
PHYSICAL REVIEW B 105, 075432 (2022)

Superconductivity from repulsive interactions in rhombohedral trilayer graphene:
A Kohn-Luttinger-like mechanism
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We study the emergence of superconductivity in rhombohedral trilayer graphene due purely to the long-
range Coulomb repulsion. This repulsive-interaction-driven phase in rhombohedral trilayer graphene (RTG) is
significantly different from those found in twisted bilayer and trilayer graphenes. In the latter case, the nontrivial
momentum-space geometry of the Bloch wave functions contributes to an effective attractive electron–electron
interaction; this allows for less modulated order parameters and for spin-singlet pairing. In RTG, we instead
find spin-triplet superconductivity with critical temperatures up to ∼0.15 K. The critical temperatures strongly
depend on electron filling and peak where the density of states diverge. The order parameter shows a significant
modulation within each valley pocket of the Fermi surface.
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I. INTRODUCTION

Recently, superconductivity was experimentally observed
in a three-layer graphene stack with rhombohedral (ABC)
arrangement that is tunable by an applied interlayer bias
[1]. Following this, several theories have been proposed to
account for the onset of effective attractive interaction be-
tween electrons mediated by different pairing mechanisms:
Electron-phonon coupling [2], spin fluctuations near an an-
tiferromagnetic phase [3,4], direct coupling by the screened
Coulomb interaction [5], or pairing mediated by the proximity
to a correlated metal [4,6]. Although different in details, all
of these proposals made use of the fact that the density of
states (DOS) of ABC trilayer graphene near charge neutrality
can be greatly enhanced by applying a gate voltage across
the three layers. Ignoring possible weak spin-orbit couplings,
intrinsic ABC trilayer graphene is a semimetal with an ap-
proximate cubic band degeneracy at the zone corners [7–24].
When resolved close to these points, the cubic degeneracy
actually splits into three Dirac cones, creating a trigonally
warped Fermi surface (FS). As a perpendicular electric field is
applied, inversion symmetry is broken, and these Dirac points
acquire a finite mass. As a result, the local band dispersion
can be nearly quenched, generating a van Hove singularity
that favors the emergence of correlated electronic phases.

Similar physics can also be found in three-dimensional
(3D) rhombohedral graphite, which is a nodal line semimetal
that has a flat electronic band at the top and bottom surfaces
of a sufficiently wide stack [25]. The associated divergent

DOS is expected to enhance electron–electron interactions
and lead to broken-symmetry phases, including superconduc-
tivity [13,14] and magnetism [16]. Experimentally, gaps and
broken-symmetry phases in finite rhombohedral stacks have
been reported [15,17–19,21–24]. The partially flat bands in
rhombohedral stacks make these systems spectrally similar
to magic-angle twisted bilayer graphene [26,27], importantly
without the need for a superlattice structure.

Inspired by these observations, we analyze here the appear-
ance of superconductivity in rhombohedral trilayer graphene
(RTG). We assume that the only electron–electron coupling is
via the long-range Coulomb interaction. We analyze the possi-
bility of pairing using a diagrammatic technique, similar to the
Kohn-Luttinger approach [28] to superconductivity due to re-
pulsive interactions (see also Ref. [5]). The same scheme has
been already applied to twisted bilayer graphene [29] and to
twisted trilayer graphene [30]. The use of the same technique
allows us to compare the emergence of superconductivity in
twisted and rhombohedral stacks. As discussed below, the
calculation leads to superconducting (SC) phases in both types
of materials, although the physical origin of superconductivity
and the SC order parameter (OP) are significantly different in
the two cases.

A. Tight-binding Hamiltonian

The 3D crystal structure of RTG is shown in Fig. 1(a). Each
unit cell consists of six carbon atoms, two per layer, connected
to each other via hopping amplitudes as shown in Fig. 1(b).
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The minimal tight-binding Hamiltonian is given by [10]

Htb(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1 + �2 −γ0u(�k) γ4u∗(�k) γ1 0 0
−γ0u∗(�k) �1 + �2 + δ γ3v(�k) γ4u∗(�k) γ2/2 0
γ4u(�k) γ3v

∗(�k) −2�2 −γ0u(�k) γ4v
∗(�k) γ1

γ1 γ4u(�k) −γ0u∗(�k) −2�2 γ3u(�k) γ4u∗(�k)
0 γ2/2 γ4v(�k) γ3u∗(�k) �2 − �1 + δ −γ0v(�k)
0 0 γ1 γ4u(�k) −γ0v

∗(�k) �2 − �1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where γi are the hopping amplitudes, �1 is a potential dif-
ference between nearest-neighbor layers which takes into
account an external displacement field, �2 is the potential
difference between the middle layer compared with mean
potential of the outer layers, δ encodes an on-site potential
which is only present at sites B1 and A3 since these two atoms
do not have a neighbor on the middle layer, and u(�k) = 1 +
2 cos(kxa/2)e−ikya

√
3/2, v(�k) = eikya

√
3u(�k), with a = 2.46 Å is

the lattice constant of graphene. The optimal values of the
minimal tight-binding parameters, γi and δ, have been re-
ported in the literature [10,11,19,20,23,31]. Here we use the
ones calculated in Refs. [24,31]. These parameters are tabu-
lated in Table I.

