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Semiconductor quantum dots are considered to be promising candidates for the hardware of quantum infor-
mation technology and optoelectronic devices. Herein, motivated by a tetrahedrally shaped colloidal quadruple
quantum dot structure made from In-based III–V semiconductors, which has been synthesized very recently by
Leemans et al. [J. Am. Chem. Soc., 143, 4290 (2021)], we provide timely insight into the electronic transport
and the quantum phase transition (QPT) for such an architecture. When the interdot hopping between different
side dots (t2) is absent, a singular two-stage Kondo effect is revealed for small central-side coupling t1. The
two screening processes are separated by an energy scale of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction, and the fitting parameters deviate from the regular ones of the side-coupled double dot system.
The RKKY interaction and temperature are well illustrated by functions of t4

1 /(UT 2
K1), where U and TK1 are the

on-site electron-electron repulsion and the first Kondo temperature, respectively. When t2 turns on, the ground
state of the side dots transits from a spin quadruplet to a magnetic frustration phase, and then to a singlet,
through two first-order QPTs. In the frustration phase, another new two-stage Kondo effect is demonstrated,
which includes the process of screening the local spin on the central dot firstly, and then that on the neighborless
side dot is screened at a lower temperature. Both the Kondo temperatures are found to be rather sensitive to t2.
When t2 is large enough, the reappearance of the regular Kondo effect is found. With fixed t2 = 0, charging the
central dot triggers a transition from an antiferromagnetic correlation among the side dots to a ferromagnetic one,
accompanied by a Kondo behavior in the central dot. We adopt the state-of-the-art numerical renormalization
group method to implement the above behaviors, combined with analytical arguments.
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I. INTRODUCTION

Quantum information technology (QIT) has made remark-
able progress during the last two decades, moving from
Nobel Prize winning experiments to a multidisciplinary field
that spans from basic algorithms to industrial-scale develop-
ments. The basic unit of a QIT device is the quantum bit,
or qubit, which can perform some exact computational op-
erations using two well-defined quantum states, i.e., |0〉 and
|1〉. Currently, several physical platforms have been proposed
as the potential hardware of qubits, including defects and
impurities in solids [1–3], photons [4], trapped ions [5,6],
superconducting circuits [7,8], magnetic and nonmagnetic
molecules [9–12], and semiconductor quantum dots (QDs)
[13,14]. Semiconductor qubits are in this list, primarily due
to their potential for high-density integration on a large scale,
long coherence times, fast two-qubit gates, and fault-tolerant
operations [15].

*xiongyc_lx@huat.edu.cn

Implementation of QD-based qubits typically makes use
of a pair of electron reservoirs (leads). These reservoirs play
vital roles during the initial setup of the device to the required
few-electron regime [16]. Also, based on such designs, one
could deal with the charge or spin transport property of the QD
structures, which also attracts much attention. On the other
hand, interactions between QDs and their environments—
although they may result in unwanted consequences, such as
decoherence in qubits [17]—can also be exploited as ideal
platforms for the discoveries of some novel physical phenom-
ena which are difficult to obtain in bulk materials, such as
the Kondo effect [18–21], quantum interference [22,23], the
Coulomb blockade effect [24–26], the QPT [27–31], the Fano
effect [32,33], Fermi-liquid and non-Fermi-liquid behaviors
[34–36], and so on. Generally speaking, these behaviors de-
pend closely on the QD and electrode materials, the number
and configurations of the QDs, and the interactions which are
taken into account.

Tremendous progress having been made in understanding
the above phenomena for single, double, and triple quantum
dot structures, research interest has now turned to quadruple
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FIG. 1. Schematic illustration of the tetrahedral quadruple quan-
tum dot connected to the source (S) and drain (D) electrodes. Dot 1
(the central dot) connect directly to the electrodes, whereas the side
dots (dots 2, 3, and 4) have no direct connection to the electrodes. t1

illustrates the interdot hopping integral (tunneling coupling) between
the central and the side dots, and t2 is that between different side dots.

QD (QQD) systems in terms of both experimental and the-
oretical aspects. For instance, in a QQD structure with one
continuous channel and two concrete channels, Jiang and Han
studied the quantum coherent transport in both the absence
and presence of a magnetic field [37]. For a QQD system with
a squarelike configuration, Liu et al. revealed the competition
among the Heisenberg, Kondo, and Ising types of interactions
[38]. In a QQD setup including two double quantum dots
(DQDs) coupled to superconducting electrodes, Sothmann
et al. studied the possibility of generating a fractional Joseph-
son effect [39]. In a QQD device containing two coupled
DQDs, a Kondo effect switcher was demonstrated when both
the intra- and inter-DQD couplings were considered simulta-
neously [40]. For a QQD cell, Kagan et al. predicted that the
presence of the insulating bands might result in the emergence
of spin-polarized windows in an external magnetic field [41].
For a QQD ring with moderate Coulomb interaction, the local
magnetic moment formation and electronic transport were
described at and away from equilibrium [42]. For a QQD
in spinless and spinful regimes, the charge Kondo effect was
demonstrated by using the scattering T-matrix method, Fermi-
liquid theory, and poor man’s scaling [43]. Furthermore, for
the purpose of practical applications, various technological
approaches were suggested to scale up the number of qubits
[44–46], to coherently manipulate electrons [16,47] and their
spins [48,49], and to measure the internal interactions [50,51]
based on various QQD structures.

Very recently, Leemans et al. reported a tetrahedrally
shaped colloidal QQD structure made from In-based III–V
semiconductors [52]. Motivated by this fascinating architec-
ture, here we provide a timely study of the charge transport,
the thermodynamical properties, and the QPT of such a sys-
tem in the strongly correlated limit. We consider a typical case
where only one dot (the central dot) connects directly to two
electrodes whereas the other dots (the side dots) do not have a
direct connection to the electrodes. A schematic illustration is
presented in Fig. 1. We find a singular two-stage Kondo effect,
if the interdot hopping integral between different side dots (t2)
is absent and J1 � TK1. Here, J1 is the effective exchange
coupling between the central dot and the side dots, and TK1

