dashed) happens from channel A to B. Then a charge e∗ − e (thin empty packet) moves along channel A, and an electron
(thick filled) moves along B. Another partition happens with electron tunneling from B to A (not shown). (b) Double-exchange partition. In
a subprocess a1 [resp. a2], a pair of an electron (thick filled) and a hole (thick empty) is excited at the collider QPC after [resp. before] a
fractional charge e∗ (thin filled) passes the QPC. Crossing of two trajectories is time ordered such that the later trajectory is drawn on top of
the earlier. The interference a∗

2a1 between the two subprocesses involves a double exchange (braiding) between e∗ and e. Another partition
happens with a pair excitation of an electron on channel A and a hole on B at the QPC (not shown).

first nonvanishing term in 〈δÎAδÎB〉 is of order r4, indicat-
ing that the cross-correlations are, even in this unbalanced
limit, more negative for ν < 1 than for free electrons. The
interference term a∗

2a1 in Fig. 6(b) does not contribute to the
cross-correlations 〈δÎAδÎB〉 when ν = 1. For free electrons,
the interference term a∗

2a1 can be seen as a disconnected
Feynman diagram (a vacuum bubble diagram), since the dou-
ble exchange phase factor e−2iπν = 1 becomes trivial, and
the disconnected diagram is canceled by another “partner”
disconnected diagram (not shown) according to the linked
cluster theorem. The violation of this cancellation happens in
the ν < 1 case, explaining why the two factors 1 and e−2iπν

appear pairwise with the combination (1 − e−2iπν ) [76] in
Eqs. (39) and (40). The partial cancellation also occurs in frac-
tional quantum Hall systems with Laughlin anyons [26,77],
and the fractional quantum Hall analog of the perturbative and
unbalanced limit in Fig. 6 was studied in Ref. [26].

E. Cross-correlation at IA = IB

In the balanced case IA = IB, fractional charges are injected
from both emitters A and B, and the cross-correlation takes the
form

〈δÎAδÎB〉
e∗I+∂I−IT

 1 − 2 sin2 πν

(πν)2
ln

(
e∗eV/h

4IA sin2 πν

)
. (49)

As indicated by its similarity with Eq. (47), the cross-
correlation is also determined in the balanced case by the
double exchange processes shown in Fig. 6(b). Although we
use the word collider for the beam splitter QPC in Fig. 5,
the cross-correlation in Eq. (49) is not dominated by colli-
sions between fractional charges arriving simultaneously at
the QPC and therefore does not measure a deviation from the
fermionic antibunching effect. Collisions occur at a rate of the
order of r4 whereas the cross-correlation in Eq. (42), yielding
Eq. (49), is of order r2, thereby emphasizing the prominent
role of electron-anyon braiding over collisions.

Interestingly, the above analysis extends to the purely any-
onic case theoretically proposed by Rosenow, Levkivskyi,
and Halperin [28] and experimentally investigated by Bar-
tolomei et al. [27]. We revisit the physical interpretation of
their findings and claim that they should not be interpreted
in terms of deviation from fermionic antibunching in the col-
lision of anyons but rather as a direct measurement of the

double exchange (braiding) between edge anyons, a manifes-
tation of anyonic fractional statistics. The correlator studied
in Ref. [28], corresponding to Eq. (40), is also for a long-time
process with t � h/(e∗V ), and involves a double exchange
between an anyon excited at the collider QPC and the anyons
of a Poisson distribution injected from a voltage-biased edge
channel via anyon tunneling through a QPC. In contrast to
that, deviations from fermionic antibunching in collisions oc-
cur within the short-time scale t < h/(e∗V ) and do not enter
this correlator (40). h/(e∗V ) represents the time uncertainty
for a direct tunneling at the collider QPC, as we would have
in a collision, of an anyon injected at bias voltage V .