Details concerning the single-particle band structure cor-
responding to model (1) are provided in the Supplemental
Material [32].

B. Long-range Coulomb interaction and internal screening

To account for electron–electron interactions, we assume
that two electrons separated by a distance r experience a r−2

long-range Coulomb repulsion

VC (r) = e2

4πε0εr
, for r �= 0,

VC (0) = w0

ε
, (2)

where e is the electron charge, ε0 is the dielectric constant of
vacuum, and ε is the relative dielectric constant of the environ-
ment. In this work, we set ε = 4, which reproduces accurately
the screening by a substrate of hexagonal boron nitride (hBN).
The parameter w0 accounts for the local repulsion, which
we set to w0 = 17 eV following Ref. [33]. As the potential
VC varies slowly on the atomic scale, we approximate the
interaction between two electrons as only depending on the
distance between the centers of the two unit cells in which the
electrons reside. In reciprocal space, VC is given by

VC (�q) =
∑

�R
VC (| �R|)e−i �q· �R, (3)

where �q ∈ BZ, the sum runs over all positions �R of the lattice,
with a periodic boundary condition imposed by the finite grid
used to sample the BZ.

In order to describe internal screening due to particle-hole
excitations, we use the static random-phase approximation
(RPA), leading to the usual renormalization of VC

Vscr (�q) = VC (�q)

1 − VC (�q)�(�q)
, (4)

FIG. 1. Lattice structure of ABC RTG. (a) The 3D crystal
structure viewed from the top. (b) Some representative hopping pa-
rameters between carbon atoms.

where �(�q) is the zero-frequency limit of the charge suscep-
tivity, as given by

�(�q) = 2

Nc

∑
�knm

f (ξn,�k ) − f (ξm,�k+�q )

εn,�k − εm,�k+�q

× |〈 �ψm,�k+�q| �ψn,�k〉|2, (5)

where Nc is the number of unit cells, εn,�k is the n-th

band energy at wave-vector �k, �ψn,�k is the corresponding
six-component eigenvector, f (ξ ) = [1 + eξ/(KBT )]−1 is the
Fermi-Dirac distribution at the temperature T , ξn,�k = εn,�k −
μ, and μ is the chemical potential. The factor of two in front
of Eq. (5) accounts for spin degeneracy. As an example, Fig. 2
shows the profiles of (a) the inverse of the dielectric function,
κ−1(�q) = [1 − VC (�q)�(�q)]−1, and (b) the screened potential,
Vscr (�q), computed along a high-symmetry path of the BZ (see
the Supplemental Material) and obtained for �1 = 50 meV
and electronic density ne = −1.91×1012 cm−2. To perform
the calculation, we used Nc = 12×104, which is enough to
finely resolve the band structure close to the FS. The re-
sults display an overall strong screening. Remarkably, Vscr (�q)
vanishes at the center of the BZ, the point �, which means
that �(�q) diverges as �q → 0 and implies that Vscr is locally
attractive in real space. This is shown in the inset of Fig. 2(b),
displaying the real-space profile of the screened potential

TABLE I. Minimal tight-binding parameters of RTG expressed
in eV (see also Refs. [24,31]).

γ0 γ1 γ2 γ3 γ4 δ �2

3.1 0.38 −0.015 0.29 0.141 −0.0105 −0.0023
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FIG. 2. Screened Coulomb potential. (a) Inverse of the dielec-
tric function, κ−1( �q) = [1 − VC ( �q)�( �q)]−1. (b) Screened potential,
Vscr ( �q). The inset shows the real-space profile of the screened
potential computed along the horizontal axis, x. The profiles are
computed along a high-symmetry path of the BZ and obtained for
�1 = 50 meV and electronic density ne = −1.91×1012 cm−2.

computed along the horizontal axis, x, and which clearly
identifies an attractive minimum at the interparticle distance
of x ∼ 3 nm.