is the Kondo temperature of the model without side dots.
The first screening stage at TK1 belongs to the regular Kondo
effect, whereas the second one at TK2 results from J1. Inter-
estingly, they are separated by an energy scale TRKKY due to
the ferromagnetic RKKY interaction JRKKY between different
side dots mediated by J1. Around TRKKY, the tetrahedral QQD
(TQQD) locks into a high-spin state, and two sharp peaks
develop in the local density of states (LDOS) of the side dot.
Full conductance only exists in the regime TK2 < T � TK1.
We conclude that TK2 could be illustrated by an exponential
function of TK1, but the orders of the fitting parameters are
quite different from those in the side-coupled DQD (SDQD)
structures. A relation between JRKKY (TRKKY) and t1 is also
revealed, which is consistent with our numerical results. Here,
t1 is the hopping between the central and the side dots. When
t2 sweeps upwards, the ground state of the side dots at zero
temperature transits from a spin quadruplet to a magnetic
frustration phase, and then to a singlet, through two first-order
QPTs. In the frustration phase, the quantum state of the TQQD
is dominated by a state where electrons on two of the side dots
generate a singlet whereas the electron on the remaining side
dot forms another singlet with that on the central dot. This
electron configuration provides us an ideal platform for the
discovery of the QPT between two singular two-stage Kondo
effects if the fixed t1 ∼ TK1. In this case, this new two-stage
Kondo effect includes the process where the local spin on the
central dot is screened by the electrodes firstly, and then that
on the remaining side dot is screened by t1. One also finds that
in this Kondo behavior, TK1 and TK2 are rather sensitive to t2.
For t2 in the third quantum phase, the total charge number
of the side dots drops to 2.0, and these dots form a spin
singlet due to t2 and decouple from the central dot; hence the
reappearance of the ordinary Kondo effect could be found. For
t1 � TK1, the Kondo effect is partially recovered around TK1,
and the competition between the direct and indirect exchange
interactions is clearly revealed by the LDOS of the side dots.
When the energy level of the central dot sweeps downwards,
one finds QPTs from an antiferromagnetic correlation among
the side dots to a ferromagnetic one, and then to an antiferro-
magnetic one, associated with Kondo resonances in the LDOS
of the central dot.

It is noticed that the TQQD structure is a typical system
which may exhibit magnetic frustration [53]. It may also ap-
pear as a building block of quantum network devices [54,55].
Furthermore, owing to the complex geometry and many more
Feynman paths for electron transmission, the TQQD may
possess a rather rich phase diagram, making it promising for
the development of multifunctional QIT devices [56], as well
as a prototype for studying the competition among different
many-body phenomena, such as the Kondo effect, RKKY
interaction, magnetic frustration, and the QPT, which are our
focus points in the following discussion.

II. MODEL AND METHOD

The second quantized Hamiltonian of the TQQD system is
written as a four-impurity Anderson model, where dot 1 (the
central dot) is connected directly to the source (S) and drain
(D) electrodes, whereas the other dots (the side dots, labeled
as dots 2, 3, and 4, respectively) have no direct connections to
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the conduction leads:

H = Hγ + HTQQD + Hhyb, (1)

with

Hγ =
∑
γ kσ

εγ kσ c†
γ kσ

cγ kσ , (2)

HTQQD =
4∑

i=1

(∑
σ

εiniσ + Uini↑ni↓

)

− t1

4∑
i=2

∑
σ

(d†
1σ diσ + H.c.)

− t2
∑

σ

(d†
2σ d3σ + d†

3σ d4σ + d†
4σ d2σ + H.c.), (3)

Hhyb =
∑
γ kσ

τγ k (c†
γ kσ

d1σ + H.c.). (4)

Here, Hγ (γ = S, D) represents the contribution of the nonin-
teracting metal electrode. εγ kσ is the single-electron energy
in electrode γ , c†

γ kσ
(cγ kσ ) is the creation (annihilation) op-

erator for conduction electrons with wave vector k and spin
σ (σ = ↑ or ↓). HTQQD is the Hamiltonian of the TQQD.
niσ = d†

iσ diσ is the number operator for spin-σ electrons in
dot i; ni = ni↑ + ni↓. εi and Ui are the single-electron energy
and the electron-electron Coulomb interaction, respectively. t1
illustrates the interdot hopping integral (tunneling coupling)
between the central dot and the side dots, and t2 is that be-
tween different side dots. Finally, Hhyb is the contribution of
the hybridization between the conduction band and dot 1; τγ k

is the tunneling coupling, which is assumed to be source-drain
symmetric and k, σ independent, and hence we omit its sub-
script in the following.

In this paper, we mainly focus on the QPT and electronic
transport in the strongly correlated limit. In such a situation,
schemes based on standard density functional theory (DFT)
for simulations of strongly correlated behaviors such as the
Kondo effect remain challenges to date. Therefore we adopt
Wilson’s numerical renormalization group (NRG) method
[57–59] to solve Eq. (1). The NRG is a nonperturbative
technique for treating low-temperature properties of quantum
impurity systems and is regarded as one of the very few
computational tools which give reliable information on both
the static and dynamic properties for strongly correlated prob-
lems. In our NRG performance, we chose the renormalization
parameter �, which discretizes the conduction bands logarith-
mically, to be ∼2.5–3.0, and we retain around 3000 low-lying
energy states at each iteration. For the sake of simplicity, we
take a wide flat conduction electron density of states (DOS)
ρ0 = 1/(2Wb), which is the generic case relevant to most
metallic bands, where Wb is the half bandwidth. Therefore the
hybridization function � = πρ0τ

2 is defined inside the band
and becomes a constant.

III. EFFECTIVE MODEL AND PHYSICAL QUANTITIES

Since the most fascinating physical behavior arises when
the TQQD is in essence half filled, we mainly consider the
representative case where εi satisfies particle-hole (p-h) sym-

metry, εi = −Ui/2, except in Sec. IV D. In such a situation,
and if t1, t2, τ � U , by performing a Schrieffer-Wolff trans-
formation [60] up to the second-order perturbation on the
tunnel-coupling terms, one obtains an effective Hamiltonian
as follows:

Heff = Hγ + J0Ŝ1 · ŝ0 +
4∑

i=2

J1Ŝ1 · Ŝi +
4∑

i, j=2,i< j

J2Ŝi · Ŝ j .

(5)

Here, Ŝi = ∑
σσ ′ d†

iσ
σ̂σσ ′

2 diσ (i ≈ 1–4) is the spin operator of

dot i, ŝ0 = ∑
σσ ′ c†

σ
σ̂σσ ′

2 cσ is the electron spin density of the
conduction band belonging to the electrodes, and σ̂σσ ′ =
(σx, σy, σz ) is a vector composed by the Pauli matrices. Fur-
thermore,

J0 = 2τ 2

(
1

|ε1| + 1

|ε1 + U1|
)

(6)

is the exchange constant between Ŝ1 and ŝ0, and

Ji j = 8t2
i

{
Ui + Uj

(Ui + Uj )2 − 4(εi − ε j )2

}
(7)

is the antiferromagnetic exchange coupling between Ŝi and Ŝ j .
In most of the following discussion, to avoid too many param-
eters, we assume that the four dots are internally identical with
Ui ≡ U and εi ≡ ε. Therefore, since ε = −U/2, one then has
J0 = 8τ 2/U , J1= J12 = 4t2

1 /U , and J2= J23 = 4t2
2 /U .