Both the experiment by Bartolomei et al. and our work
have in common the two conditions of kBT � e∗V and
IA/Bh/e∗ � e∗V for the braiding or the double exchange.
Under the condition of kBT � e∗V , the long-time braiding
process at t � h/(e∗V ) results in the dominant contribution
to the cross correlation, while the short-time (anti)bunching
process of t < h/(e∗V ) gives only a subleading contribution.
And, at IA/Bh/e∗ � e∗V , the spatial width of the anyons in-
jected by the voltage V is much shorter than the mean distance
between the anyons so that the braiding phase is well defined.

Finally, the results in Eqs. (42) and (49), up to the loga-
rithmic factor, depend universally on the exchange phase πν,
similarly to the purely fractional case [27,28] albeit with a
different functional form. The difference originates from the
field dimension at the collider QPC, involving electrons in
the present case as opposed to anyons in the purely fractional
situation of Refs. [27,28]. We can view the excitation induced
by our emitter as a hybrid object composed of an equilibrium
fermionic side married to a nonequilibrium anyonic part.

V. SUMMARY AND OUTLOOK

We proposed a many-terminal geometry in the integer
quantum Hall effect that realizes an emitter of fractional
charges. The setup comprises N ballistic channels covered
in the central region by a metallic island imposing charge
conservation. An additional N + 1 channel is tuned in the
quasiballistic regime with a quantum point contact close to
the island. As electrons are excited towards the island, they
scatter and separate into fractional charges towards the output
channels. Only continuous biases are used, i.e., the setup is
not operated with time-dependent pulses. As the quantum
point contact is only weakly reflective, the train of fractional
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charges is dilute and exhibits Poissonian statistics as we
proved by computing the full counting statistics.

We further characterized these beams of fractional charges
by investigating their mixing through a quantum point con-
tact acting as a beam splitter. By measuring the current
noise cross-correlations of the output signals, one finds a
negative correlation. It differs from the same calculation
for free fermions where such correlations are absent, and
indicate that the incoming fractional beam incorporates an
out-of-equilibrium collection of electron-hole excitations. The
cross-correlations depend essentially on the mutual statistical
phase between the electrons tunneling at the collider QPC and
the fractional charges emulating anyons sent by the emitters.
Coincidence processes where fractional charges arrive simul-
taneously at the collider and exhibit imperfect antibunching
were identified as being higher order in the beam currents and
discarded. The braid or exchange process of anyons also pre-
vails over the bunching physics in the setup of Refs. [27,28].

In a realistic implementation of the proposal shown in
Fig. 4, Joule heating plays an important and detrimental role
against the measurement of fractional braiding. Indeed, for a
charging energy on the order of 300 mK as in the experiment
of Ref. [35], the circuit needs to be operated at low temper-
atures and the electron-phonon coupling becomes insufficient
for evacuating heat out of the island [78]. The power generated
by the voltage sources, and transferred to the island, is on the
order of ≈V 2/Rq as all channels are nearly ballistic. In the ab-
sence of electron-phonon cooling, this is balanced by the heat
power sent out to the outgoing chiral edges: (πkBT�)2/6h
per channel, assuming an equilibrated temperature T� on the
island and zero temperature in the reservoirs [52,79]. The re-
sulting island temperature is stabilized at T� ∼ eV/(NkB) and
thermal noise is likely to mask fractional charges in the output
beam. Fortunately, there are ways out. Current experiments
are developing islands with much smaller capacitances corre-
sponding to higher charging energies. They can be studied at
temperatures where electron-phonon cooling is again efficient
in thermalizing the island. Alternatively, the device shown in
Fig. 7 can be implemented, where the voltage source is no
longer directly connected to the island, thereby minimizing
Joule heating. Electrons leaving the voltage source and later
entering the island must be reflected by the QPC in Fig. 7
with the probability amplitude r � 1. Repeating the analysis
of Sec. IV [75], we obtain for the one-body correlation func-
tion in the output channel