C. Superconductivity

Next we assume that the interaction which leads to pair-
ing in RTG is the long-range Coulomb interaction (Ref. [5]
makes the same assumption). The calculations carried out in
Refs. [29,30] include, for completeness, the coupling of elec-
tronic charge oscillations to longitudinal phonons, as these
phonons modify the screening of the Coulomb interaction. It
is interesting to note that the inclusion of longitudinal phonons
does not change significantly the results reported here.

The critical temperature for the onset of superconductivity
in RTG can be obtained from the linearized gap equation

�i j (�k) = −KBT

Nc

∑
�k′ω

∑
i′ j′

Vscr (�k − �k′)

× Gii′ (�k′, ih̄ω)Gj j′ (−�k′,−ih̄ω)�i′ j′ (�k′), (6)

where ω are fermionic Matsubara frequencies; i, i′, j, j′ label
the sublattice/layer degree of freedom; and Gii′ (�k, ih̄ω) is the
normal-state single-particle Green’s function

Gii′ (�k, ih̄ω) =
∑

n

ψ i
n,�kψ

i′,∗
n,�k

ih̄ω − ξn,�k
. (7)

Our framework is similar to the Kohn-Luttinger scheme [28].
The approach in Ref. [28] includes all processes up to second
order in perturbation theory. Our approach neglects exchange-
like diagrams but on the other hand includes all bubble
diagrams to infinite orders. The multiplicity of these diagrams
is equal to the number of electron flavors, in the present case

N f = 2. Hence it can be considered an expansion in powers
of N−1

f .
On projecting Eq. (6) onto the band basis and performing

the Matsubara sum, we rewrite it as

�m1m2 (�k) =
∑
�k′n1n2

�m1m2,n1n2 (�k, �k′)�n1n2 (�k′), (8)

where

�m1m2 (�k) =
∑

i j

ψ i,∗
m1,�k

ψ i
m2,�k�i j (�k)

×
√

f (−ξm2,�k ) − f (ξm1,�k )

ξm2,�k + ξm1,�k
, (9)

and �m1m2,n1n2 (�k, �k′) is the Hermitian kernel

�m1m2,n1n2 (�k, �k′)

= − 1

Nc
Vscr (�k − �k′)〈 �ψm1,�k| �ψn1,�k′ 〉〈 �ψn2,�k′ | �ψm2,�k〉

×
√

f (−ξm2,�k ) − f (ξm1,�k )

ξm2,�k + ξm1,�k

√
f (−ξn2,�k′ ) − f (ξn1,�k′ )

ξn2,�k′ + ξn1,�k′
.

(10)

We make use of the time-reversal symmetry of Hamilto-
nian (1), which implies ξn,−�k = ξn,�k and �ψm,−�k = �ψ∗

m,�k . At a
critical temperature, Tc, the largest eigenvalue of the kernel
�m1m2,n1n2 (�k, �k′) is 1. The corresponding eigenvector provides
the symmetry of the OP.

We diagonalize numerically the kernel of Eq. (10). As the
leading contribution to Eq. (8) comes from the states closest to
the FS, we cut off phase space by considering only the states
satisfying |ξn,�k| � w, with w = 30 meV. In order to rule out
finite-size effects and to finely sample the FS at densities on
the order of ∼1012 cm−2, we implement a length renormal-
ization: a → as = s × a, where s > 1 is the scale factor and
as is the effective lattice spacing. This procedure defines an
effective tight-binding model where the hopping amplitudes
γ0, γ3, and γ4 are rescaled according to γi → γi,s = γi/s,
i = 0, 3, 4. This procedure reduces the size of the BZ by a
factor of s2, allowing us to study considerably larger meshes
that would otherwise be numerically prohibitive. In doing so,
we are able to obtain a finer momentum resolution close to the
charge neutrality point (CNP) to improve accuracy.

D. Critical SC temperature

Figure 3 shows the value of the critical temperature as a
function of electronic density, ne, for �1 = 0, 50, 75, 100,
and 125 meV. The results are obtained with a grid of 3×104

points in the BZ on rescaling with s = 10, meaning that we
are considering 3×106 unit cells of the atomic RTG. The
critical temperatures feature pronounced maxima on the order
of 0.1 − 0.2 K for finite values of �1. In contrast, we do not
observe any appreciable enhancement of Tc without a bias. To
gain insight into this behavior, we show in Fig. 4 the bands
(a) and DOS (b) close to the CNP obtained for some of the
values of �1 considered in Fig. 3. We observe that a finite
bias significantly enhances the van Hove singularities near the
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FIG. 3. Critical temperature as a function of filling for various
values of the interlayer bias.

band edge, a feature that is absent in the zero-bias limit. In
Fig. 4, the horizontal dashed lines identify the Fermi levels
corresponding to the values of ne which maximize Tc in Fig. 3.
These Fermi energies match the position of the Van Hove
singularities with great accuracy, showing that superconduc-
tivity is strongly enhanced when the Fermi level is close to a
peak in the DOS. In addition, given a finite bias, a sizable Tc

survives only in a narrow region of ne around an optimal value,
thus providing a tool to trigger superconductivity by tuning
ne and/or �1. It is worth noting that the results reported
in Fig. 3 are in reasonable agreement with the experimental
data of Ref. [1] in terms of both the magnitude of the critical
temperatures and the range of densities reported.