For the system considered in this paper, it is convenient
to define two subsystems, one formed by the central dot
(subsystem CD) and the other formed by the three side dots
(subsystem SD). When there are no interactions between
spins on the same subsystem, the ground state of the whole
TQQD has a total spin Stot = |SCDm − SSDm| in light of the
Lieb-Mattis theorem [61]. Here, SCDm (SSDm) is the maxi-
mum possible spin on subsystem CD (SD). Thus the ground
state of the isolated TQQD will have a total spin Stot = 1. If
only t1 is taken into account, the isolated TQQD model could
be illustrated by J1ŜCD · ŜSD , where ŜCD (ŜSD) is the spin
operator of subsystem CD (SD). Since the antiferromagnetic
exchange couplings between the central dot and the side dots
are identical, one has ŜSD = ∑4

i=2 Ŝi. The eigenstates of this
system then could be obtained by a combination of the spin
operators of the two subsystems Ŝtot = ŜCD + ŜSD , where
the corresponding eigenvalues could be acquired by virtue of
J1ŜCD · ŜSD = J1(Ŝ2

tot − Ŝ2
CD − Ŝ2

SD )/2:

EStot=SSD− 1
2

= −5

4
J1. (8)

If t2 is also considered, the competition between t1 and t2 may
result in QPTs, as will be discussed in the following.

We calculate the conductance G(T ) through the TQQD at
temperature T using the Landauer formula [62,63]:

G(T ) =
∑

σ

Gσ (T )

= G0

∑
σ

∫ +∞

−∞
π�

[
−∂ f (ω)

∂ω

]
A1σ (ω, T )dω. (9)
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Here, G0 = 2e2/h is the conductance quantum, ω is the energy
variable, and f (ω) = 1/[1 + exp(ω/T )] is the Fermi-Dirac
distribution function. A1σ (ω, T ) is the LDOS of the central
dot at temperature T , with A1σ (ω, T ) = − 1

π
ImG11σ (ω, T ),

and G11σ (ω, T ) is the Fourier transformation of the diagonal
retarded Green’s function. In the following discussion, we set
the Fermi energy at ω = 0; thus Gσ at zero temperature in the
limit of zero bias is determined by the behavior of A1σ (ω, T )
at the Fermi level:

Gσ (T = 0) = π�G0A1σ (ω = 0, T = 0). (10)

To improve the precision of the LDOS at finite temperature,
we employ a procedure referring to the full density matrix of
the whole system, which is denoted as FDM-NRG [64].

The temperature-dependent entropy STQQD(T ) and local
magnetic moment μ2(T ) of the TQQD are defined as the
contribution to the total entropy and magnetic moment for the
whole system, respectively:

STQQD(T ) = E − F

T
− (E − F )0

T
, (11)

μ2(T ) = χTQQD(T )kBT/(gμB)2 = 〈
S2

z

〉 − 〈
S2

z

〉
0. (12)

Here, E = 〈H〉 = Tr(He−H/(kBT ) ) and F =
−kBT ln Tr(e−H/(kBT ) ), which are the total energy and free
energy of the whole system, respectively. χTQQD = C/T is the
contribution of the TQQD to the total magnetic susceptibility
following the Curie law, where C = (gμB)2Stot (Stot + 1)/3
is the Curie constant. kB is Boltzmann’s constant, g is the
electric gyromagnetic factor, and μB is the Bohr magneton.
Finally, the subscript 0 in (E−F )0

T and 〈S2
z 〉0 refers to the value

which belongs to the system where the TQQD is absent. It
is noted here that for the sake of simplicity, we set kB ≡ 1;
hence the temperature is also given in units of energy.

IV. RESULTS AND DISCUSSION

A. A singular two-stage Kondo effect: Role of t1 without t2

Regular Kondo effect. In the following discussion, we
choose Wb as the energy unit, which is about several eV in a
typical metal electrode. The strongly correlated regime is de-
scribed by U = 10�. Let us first focus on the case where t2 is
absent. In Fig. 2(a), we depict the linear conductance at nearly
zero temperature G(T ≈ 0) as a function of t1 with fixed
U = 0.1. When t1 is absent, G(T ≈ 0)/G0 reaches its unitary
limit of 1.0. Because in this case the present model maps to
a single-impurity Anderson model, the electrons in dot 1 are
likely to form a spin singlet with those in the electrode. As a
result, the Kondo effect is generated, and a peak at ω = 0 in
the normalized LDOS of electrons in dot 1 [π�A1(ω), i.e., the
transmission coefficient] reaches its maximum; see t1 = 0.0 in
Fig. 2(b).

Two-stage Kondo effect regime. When t1 turns on, it in-
duces an effective antiferromagnetic exchange coupling J1 =
4t2

1 /U , which is enhanced as t1 increases, reflected by the
spin-spin correlation function 〈S1S2〉; see Fig. 2(c). On the
other hand, electrons on different side dots may be organized
in a parallel manner due to the interdot RKKY interaction
JRKKY mediated by t1 [cf. 〈S2S3〉 in Fig. 2(c)]. In this pro-
cess, G(T ≈ 0)/G0 decreases to zero continuously, because

FIG. 2. (a) Linear conductance at nearly zero temperature,
G(T ≈ 0), as a function of t1. (b) Normalized LDOS of electrons
in dot 1, π�A1(ω), i.e., the transmission coefficient, for various
t1. (c) Spin-spin correlation 〈SiS j〉 between dots i and j at nearly
zero temperature as a function of t1. 〈S1S2〉 = 〈S1S3〉 = 〈S1S4〉, and
〈S2S3〉 = 〈S3S4〉 = 〈S4S2〉. Inset in (b): π�A1(ω) for t1 = 0.002,
showing a considerable split in the Kondo peak. Here, G(T ≈ 0) and
π�A1(ω) are described in units of G0. The other parameters are given
by � = 0.01, U = 0.1, ε = −U/2, and t2 = 0.

the antiferromagnetic coupling between subsystems CD and
SD suppresses the Kondo singlet and thus the Kondo peak
splits and decreases gradually [cf. t1 = 0.002 and t1 = 0.01
in Fig. 2(b) and the inset]. One notices that in the large-t1
regime, 〈S1S2〉 could not reach the ideal value of −3/4, for
there are still some possibilities of electrons on dot 1 forming
spin singlets with those on dots 3 and 4.