〈ψA(t )ψ†
A(0)〉  1

2πvF

e− IA
e (1−e−2iπν1 ) t

a + it
(50)

with ν1 = 1/(N + 1) and IA = r2e2V/h, indicating that the
QPC does not suffer from dynamical Coulomb blockade by
the island. Equation (50) corresponds to the emission of frac-
tional charges e∗ = ν1 e and the result of two such sources
through a third collider QPC reproduces Eq. (42) with ν1

replacing ν.
Our findings open many perspectives as the collision be-

tween nonidentical emitters can also be envisioned with hole
and/or electron current and different fractional charges; this
paper focused on identical emitters. The statistical properties
of the beams originating from the collider would also be

FIG. 7. Alternative device for the fractional emitter where the
first partitioner quantum point contact is located upstream from the
island. The voltage V is applied on channel zero, i.e., not directly
connected to the island, thereby strongly reducing Joule heating.
Electrons in channel zero are reflected into channel 1, L, and thus
enter the island, with the amplitude r � 1. The output channel is
1, R and also denoted A with the field ψA.

useful to detail the processes of charge transfer. Finally, we
have restricted in this paper our analysis to constant voltage
biases but it would be an appealing direction to analyze the
collision of beams with fractional properties inherited from
time-dependent excitations [80,81], e.g., by Lorentzian volt-
age pulses [82,83].
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APPENDIX A: ROTATION TO NEW BOSE FIELDS

We describe the rotation from the original fields φ to the
new fields φ̃. It takes the form of φ̃i = Oi, jφ j where O is an or-
thogonal matrix, i.e., Ot O = 1. We give here the expressions
of the first three lines of O:

φ̃1 = 1√
N + 1

N+1∑
j=1

φ j,

φ̃2 =
√

N

N + 1

(
φ1 − 1

N

N+1∑
j=2

φ j

)
,

φ̃3 =
√

N − 1

N

(
φ2 − 1

N − 1

N+1∑
j=3

φ j

)
(A1)

whereas the expressions of the other new fields do not play
a role. With these definitions, we can express the first two
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original fields,

φ1 = 1√
N + 1

φ̃1 +
√

N

N + 1
φ̃2,

φ2 = 1√
N + 1

φ̃1 − 1√
N (N + 1)

φ̃2 +
√

N − 1

N
φ̃3, (A2)

in terms of the new fields φ̃1, φ̃2, and φ̃3.

APPENDIX B: CIRCUIT DESCRIPTION

We detail here the solution to the free bosonic problem of
Fig. 1 where all channels are ballistic. It can be described by
means of a scattering theory of plasmonic waves similar to
the input/output theory of quantum circuits. The Hamiltonian
H = H0 + Hc gives Heisenberg equations of motion for the
bosonic fields introduced in Appendix A. In the absence of
external voltages, they are expressed as

∂t φ̃R, j = −vF ∂xφ̃R, j − 2Ec

h̄
δ1, j

√
N + 1 N̂θ (−x), (B1a)

∂t φ̃L, j = vF ∂xφ̃L, j − 2Ec

h̄
δ1, j

√
N + 1 N̂θ (−x), (B1b)

where only the modes j = 1 see the charging energy and the
total charge N̂ below the island [see Eq. (2)]. The solution to
Eq. (B1) is given by [51]

φ̃R,1(x, t ) = φ̃
(0)
R,1(x, t ) − 1

τ

∫ t− x
vF

−∞
dt ′ e− t−t ′−x/vF

τ ϕ̃(t ′),

φ̃L,1(x, t ) = φ̃
(0)
L,1(x, t ) (B2)

for outside the dot x > 0, and

φ̃R,1(x, t ) = φ̃
(0)
R,1(x, t ) − 1

τ

∫ t

−∞
dt ′e− t−t ′

τ ϕ̃(t ′),

φ̃L,1(x, t ) = φ̃
(0)
L,1(x, t ) − 1

τ

∫ t

−∞
dt ′ e− t−t ′

τ

×
[
ϕ̃(t ′) − ϕ̃

(
t ′ + x

vF

)]
(B3)

for inside the dot x < 0, where it is clear that the two ex-
pressions match at x = 0. We have introduced here ϕ̃(t ′) =
φ̃

(0)
R,1(0, t ′) − φ̃

(0)
L,1(0, t ′) and τ = π h̄/(N + 1)Ec. The subscript

(0) refers to the free solutions, i.e., the solutions of Eq. (B1) in
the absence of charging energy, Ec = 0, and therefore of scat-
tering. They can be decomposed into propagating incoming
modes [see Eq. (4)]:

φ̃
(0)
R/L,1(x, t ) =

∫ +∞

0

dω√
ω

(
b/ain,ωe−iω(t∓x/vF ) + H.c.