E. Symmetry of the SC OP

Finally, we study the SC OP. Figure 5 shows the symme-
try of the SC OP in the vicinity of K and K ′, obtained for
�1 = 50 meV and ne = −1.14,−1.91×1012 cm−2, which are
representative of most of the cases we have studied. The black
lines identify the FS. These results have been obtained without

FIG. 4. Bias-induced van Hove singularities. Electronic bands
(a) and DOS (b) close to the CNP, obtained for the values of
�1 considered in Fig. 3. The horizontal dashed lines identify the
Fermi levels corresponding to the values of ne which maximize Tc

in Fig. 3.

FIG. 5. Symmetry of the SC OP in the vicinity of K and K ′.
These are calculated for �1 = 50 meV and ne = −1.14×1012 cm−2

(a) and −1.91×1012 cm−2 (b). The black lines identify the FS.

scaling, s = 1, by using Nc = 12×104 unit cells of the atomic
RTG. As expected, the OP is nonzero only in a narrow region
of the BZ around the FS, implying that only the electrons close
to the Fermi level participate in Cooper pairing. In addition,
the OP clearly displays A2 symmetry, meaning that it is anti-
symmetric on exchanging �k → −�k. Because Hamiltonian (1)
is spin degenerate and the interaction, Eq. (2), does not couple
different spin flavors, the gap Eqs. (6) and (8) do not contain
explicitly the spin indices, implying that they cannot distin-
guish between spin-triplet and spin-singlet superconductivity.
However, A2 symmetry necessarily implies that the Cooper
pairs must be spin triplets in order for their wave function
to be antisymmetric on exchanging the two electrons [34]. In
the experiment in Ref. [1], two distinct SC transitions have
been found, called SC1 and SC2, where the latter occurs in
a magnetic phase and violates the Pauli’s limit. As we are not
accounting for the magnetic ordering, our analysis seems to be
appropriate to describe the more conventional SC1 transition,
whose observed critical temperatures are of the same order of
magnitude as those in Fig. 3. It is worth noting that the spin
triplet that we find is not in contradiction to the Pauli’s limit,
to which SC1 obeys, provided that the two electrons have
opposite spin orientation. For instance, the A and B phases
of superfluid 3He belong to this category. There is no obvious
reason to assume that the SC1 phase is not of this type (on
the other hand, the A1 phase of 3He describes spin-polarized
Cooper pairs, as in phase SC2). Finally, we note that the
OP changes sign within each valley pocket of the FS. The
pairing potential represented by the kernel �m1m2,n1n2 (�k, �k′),
Eq. (10), is repulsive in reciprocal space, and the eigenvector
corresponding to the eigenvalue 1 cannot have a constant sign.
This is a general feature of weak-coupling superconductivity
induced by electronic interactions, where the SC wave func-
tion displays a high angular momentum, as is the case for p-
or f -wave superconductivity.

II. CONCLUSIONS

We have analyzed diagrammatically the existence of super-
conductivity in RTG. We assume that the leading electron–
electron interaction is Coulomb repulsion. Our results show
that this interaction is enough to induce superconductivity
in RTG, although it cannot be excluded that other excita-
tions can contribute [2–4,6]. The large DOS in RTG at low
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fillings leads to a significant screening of the interaction. The
screened Coulomb repulsion induces superconductivity with
critical temperatures upward ∼0.15 K that depend strongly
on electron filling and are correlated with peaks in the DOS.
The OP fluctuates in sign within each valley, in agreement
with the existence of a repulsive interaction at small momenta.
Overall, the OP is antisymmetric in the BZ, so that the pairs
must be spin triplets. The method used here has also been
applied to the study of superconductivity in twisted bilayer
and trilayer graphene [29,30]. In those cases, however, the OP
does not change its sign and the superconductivity can be spin
singlet/valley triplet or spin triplet/valley singlet. The small
momentum modulation of the OP implies that long-range
disorder is pair breaking in RTG, while that is not the case in

twisted bilayer/trilayer graphene. Our analysis does not con-
sider the magnetic ordering and hence it is more appropriate
to describe the SC1 transition observed in Ref. [1]. We leave
the study of the SC2 transition to a future work.
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