One of the most interesting behaviors may be that of
the thermodynamical properties. Related results are depicted
in Fig. 3, where we show the temperature-dependent linear
conductance G(T ), the local magnetic moment μ2(T ), and
the entropy STQQD(T ) for the TQQD, as well as 〈SiS j〉 be-
tween dots i and j in terms of different t1 in Figs. 3(a)–(d),
respectively. The uppermost curve in Fig. 3(a) is for small
t1 = 0.0001. When T/� � 1 and T/U � 1, G(T ) is near zero
for all t1, because in this energy scale, local electrons are
independent, and the influence of U , which favors a singly
occupied state in each dot, is smeared out by temperature. As
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FIG. 3. (a) Linear conductance G(T ), (b) local magnetic moment
μ2(T ), and (c) entropy STQQD(T ) for the TQQD as functions of tem-
perature T in terms of different t1. The curves along the black arrow
are for t1 = 0.0001, 0.001, 0.0012, 0.0015, 0.002, 0.003, 0.005, 0.01,
and 0.02, respectively. (d) 〈SiS j〉 between dots i and j vs log10(T )
for t1 = 0.0001, 0.002, and 0.01. Curves 1–3 in (d) are for 〈S1S2〉,
whereas 1′–3′ are for 〈S2S3〉. The remaining parameters are the same
as in Fig. 2.

a result, states |0〉, | ↑〉, | ↓〉, and |2〉 in each dot are equally
probable. Each dot then contributes 1/8 to μ2(T ) and ln 4
to STQQD(T ), resulting in total quantities μ2(T ) ≈ 1/2 and
STQQD(T ) ≈ 4 ln 4, and 〈SiS j〉 reads zero; see Figs. 3(b)–(d).
As T decreases to the regime � < T � U , U starts to play an
important role, and thus states |0〉 and |2〉 are suppressed. Each
dot then contributes 1/4 to μ2(T ) and ln 2 to STQQD(T ), lead-
ing to μ2(T ) ≈ 1.0 and STQQD(T ) ≈ 4 ln 2. Transport in this
regime is mainly dominated by the cotunneling process [65];
hence one may observe a small plateau in G(T ). Also, one no-
tices a narrow plateau in STQQD(T ) between 4 ln 4 and 4 ln 2,
because the cotunneling magnitudes are different between
subsystems CD and SD. CD first contributes to the cotun-
neling process due to direct connection with the electrodes;
hence in this regime, STQQD(T ) ≈ ln 2 + 3 ln 4 = 7 ln 2. As
TK1 < T � �, the effect of � becomes quite momentous, and
a spin singlet is then generated between electrons in CD and
those in the conduction baths; hence G(T ) increases gradually
to its unitary limit due to the regular Kondo effect. In such a
case, the spin on dot 1 is quenched and has no contribution to
μ2(T ), bringing μ2(T ) ≈ 3/4 and STQQD(T ) ≈ ln 1 + 3 ln 2.
Here, TK1 is the first-stage Kondo temperature, which could
be estimated by the following physical picture. For small t1,
the present model is similar to the single-impurity Anderson
model, and the Kondo temperature could be captured by Hal-
dane’s expression [66]:

TK1 = U
√

ρ0JK exp(−1/ρ0JK ), (13)

where ρ0JK = 8�/πU is the effective Kondo coupling be-
tween the conduction band and subsystem CD. For fixed
U = 0.1 and � = 0.01, TK1 = 1.01 × 10−3. Below TK1, the
Kondo effect holds, and a broad platform exists in μ2(T ).
However, when T � TK1, we find two new energy scales

which have been less discussed in the previous literature.
As can be seen in Fig. 3(b), when T decreases to the scale
of TRKKY ≈ 10−10, μ2(T ) increases again. Because in this
regime the RKKY interaction between different side dots
mediated by t1 becomes significant, the local spins on sub-
system SD are then arranged ferromagnetically, as confirmed
by 〈S2S3〉 growing to about 0.25 in Fig. 3(d). The TQQD locks
into a high-spin state with a total spin Stot = SSD = 3/2, giv-
ing μ2(T ) = Stot (Stot + 1)/3 = 5/4, and STQQD(T ) decreases
to about ln(2Stot + 1) ≈ ln4. Note that in this case the local
spin on dot 1 still forms a singlet with those on the electrodes
and has no contribution to μ2(T ) or STQQD(T ).

With increasing t1, the Kondo effect is suppressed grad-
ually; thus G(T ) at low temperature decreases. Also, one
notices that the temperature where G(T ) weakens to zero
increases, indicating that the temperature window where the
Kondo effect occurs becomes more and more narrow; see
along the black arrow in Fig. 3(a). During this process, the
spin of subsystem SD is partially screened by the heavy-
fermion system constituted by the CD spin through J1 at
a certain temperature TK2, giving a residual spin of Stot =
SSD = 1. Hence μ2(T ) and STQQD(T ) reduce to 2/3 and
ln 3 when T � TK2, respectively. This two-stage screening
process is distinguished from the regular two-stage Kondo
effect observed in a SDQD system, where the first screening
is directly followed by the second one [33,67]. One notices
that TK2 increases with growing t1, and this screening is not
accompanied by the Kondo resonance in G(T ) and π�A1(ω),
whereas it is along with the suppression of the Kondo effect
[cf. Figs. 2(a) and 2(b)]. As a result, the conductance is zero
for T < TK2.

Molecular-orbital regime. When t1 is large enough with
t1 � TK1, the antiferromagnetic exchange coupling between
subsystems CD and SD is extremely strong, which then
suppresses the Kondo resonance at low temperature; hence
only the cotunneling process survives in G(T ). Equivalently
speaking, a local spin singlet forms between the central dot
and one of the side dots, whereas the remaining two side
dots constitute a spin triplet at T ∼ t1 with residual spin
Stot = SSD = 1 [see Figs. 2(c) and 3(d)]; thus μ2(T ) ≈ 2/3
and STQQD(T ) ≈ ln 3 hold in a broad regime of T .

Relation between TK2 and t1. To form a deep understanding
of the above temperature scales, we depict TK2 and its fitting
function versus t1 in Fig. 4(a). Here, TK2 is captured from our
NRG data and is defined by the temperature corresponding to
the half maximum of μ2(T ) where the TQQD decreases from
the high-spin state to its minimal value at low temperature.
One may see that TK2 increases exponentially as t1 sweeps
upwards and could be illustrated by a function of TK1 and J1:

TK2 = c1TK1e−c2TK1/J1 . (14)

Here, the fitting parameters are given by c1 = 0.004 and c2 =
0.586. One finds that the fitting function is consistent with
our NRG results, implying that the above phenomenon that
occurs in G(T ) and μ2(T ) is in essence a two-stage Kondo
effect. However, singular behaviors could be identified. As
is known, in typical SDQD systems the fitting parameters c1

and c2 are some constants of the order of 1 [33,67], which are
quite different from ours. In our present model, the two Kondo
screenings are separated by a RKKY temperature scale TRKKY.
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FIG. 4. (a) TK2 and (b) WF for both the TQQD and the SDQD
systems as functions of t1. Scatterplots are captured from our NRG
data, while the solid curves are the fitting functions for TK2 and WF .
The other parameters are the same as in Fig. 2.