)
. (B4)

After scattering, the outgoing solution (B2) (x > 0) can also
be decomposed as

φ̃R,1(x, t ) =
∫ +∞

0

dω√
ω

(
aout,ωe−iω(t−x/vF ) + H.c.

)
, (B5)

and the same expression holds for φ̃L,1(x, t ), x < 0, with aout,ω

replaced by bout,ω and t − x/vF by t + x/vF . The geometry of
the different modes is sketched in Fig. 3. Inserting the above

expansions over plane waves into Eqs. (B2) and (B3), we
obtain

aout,ω = bin,ω − 1

1 − iτω
(bin,ω − ain,ω ) (B6)

and the input/output S matrix written in Eq. (5).
The scattering problem solved here is exactly the same as

the circuit geometry of Fig. 3 with one capacitance connecting
two transmissions lines. To properly map the two models,
we identify the canonically conjugated charge and voltage
operators (Q̂, V̂ ) of the transmission lines as

Q̂(x, t ) = e

2π
[φ̃L,1(x, t ) − φ̃R,1(x, t )] (B7)

and V̂ (x, t ) = (π h̄vF /e2)∂xQ̂(x, t ) corresponding to a char-
acteristic impedance of Rq/2 = π h̄/e2. The bridging capac-
itance is C/(N + 1), renormalized by the total number of
channels.

APPENDIX C: BOSONIZATION

We give the standard commutators and the average values
of the relevant products of bosonic fields at zero temperature.
The rotated bosonic fields φ̃α,i with i = 1, . . . , N + 1 and α =
L, R satisfy diagonal commutation rules. For i �= 1,

[φ̃α,i(t ), φ̃β, j (t
′)] = −iπ sgn(t − t ′) δi jδαβ,

〈φ̃α,i(t )φ̃β, j (t
′)〉 − 〈

φ̃2
α,i

〉 = δi jδαβ ln

(
a

a + i(t − t ′)

)
. (C1)

As a consequence, we have these relations for the field h:

[h(t ), h(t ′)] = −i2πν sgn(t − t ′),

[h(t ), φR,1(t ′)] = −iπν sgn(t − t ′),

〈h(t )h(t ′)〉 − 〈h2〉 = 2ν ln

(
a

a + i(t − t ′)

)
. (C2)

In channel 1, we have massive fields. The bosonic fields φ̃R,1

follow the same relations (same for φ̃L,1) but

[φ̃R,1(t ), φ̃L,1(t ′)] =
∫ +∞

−∞

dω

ω

e−iω(t−t ′ )

1 − iτω
,

〈φ̃R,1(t )φ̃L,1(t ′)〉 =
∫ +∞

0

dω

ω

e−iω(t−t ′ )

1 − iτω
(C3)

where τ = π h̄/(N + 1)Ec. Now, we give a few details on how
one goes from Eq. (15) to Eq. (16). We integrate Eq. (15) over
the massive mode φ̃L/R,1. We need to compute

〈
e

i√
N+1

(φ̃L,1−φ̃R,1 )〉 = e− 1
2(N+1) 〈(φ̃L,1−φ̃R,1 )2〉. (C4)

Using the relations in this Appendix, we can perform the
average value and find

〈(φ̃L,1 − φ̃R,1)2〉 = 2
∫ +∞

0
dω

τ 2ω

1 + τ 2ω2
e−ωh̄/D

 2 ln

(
πD

eγ (N + 1)Ec

)
. (C5)
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Finally,

〈
e

i√
N+1

(φ̃L,1−φ̃R,1 )〉 =
(

eγ (N + 1)Ec

πD

)1/(N+1)

. (C6)