Thus TK2 becomes extremely low compared with TK1, and c1

is more lower than that in the SDQD structure. Furthermore,
since in our model three side dots are connected to the central
dot simultaneously, the effective coupling between the central
dot and one of the side dots will be lower than that in the
SDQD system with the same quantity of the tunneling rate,
and thus c2 is also slightly smaller than order 1. We note that
there should be theoretically a second drop occurring at TK2

for t1 = 0.0001 [cf. Figs. 3(a)–(c)]. However, in such a case,
Eq. (14) gives TK2 → 0; hence it is extremely difficult to cap-
ture in both related experiments and theoretical simulations.

Relation between WF and t1. It is noticed that in side-
coupled quantum dot systems, the second Kondo screening
related to TK2 is always associated with the Fano effect, which
results from the interference between the direct and indirect
conduction pathways [33,68]. As a result, a Fano antireso-
nance may appear in the LDOS of the quantum dot embedded
in the direct conduction pathway between the source and drain
electrodes; such is also the case for our results presented
in Fig. 2(b). It is quite interesting to study the evolution of
the Fano antiresonance and compare it with that of TK2. In
Fig. 4(b), we describe the width of the Fano dip WF and its
fitting function as functions of t1. Here, WF is defined by the
full width at half maximum of the central valley. We find that
WF could also be illustrated by an exponential function of t1
and the width of the Kondo peak WK , which is extracted when
t1 is absent:

WF = c3WK e−c4WK /J1 , (15)

with c3 = 6.537 and c4 = 2.462. Quite interestingly, these
parameters are very close to those in the SDQD system. As

FIG. 5. (a) The LDOS of the side dots A2(ω) at different temper-
atures and (b) A2(ω) in an expanded scale around the Fermi level for
t1 = 0.003. (c) The RKKY temperature TRKKY extracted from μ2(T )
in Fig. 3(b), the location of the RKKY peak JRKKY in A2(ω), and their
fitting functions vs t4

1 /(UT 2
K1). The other parameters are the same as

in Fig. 2.

is illustrated in Fig. 4(b), for a SDQD, WF could also be
described by Eq. (15), where c3 and c4 are given by 6.754 and
1.610, respectively. Therefore the number of side dots affects
the width of the Fano dip in a very gentle way, especially when
t1 is small, whereas it affects the order of TK2 intensely.

Relation between TRKKY and JRKKY. From the above discus-
sion, one knows that when T decreases to TRKKY, the TQQD
locks into a high-spin state for small t1, which stems from
the RKKY interaction JRKKY between different side dots. It is
interesting to clarify the relation between JRKKY and TRKKY.
As an example, we show the LDOS for one of the side dots
A2(ω) at different temperatures with fixed t1 = 0.003, and its
enlarged scale around ω = 0 in Figs. 5(a) and 5(b), respec-
tively. One finds two broad Coulomb peaks located at about
ω = ±U/2 for all temperatures. From the enlarged A2(ω), one
notices two additional peaks between the Fermi level and the
Coulomb peaks. They are the so-called RKKY peaks [69,70],
which exist only when T � TRKKY [cf. Fig. 5(b)]. Here, the
RKKY peak refers to the process of annihilating (creating) an
electron from (on) the many-body states of the side dots with
antiparallel spin configuration, where at least two electrons on
two of the side dots have parallel spin configuration, mediated
by t1. One then could identify the strength of the RKKY
interaction JRKKY from the location of the RKKY peak, which
is plotted in Fig. 5(c). It is seen that JRKKY grows in a power
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series manner as t1 increases, and can be fitted by a function
of t1:

JRKKY = c5t4
1 /

(
UT 2

K1

)
, (16)

with c5 = 0.24. Meanwhile, we also depict TRKKY and its
fitting function varying with t1 in Fig. 5(c). Here, TRKKY is
defined by the temperature referring to the half maximum of
μ2(T ) where the TQQD enters into the high-spin state after
the first Kondo screening [cf. Fig. 3(b)]. We find that TRKKY

could also be illustrated by a function of the order of t4
1 :

TRKKY = c6t4
1 /

(
UT 2

K1

)
, (17)

with c6 = 0.10. We argue that these behaviors could be
attributed to the following picture. For the parallel multi-
quantum-dot systems, the RKKY interaction JRKKY is medi-
ated by the effective Kondo couplings between the conduction
band and quantum dots and is of the order of �2, i.e., thus
τ 4, with JRKKY ∝ U (WbJK )2 ∝ �2/U [71]. In the limit of
noninteracting electrons in the central dot with U = 0, the
hybridization function between the central and the side dots
�c-s is given by �c-s(ω) = πA0

1(ω)t2
1 , where A0

1(ω) denotes the
spectral function of the central dot without t1:

A0
1(ω) = 1

π

�

(ω − ε)2 + �2
. (18)

In this way, the relation between �c-s(ω) and t1 becomes
similar to that between � and τ . If the Coulomb repulsion
in the central dot is strong, such as in the case of our present
model, �c-s becomes more complex, since the Green’s func-
tion of the central dot is then given by a function of ε, t1,
�, and the self-energy of the dots. Nevertheless, the second
Kondo screening corresponds to a Kondo effect due to J1

between a spin-3/2 impurity and a Fermi liquid, which has an
effective bandwidth W̃b ∼ TK1 and a LDOS at the Fermi level
Ã0

1(ω = 0) ∼ 1/(πTK1) [67]. As a result, for low frequencies,
�c-s ∝ t2

1 /TK1, and JRKKY ∝ t4
1 /(UT 2

K1). Furthermore, one no-
tices that in the parallel multi-quantum-dot systems, it is found
that JRKKY = cTRKKY, with c being a constant of order 1 [71].
In our present model, we find that this relation is also valid.
Furthermore, it is notable that a similar two-peak structure of
μ2(T ) was observed in quantum dot arrays with a star config-
uration [72]; however, neither of the peaks was identified as
the contribution of the RKKY interaction, and the underlying
physical picture was not shown.

B. A QPT between different singular two-stage Kondo
behaviors: Effect of t2 with intermediate t1 ∼ TK1

From the above discussion, one observes a crossover from
the fully conductance state to the zero-conductance state when
t1 increases; however, the reappearance of the Kondo effect
may occur when t2 is applied if t1 ∼ TK1, accompanied by
two first-order QPTs. In Fig. 6, we illustrate π�A1(ω) in
terms of different t2, the linear conductance G(T ), the charge
occupation number 〈ni〉 of subsystem i (i = CD,SD), and the
spin correlation 〈SiS j〉 at nearly zero temperature as functions
of t2 with fixed t1 = 0.002. As t2 increases, the split Kondo
peaks move toward the Fermi level. When t2 is large enough,
the Kondo peak locates at ω = 0 and reaches its unitary limit,
indicating a full conductance; see Fig. 6(a). Evolution of

FIG. 6. (a) π�A1(ω) for various t2 at T ≈ 0. (b) G(T ≈ 0)
and the charge occupation number on subsystems CD 〈nCD〉 and
SD 〈nSD〉 = ∑4

i=2〈ni〉 as functions of t2. (c) 〈SiS j〉 at nearly zero
temperature as a function of t2. The vertical black dashed lines in
(b) and (c) describe the two critical points of the QPTs. Here, t1 is
fixed at 0.002, and the remaining parameters are the same as in Fig. 2.

G(T ≈ 0) versus t2 is presented in Fig. 6(b); one finds that
it jumps from 0.0 to 1.0 around t2 = 0.0277. However, as a
matter of fact, the zero-conductance state covers two different
quantum phases. As shown in Figs. 6(b) and 6(c), when t2 is
small, each dot remains half filled, and the total charge num-
ber of the TQQD reads 〈Ntot〉 = 〈nCD〉 + 〈nSD〉 = 4.0. In this
case, electrons on dot 1 and those on the side dots are arranged
antiferromagnetically due to t1, whereas those on different
side dots are organized in a parallel manner; see Fig. 6(c).
The ground state of subsystem SD is a spin quadruplet. We
note that when t2 turns on, the exchange interactions between
different side dots include both the ferromagnetic RKKY
interaction mediated by t1 and the direct antiferromagnetic
exchange (DAE) interaction induced by t2 with J2 = 4t2

2 /U
[cf. Eq. (7)]. As t2 increases, the DAE interaction competes
with the RKKY interaction, so that at the first critical point
t c1
2 ≈ 6.5 × 10−4, the spin correlation between different side

dots 〈S2S3〉 drops abruptly to negative values, indicating a
first-order QPT. The ground state of subsystem SD then goes
into a magnetic frustration phase, which is dominated by those
many-body states with two of the side dots forming a spin
singlet while the remaining one generates another spin singlet
with the central dot. Hence electrons still could not transmit
through the TQQD. Here, t c1

2 satisfies that J2 = JRKKY, viz.,
4(t c1

2 )2/U = 0.24t4
1 /(UT 2

K1), giving t c1
2 ≈ 9.79 × 10−4. Due

to magnetic frustration and the temperature being not accu-
rately at zero, the numerical result of t c1

2 diverges mildly from
the theoretical one.
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FIG. 7. Temperature-dependent (a) G(T ) and (b) μ2(T ) for the
TQQD. The three different phases in each panel are distinguished
by black, red, and blue, respectively. Curves in (a) and (b) along the
black arrow are for t2 = 0.0002 and 0.0006; curves along the red
arrow are for t2 = 0.0008, 0.001, 0.002, and 0.003–0.027 in steps of
0.002; and curves along the blue arrow are for t2 = 0.028 and 0.030,
respectively. The remaining parameters are the same as in Fig. 6.

The above phase corresponds to the lowest energy for a
region of intermediate values of t2; however, it suffers another
QPT upon increasing this parameter further. As t2 exceeds
another critical point t c2

2 ≈ 0.0277, 〈nSD〉 changes abruptly to
2.0, suggesting another first-order QPT. In such a situation,
two of the side dots are singly occupied by electrons with
antiparallel configuration, and both of them decouple from
the central dot, while the remaining side dot is empty. The
present model then maps to a single-impurity Anderson model
with a single electron, and the Kondo peak recovers within
the transmission coefficient at low temperature [cf. t2 = 0.03
in Figs. 6(a) and 6(b)]. t c2

2 is just the point where the energy
level of the magnetic frustration phase degenerates with that
of the 〈nSD〉 = 2.0 phase.

Temperature-dependent physical quantities are depicted in
Figs. 7 and 8. For small t2 � t c1

2 , e.g., t2 = 0.0002 and 0.0006,
the thermodynamical properties are similar to the case without
t2 [cf. Figs. 3, 7, and 8]. The increasing t2 seems to not
affect TK2, whereas it does affect TRKKY, because the DAE
interaction impairs the RKKY interaction. For intermediate
values of t2 such that t c1

2 < t2 � t c2
2 , e.g., t2 illustrated by the

red curves in Fig. 7(a), the line shape of G(T ) is different from
those of t2 � t c1

2 , but a broad highland also exists in G(T )
in the regime TK1 � T > TK2. Meanwhile, one notices that
screening of μ2(T ) also takes place in two stages, indicating
a novel two-stage Kondo effect. With decreasing temperature,
there is a first drop at the scale of TK1 followed by a plateau
with μ2(T ) ≈ 1/4. Because when t2 > t c1

2 the DAE interac-
tion overwhelms the RKKY interaction, the high-spin state
with SSD = 3/2 induced by the RKKY interaction disappears.
Instead, two of the side dots form a spin singlet, and the
central one generates a Kondo singlet with an electron in the
conduction band; see Fig. 8(a). Therefore only the remaining
side dot contributes 1/4 to μ2(T ). A second drop occurs at a
much lower scale TK2, where a spin singlet develops between

FIG. 8. (a) 〈SiS j〉 and (b) 〈nSD〉 as functions of temperature.
Curves in (a) and (b) are for t2 = 0.0002, 0.001, and 0.03, respec-
tively. Curves 1–3 in (a) are for 〈S2S3〉, whereas curves 1′–3′ are
for 〈S1S2〉. Furthermore, since 〈nCD〉 holds at 1.0 in all temperature
regimes, we have not shown it here. The remaining parameters are
the same as in Fig. 2.

the remaining side dot and the central one. The present struc-
ture maps to a SDQD model, and the spin on the remaining
side dot is screened by the coupling between the central dot
and the side one. As a result, the total magnetic moment
vanishes with μ2(T ) → 0 as T → 0. It is noticed that in this
phase, TK1 becomes rather sensitive to the value of t2, which
increases with growing t2. Because in this regime two of the
side dots form a spin singlet, both the remaining side dot and
the electrodes contribute to the screening of the local spin on
subsystem CD. This enhancement of TK1 then leads to the
reduction of TK2. In Fig. 8(c), we depict TK2 as a function of
TK1 for t c1

2 < t2 � t c2
2 . One finds that it could be simulated by

a two-stage-Kondo-effect-type function,

TK2 = c7TK1e−c8TK1/J1 , (19)

with c7 = 0.0036 and c8 = 0.633, indicating that this Kondo
screening is also a singular two-stage Kondo effect.