APPENDIX D: ALTERNATIVE OUTPUT CHANNEL

The focus in most of this paper is on the use of channel
1 to emit fractional charges (see Fig. 1). Alternatively, one
can use another channel. Without any loss of generality, we
consider channel 2 in Fig. 1 as the output. The current operator
for the outgoing edge state is ÎR,2 = −(e/2π )∂tφR,2 or, using
Appendix A,

ÎR,2 = − e

2π
∂t

(
1√

N + 1
φ̃R,1 − 1√

N (N + 1)
φ̃R,2

)
. (D1)

In this expression, the field φ̃R,3 has been discarded as it
decouples from all other fields in the Hamiltonian and has a
vanishing expectation value. Removing also the massive field
φ̃R,1 leads to

ÎR,2 = e

2π

1√
N (N + 1)

∂t φ̃R,2. (D2)

Starting from this expression and following the reasoning of
Sec. III, we recover the current operators of Eqs. (22) with the
new effective charge e∗ = ν1e and

ν1 = − 1

N + 1
, (D3)

corresponding to a train of fractional charges with the Fano
factor F = −e/(N + 1). However, the operator T still has
dimension ν and the current is again given by Eq. (24) (we
take V < 0 for electron instead of hole emission) but with
e∗ = −e/(N + 1) whereas ν = N/(N + 1).

If we now turn to the collision of two such fractional
charges e∗ = ν1e, the field correlator takes a similar form

〈ψA(t )ψ†
A(0)〉 = 1

2πvF

e− IA
e∗ (1−e−2iπν1 ) t

a + it
, (D4)

in terms of the effective charge ν1 and the incoming current
IA given by Eq. (24). We stress again that IA depends on
ν = N/(N + 1) as well as on the charge e∗ = ν1e. However,
once the cross-correlations are written in terms of the frac-
tional charge ν1 and the currents IA/B, we find precisely the
same expressions as in the main text with the replacement of ν

by ν1.

APPENDIX E: COUNTING FIELDS

The evaluation of the whole distribution of transmitted
charges of Sec. III B relies on the introduction of counting
fields which probe the flow of electrons. This is done by
adding a source term to the Hamiltonian Hλ = H + V̂λ, where
V̂λ = −h̄λÎR,1/(2e) couples the counting field λ to the outgo-
ing current ÎR,1 taken at a distance L from the island. The first
Heisenberg equation of motion (B1a) derived in Appendix B
acquires the additional source term

i

h̄
[V̂λ, φ̃R, j] = λvF

2
√

N + 1
δ(x − L) (δ1, j +

√
Nδ2, j ) (E1)

localized at x = L, whereas the second one (B1b) is not mod-
ified. The solution with this source term proceeds additively
as compared to Appendix B. One obtains the expressions of
Eqs. (B2) and (B3) shifted by

φ̃R,1(x, t ) → φ̃R,1(x, t ) − λ

2
√

N + 1
θ (L − x),

φ̃L,1(x, t ) → φ̃L,1(x, t ) − λ

2
√

N + 1
,

φ̃R,2(x, t ) → φ̃R,2(x, t ) − λ

2
√

N + 1
θ (L − x). (E2)

For the total charge mode j = 1, the shifts of the R and L fields
leave the charge N̂ invariant. For j = 2, in contrast, the R and
L fields are not coupled and only the R field is shifted.

With this modified solution, the tunneling operator T is
dressed as

T (t ) → eiνλ/2 T (t ), (E3)

indicating that λ measures a charge ν for each tunneling event
as represented in Fig. 4. Note that the shifts for j = 1 cancel
each other. If, alternatively, one probes the charge emitted in
the ballistic channel 2 via the coupling V̂λ = −h̄λÎR,2/(2e),
then φ̃R,2(x, t ) now shifts by +λ/2

√
N (N + 1)θ (L − x) and

the tunneling operator is dressed as e−iν1λ/2 T (t ) (see Ap-
pendix D), corresponding to hole tunneling with fractional
charge ν1.