For large t2 > t c2
2 , e.g., t2 = 0.028 and 0.030, the Kondo

effect recovers when T � TK1; hence G(T ) ≈ 1.0 holds. In
this section, two of the side dots form a spin singlet and
decouple from the central dot, while the remaining side dot
is empty, which is mentioned above [cf. Figs. 6(c) and 8(a)].
The local spin on subsystem CD is screened by electrons in
the conduction band; hence μ2(T ) = 0 at low temperature. It
is worth noting that compared with the case t2 < t c2

2 , where
〈nSD〉 ≈ 3.0 holds at all temperature scales, the state with
〈nSD〉 = 2.0 only exists when T < t2 [cf. Fig. 8(b)]. Thus, at
high temperature, μ2(T ) is the same as the case t2 < t c2

2 .
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FIG. 9. (a) Temperature-dependent G(T ) through the TQQD.
Curves for three different quantum phases are labeled by black,
red, and blue severally, and are for t2 = 0.002, 0.006, 0.012–0.028
in steps of 0.004, and 0.05, respectively, along the red arrow. (b)
〈SiS j〉 as a function of temperature T for t2 = 0.006 (solid curves)
and 0.028 (dashed curves), respectively. Curves 1 and 2 in (b) are
for 〈S1S2〉, whereas curves 1′ and 2′ are for 〈S2S3〉. Here, U = 0.1,
� = 0.01, ε = −U/2, and t1 = 0.01.

C. Robustness of the RKKY interaction and the partially
recovered Kondo effect: Effect of t2 with large t1 � TK1

For any fixed t1, our numerical results show that there exist
two QPTs as t2 increases. If t1 is small enough with t1 � TK1,
these QPTs hardly affect the transport behaviors through the
TQQD; hence we ignore them in our present discussion. On
the other hand, if t1 � TK1, in the first and second quantum
phases, G(T ) at low temperature is nearly zero, while it jumps
to its unitary limit when t2 moves across the second critical
point, similar to the case of fixed t1 ∼ TK1. Therefore in this
section we focus our attention on two features, viz., the par-
tially recovered Kondo effect and the interplay between JRKKY

and JDAE characterized by the LDOS of subsystem SD.
Temperature-dependent G(T ) through the TQQD is de-

picted in Fig. 9 with fixed t1 = 0.01. For small t2 < t c1
2 ,

e.g., t2 = 0.002, the thermodynamical properties are similar
to the case without t2 [cf. Figs. 3(a) and 9(a)]. For interme-
diate values of t2 such that t c1

2 � t2 < t c2
2 but t2 > t1, e.g.,

0.012–0.028, a new small peak develops in G(T ) around
T ≈ 10−3, which grows with increasing t2. When T ≈ t2, the
spin configurations between different side dots are dominated
by antiferromagnetic style with negative 〈S2S3〉, whereas they
nearly decouple from the central dot with 〈S1S2〉 ≈ 0.0; see,
for example, t2 = 0.028 in Fig. 9(b). Therefore, for T <

TK1 ≈ 10−3, there are some possibilities for the electron on
the central dot to form a spin singlet with that on the elec-
trode, and the Kondo effect partially reappears. Comparing
with these phenomena, one notices that for t c1

2 � t2 < t c2
2 but

t2 < t1, the additional small peak in G(T ) is not obvious [cf.
t2 = 0.006 in Fig. 9(a)]. This behavior could be attributed
to the fact that in this case the electron on the central dot

FIG. 10. (a)–(c) The LDOS of one of the side dots A2(ω) in terms
of different t2. The remaining parameters are the same as in Fig. 9.

generates a local spin singlet with the electron on one of the
side dots at a higher temperature than the singlet between
different side dots [cf. Fig. 9(b)]; hence around T ≈ TK1 the
Kondo spin singlet is suppressed.

Since the RKKY interaction between different side dots
JRKKY ∝ t4

1 , for fixed large t1, the order of JRKKY is close
to that of the Coulomb interaction; it is then an ideal pro-
totype for discussing the interplay between JRKKY and JDAE

in the LDOS. Related results are depicted in Fig. 10. When
t2 is absent, two pairs of energy peaks could be clarified in
A2(ω), both of which are symmetric to the Fermi level; see
t2 = 0 in Fig. 10(a). The broad pair are located at ±U/2,
which refer to the one-electron peak (ε = −U/2) and the
two-electron peak (ε + U ), respectively. The narrow pair are
the RKKY peaks, which, as we may expect, are located at
about ±0.24t4

1 /(UT 2
K1). When t2 turns on, the spectral weight

becomes asymmetric due to the electron-hole symmetry be-
ing broken [cf. t2 = 0.005]. In this case, JDAE reduces the
probability of generating JRKKY, and thus the spectral weight
contributed by JRKKY decreases, which can be seen from the
decreasing weight of the RKKY peak in the part ω > 0.
When t2 exceeds t c1

2 , the RKKY peaks disappear, and instead
there is another peak on the left side, ω < 0; see t2 = 0.01 in
Fig. 10(b). This is because in this phase, the interdot exchange
interaction is dominated by JDAE. With increasing t2, the peak
moves away with respect to the Fermi level, because JDAE is
enhanced; cf. t2 = 0.02. When t2 > t c2

2 , most of the spectral
weight moves to the right side, suggesting a considerable re-
duction in the charge number of subsystem SD; see t2 = 0.03
in Fig. 10(c). The location of the peak refers to the energy
needed to add an additional electron in subsystem SD, which
increases with growing t2; thus one finds that it moves toward
the right for larger t2 [cf. t2 = 0.04].
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FIG. 11. (a)–(c) 〈SiS j〉 and (d)–(f) G(T ≈ 0) and 〈nCD〉 vs ε1

at nearly zero temperature. The results correspond to t1 = 0.002
[(a) and (d)], t1 = 0.01 [(b) and (e)], and t1 = 0.03 [(c) and (f)]. The
remaining parameters are given by U = 0.1, � = 0.01, ε2 = −U/2,
and t2 = 0.

D. A QPT from an antiferromagnetic to a ferromagnetic
correlation among the side dots: Effect of ε1 without t2

We finish our discussion by analyzing the effect produced
by changing the charge of the central dot, with the help of
modifying its local level ε1 via a gate potential. The left panels
in Fig. 11 show 〈SiS j〉 at nearly zero temperature as a function
of ε1 for t1 = 0.002 [Fig. 11(a)], 0.01 [Fig. 11(b)], and 0.03
[Fig. 11(c)], respectively, with fixed ε2 = −U/2 and t2 = 0. It
is seen that when t2 is absent, charging subsystem CD triggers
transitions from an antiferromagnetic correlation among the
side dots to a ferromagnetic one, and then to an antiferromag-
netic one. These QPTs are associated with Kondo regimes in
CD, which are characterized by peaks with maximum close
to the unitary limit [cf. Figs. 11(d)–(f)]. The above behaviors
are similar to those observed in a three-dot quantum gate, with
a central dot connected to leads and laterally connected to two
side quantum dots [73]. When ε1 is high, e.g., ε1 = 0.1 for
t2 = 0.002, the central dot is nearly empty; thus the side spins
decouple from the central one with 〈SiS j〉 ≈ 0 [cf. Figs. 11(a)
and 11(d)]. In this case, the ground state of the isolated TQQD
with ti = 0 is a many-body state where the side spins are anti-
ferromagnetically correlated. This behavior persists when dot
1 is connected to leads [73]. The spectral weight of A1(ω) at
the Fermi level is nearly zero; hence G(T ≈ 0) ≈ 0. Instead,
there is a broad peak located at about ε1, corresponding to
the energy needed to add an additional electron on dot 1.
A2(ω) is symmetric with respect to the Fermi level, with two
Coulomb peaks located at ±U/2; see Fig. 12(a). As ε1 sweeps
to the Fermi energy, the Kondo effect occurs. This is because
in this case, dot 1 is out of resonance and the effect of local
repulsion in it can be neglected. This allows fourth-order spin-
flipping processes between subsystems CD and SD, which
are characteristic of the Kondo effect [73,74]. This argument