Finally, the generating function (28) can be expanded to
second order in r, the first order being zero, where one needs
to evaluate the following term:

∑
η1,2

η1η2

∫ t

0
dt1

∫ t

0
dt2ei(η1−η2 ) λν

2 〈T (t1)T †(t2)〉. (E4)

The times t1/2 are taken with respect to the contour index η1,2.
Changing the time integration to the center of mass (t1 + t2)/2
and relative times τ = t1 − t2, one approximates Eq. (E4) for
long time t as (t > 0)

( N
a−ν

)2

t
∑
η1,2

η1η2

∫ +∞

−∞
dτ

e−ieV τ/h̄eiπν(η1−η2 )

[a + iτ χ1,2(τ )]2ν
(E5)

where χ1,2(τ ) is defined just after Eq. (38). The sum of the
η1, η2 = ++ and −− Keldysh terms equals the sum of the
+− and −+ terms (causality). Checking that the −+ compo-
nent vanishes for V > 0, we eventually obtain Eq. (29).

APPENDIX F: TUNNELING CURRENT AND NOISE

Here we provide detailed calculations of the tunneling cur-
rent and noise at the collider QPC in Eqs. (33) and (35). The
correlator in Eq. (36) is computed as

〈ψA(t )ψ†
A(0)〉 = 1

2πvF

1

a + it

[
1 − i

2π IA

e
t + O(t2)

]
(F1)
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for |t | � h/eV , and

〈ψA(t )ψ†
A(0)〉  1

2πvF

1

a + it

{
e− IA

e∗ (1−e−2iπνsgn(t ) ) |t | + IAh

e2V

�(2ν)

ν�(ν)2

[
e−ieV t/h̄ − 1 + e−iπνsgn(t ) − cos(πν)

] + · · ·
}

(F2)

for |t | � h/eV . The first term of Eq. (F2) is discussed in
the main text, and obtained from the integral time domain
of 0 � t1  t2 � t and t � h/(eV ) in Eq. (38). It corre-
sponds to the two processes a1 and a2 shown in Fig. 6(b),
providing the dominant contribution. The other terms, called
the conventional partition and shown in Fig. 6(a) in the
main text, are subdominant and neglected in Eq. (40),
and they are obtained from the integral time domains of
t1  0 and t2  t , t1  t2  0, or t1  t2  t . As ν → 1,
Eqs. (F1) and (F2) become identical to those of the free
electron case.

We compute the tunneling current and noise at the collider
QPC in Eqs. (33) and (35), with applying Eq. (F1) to the in-
tegral range of |t | < h/(αeV ) and Eq. (F2) to |t | > h/(αeV ).
Here α is of the order of 1. The results are independent of
α; this justifies the cutoff replacement of a → h/(eV ) in the
calculation of the dominant contribution to 〈δÎT δÎT 〉. For the
tunneling current IT , the small t behavior is dominant and we
reproduce the result of Eq. (34) obtained in the main text from
a straightforward Landauer-Bütticker analysis. We obtain the

noise as

〈δÎT δÎT 〉
e2TP

= 2I+ sin2 πν

π2e∗ ln

(
e∗eV/h

2| sin πν|Ĩ (ν)

)
+ I+�(2ν)

e∗�(ν)2
+· · ·,

(F3)

where Ĩ (ν) =
√

I2+ sin2 πν + I2− cos2 πν and I± = IA ± IB.
The first logarithmic term originates from the partition pro-
cesses with the double exchange in Fig. 6(b), while the second
term linear in I+ comes from the conventional partition pro-
cess in Fig. 6(a). When ν = 1, the free electron results of
〈δÎT δÎT 〉 = eTPI+ (up to the linear order in Tp) and 〈δIAδIB〉 =
0 for IA = IB are reproduced.

We emphasize that even in the case of IA = IB where frac-
tional charges are emitted from both the emitters A and B, the
two terms originate from the partition processes in Figs. 6(a)
and 6(b). The collision process, which happens when a frac-
tional charge on channel A and another on channel B arrive
simultaneously at the collider QPC, provides a much weaker
contribution to the cross-correlation and is not shown in the
above equation.
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