FIG. 12. (a) and (b) The LDOS of the quantum dots Ai(ω) (i =
1, 2) at nearly zero temperature in terms of different ε1, with fixed
t1 = 0.002. The remaining parameters are the same as in Fig. 11.

is confirmed by a sharp peak at the Fermi surface in A1(ω),
as is depicted in Fig. 12(b) with ε1 = −0.01. When ε1 is low
enough, e.g., ε1 � 0, dot 1 is almost fully occupied, and an
analogous picture works due to the particle-hole symmetry;
see Figs. 11(a) and 11(d). As t1 increases, the ferromagnet-
ically correlated regime of the side spins is enlarged. This
is because the critical point around ε1 = 0 (−U ) also relates
to the processes where the charge number increases from 0
(1) to 1 (2), and the level difference between these two states
decreases as t1 increases.

V. CONCLUSION

In conclusion, we have studied the quantum phase tran-
sition, the electronic transport, and the thermodynamical
properties of a tetrahedral quadruple quantum dot system,
connecting symmetrically to the source and drain electrodes.
We concentrate on the two-stage Kondo effect, the RKKY
interaction, the magnetic frustration, and their interplay in
the strongly correlated limit. When t2 is absent, the linear
conductance G(T ) at zero temperature transits from its unitary
limit to zero gradually as t1 increases, due to the enhancing
antiferromagnetism between the central and side subsystems.
For intermediate values of t1, a singular two-stage Kondo
effect is revealed. The local spin of the TQQD is first screened
by the effective Kondo coupling between the central dot and
the electrodes at temperature TK1, and then it locks into a
high-spin state at TRKKY due to the RKKY interaction JRKKY

between different side dots mediated by t1. At a lower tem-
perature TK2, the high-spin state is then partially screened by
the central spin through the exchange coupling induced by t1.
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The Kondo effect only exists in the regime TK2 < T � TK1,
with TK2 increasing as t1 sweeps upwards. We demonstrate
that TK2 could be illustrated by an exponential function of TK1,
but the orders of the fitting parameters are quite different from
those in the SDQD structures. Both JRKKY and TRKKY could
be described by power functions of t4

1 /(UT 2
K1); hence JRKKY is

proportional to TRKKY, similar to the parallel multi-quantum-
dot structure. Surprisingly, the number of side dots affects the
width of the Fano dip in a very gentle way, whereas it affects
the order of TK2 significantly.

When t2 turns on and the fixed t1 ∼ TK1, the ground state of
subsystem SD transits from a spin quadruplet to a magnetic
frustration phase, and then to a singlet, through two first-order
QPTs. In the quadruplet, electrons on the central dot form a
singlet with those on one of the side dots; hence G(T ) = 0
when T < TK2. In the frustration phase, the quantum state of
the TQQD is dominated by a state where electrons on two of
the side dots generate a singlet, whereas an electron on the
remaining side dot forms another singlet with an electron on
the central dot. As a result, G(T ) is retained also at zero at low
temperatures. Furthermore, in this regime, another singular
two-stage Kondo effect is found, where the local spin on the
central dot is screened by the electrodes firstly and then that
on the remaining side dot (relative to those two side dots
forming a spin singlet) is screened by the central spin through
t1, resulting in μ2(T ) → 0 as T → 0. TK1 and TK2 are rather
sensitive to the value of t2. When t2 is in the third quantum
phase, the total charge number of subsystem SD drops to 2.0,
and the side dots form a spin singlet due to t2 and decouple
from the central subsystem, resulting in the reappearance of
the regular Kondo effect.

For fixed t1 � TK1, the partially recovered Kondo effect is
demonstrated in the vicinity of T ≈ TK1, and the competition

between JRKKY and JDAE is clearly revealed by the LDOS of
the side dots.

When the energy level of the central dot sweeps down-
wards, one finds QPTs from an antiferromagnetic correlation
among the side dots to a ferromagnetic one, and then to an
antiferromagnetic one, accompanied by Kondo resonances in
the LDOS of the central dot.

It is noted that for a bandwidth Wb = 105 K [75], the pa-
rameters in Figs. 3 and 7 give a maximum TK2 ≈ 10−1 K;
hence our reported two-stage Kondo effects could be realized
experimentally [76].

We believe that our present work not only clarifies the
relevant strongly correlated physical picture of the singular
two-stage Kondo behaviors and the quantum phase transi-
tion in the TQQD structure reported very recently, but also
may provide important guidelines for experimental realization
of nanoscale semiconductor tunneling devices and quantum
computation hardware.
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cients of the Anderson model via the numerical renormalization
group, J. Phys.: Condens. Matter 6, 2519 (1994).

[75] A. A. Aligia, Effective Kondo Model for a Trimer on a Metallic
Surface, Phys. Rev. Lett. 96, 096804 (2006).

[76] X. Guo, Q.-H. Zhu, L.-Y. Zhou, W. Yu, W.-G. Lu, and W.-J.
Liang, Evolution and universality of two-stage Kondo effect
in single manganese phthalocyanine molecule transistors, Nat.
Commun. 12, 1566 (2021).

075430-13

https://doi.org/10.1103/PhysRevApplied.12.064049
https://doi.org/10.1021/jacs.0c12871
https://doi.org/10.1016/j.cjph.2021.07.005
https://doi.org/10.1021/nl801858a
https://doi.org/10.1063/1.3673840
https://doi.org/10.1021/acs.inorgchem.9b02086
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevB.79.085106
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1063/1.1724276
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.99.076402
https://doi.org/10.1103/PhysRevB.83.113306
https://doi.org/10.1088/0022-3719/11/24/030
https://doi.org/10.1103/PhysRevB.71.075305
https://doi.org/10.1103/RevModPhys.82.2257
https://doi.org/10.1103/PhysRevB.76.115114
https://doi.org/10.1016/j.jmmm.2015.09.021
https://doi.org/10.1103/PhysRevB.74.045312
https://doi.org/10.1103/PhysRevB.92.165416
https://doi.org/10.1103/PhysRevB.81.041310
https://doi.org/10.1088/0953-8984/6/13/013
https://doi.org/10.1103/PhysRevLett.96.096804
https://doi.org/10.1038/s41467-021-21492-x

