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Nanoscale electromagnetism with the boundary element method

Ulrich Hohenester 1,* and Gerhard Unger 2

1Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
2Institute of Applied Mathemathics, Technical University of Graz, Steyrergasse 30, 8010 Graz, Austria

(Received 21 December 2021; revised 8 February 2022; accepted 9 February 2022; published 24 February 2022)

In Yang et al. [Nature 576, 248 (2019)], the authors introduced a general theoretical framework for nanoscale
electromagnetism based on Feibelman parameters. Here quantum effects of the optically excited electrons at
the interface between two materials are lumped into two complex-valued and frequency-dependent parameters
which can be incorporated into modified boundary conditions for Maxwell’s equations, the so-called mesoscopic
boundary conditions. These modifications can, in principle, be implemented in any Maxwell solver, although
the technicalities can be subtle and depend on the chosen computational approach. In this paper, we show
how to implement mesoscopic boundary conditions in a boundary element method approach based on a
Galerkin scheme with Raviart-Thomas shape elements for the representation of the tangential electromagnetic
fields at the boundary. We demonstrate that the results of our simulations are in perfect agreement with Mie
theory, including Feibelman parameters, and that for typical simulation scenarios the computational overhead is
usually small.
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I. INTRODUCTION

Plasmonics has given photonics the ability to go to
the nanoscale [1–4]. This is achieved by optically excit-
ing coherent electron charge oscillations at the boundary of
metallic nanoparticles, so-called localized surface plasmon
resonances or particle plasmons in short, which come along
with strongly localized evanescent fields that allow focus-
ing electromagnetic fields to deep subwavelength volumes
[5,6]. Applications are manifold and range from sensorics
and photovoltaics, over catalysis and thermal management,
to metamaterials. By a similar token, hybrid photon-phonon
excitations at the surface of ionic nanoparticles, so-called sur-
face phonon polaritons, enable extreme light confinement in
the infrared regime [7], which is of importance for the emerg-
ing fields of phononics [8] and thermoelectrics [9], as well as
for the controlled heat transfer at the nanoscale [10,11].

The theoretical description of optical excitations of metal-
lic, ionic, or dielectric nanoparticles is based on the solution
of Maxwell’s equations, where the optical response of the
nanoparticles is usually modeled in terms of homogeneous,
local, and isotropic permittivity and permeability functions.
The validity of such a classical description has been ques-
tioned from the early days of plasmonics [12], and it has
become customary to coin the term quantum plasmonics
for deviations from a purely classical description [13–15].
These include a nonlocal dielectric response [16–19] or
quantum tunneling through subnanometer gaps between cou-
pled nanoparticles [20,21], which can lead to charge transfer
plasmons [22].

Feibelman parameters provide a general and versatile
scheme to account for modifications from a classical descrip-
tion at nanostructure interfaces [23]. They were introduced
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by Feibelman in the description of reflection and transmis-
sion of plane waves at flat interfaces. The basic idea is to
model the wave propagation on both sides of the interface
through solutions of Maxwell’s equations using homogeneous
and local permittivities and to lump all quantum effects of
the metal electrons in the vicinity of the surface, say, in a
region of about one nanometer, into two so-called Feibelman
parameters. These parameters d⊥(ω), d‖(ω) are usually com-
plex valued and frequency dependent and can be interpreted in
terms of charge and current distribution displacements of opti-
cally excited metal electrons [6,23,24]. Feibelman parameters
were brought to the field of plasmonics in Ref. [25], where the
authors showed that they can accommodate d-band effects in
transition metals and explain the somewhat counterintuitive
blue shift of surface plasmon resonances.

Recently, Yang et al. [26] suggested a methodology to
incorporate Feibelman parameters into a framework based on
Maxwell’s equations with modified boundary conditions
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where all modifications of the electronic response at the inter-
face are encompassed in d⊥(ω), d‖(ω). The beauty of Eq. (1)
is that the quantum effects at the interface are described on
the same footing as the bulk material properties, namely,
in terms of effective parameters, which are extracted from
either experiment or first principles calculation. While the
bulk permittivity function is usually obtained from a coarse
graining procedure [27], which can incorporate quantum ef-
fects, the Feibelman parameters are obtained from quantum
descriptions for the electron wave functions at the metal

2469-9950/2022/105(7)/075428(8) 075428-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8929-2086
https://orcid.org/0000-0002-7253-279X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.075428&domain=pdf&date_stamp=2022-02-24
https://doi.org/10.1038/s41586-019-1803-1
https://doi.org/10.1103/PhysRevB.105.075428


ULRICH HOHENESTER AND GERHARD UNGER PHYSICAL REVIEW B 105, 075428 (2022)

surface, using either simplified Drude or more realistic many-
body models [15,23]. The framework for the consideration of
quantum effects within Maxwell’s equations through Feibel-
man parameters has been denoted as nanoscale electromag-
netism and the boundary conditions of Eq. (1) have been
referred to as mesoscopic boundary conditions [26].

Although the solutions of Maxwell’s equations with meso-
scopic boundary conditions have provided good agreement
with experiment and complementary theoretical descriptions
[15,24,26], the implementation of the mesoscopic boundary
conditions into available homemade or commerical Maxwell
solvers proves to be nontrivial. In Ref. [26], the authors
employed an iterative solution scheme using the standard
boundary conditions of tangential electromagnetic fields [27],
where the right-hand sides of Eq. (1) were accounted for
through additional surface charge and current distributions,
which were successively updated until convergence was
reached. Alternatively, the authors suggested a scheme based
on resonance or quasinormal modes [28–32], where the
modifications due to the mesoscopic boundary conditions
were included in a kind of perturbation approach within
lowest order.

In this paper, we develop a methodology for the solution
of Maxwell’s equations using a boundary element method
(BEM) approach together with the mesoscopic boundary
conditions of Eq. (1), and implement the modifications
in our homemade Maxwell solver NANOBEM. We demon-
strate the applicability of our implementation for a few
proof-of-principle simulations. Quite generally, the BEM ap-
pears to be particularly well-suited for the consideration of
Feibelman parameters, as it precisely assumes solutions of
the homogeneous Maxwell equations (with local and homoge-
nous material properties) on both sides of an interface and
matches in a second step the fields across the interface using
the boundary conditions.

We have organized our paper as follows. In Sec. II, we
develop the methodology for nanoscale electromagnetism
within the BEM approach. We use the usual Stratton-Chu
approach for the tangential electromagnetic fields [6,33,34],
together with a Galerkin scheme using Raviart-Thomas shape
elements. As in our implementation of mesoscopic boundary
conditions, we will use some technicalities of the Galerkin
scheme—we present the BEM methodology in more length
than probably needed, mainly to keep our paper as self-
contained as possible. In Sec. III, we present a few selected
examples for nanophotonics simulations, including meso-
scopic boundary conditions, and demonstrate that our results
are in perfect agreement with Mie theory. Finally, in Sec. IV
we discuss the computational cost of our approach and briefly
summarize our paper.

II. THEORY

A. Boundary integral method

The starting point of the boundary integral method is the
dyadic Green’s function

↔
G j (r, r′) =

(↔
I + ∇∇

k2
j

)
eik j |r−r′|

4π |r − r′| , (2)
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FIG. 1. Schematics of (a) boundary integral method and
(b) boundary element method. (a) We consider a nanoparticle with
a homogeneous and local permittivity function ε1(ω) that is embed-
ded in a background medium with permittivity ε2(ω). The sharp
nanoparticle boundary is denoted with ∂� and the outer surface
normal with n̂. Once the tangential electromagnetic fields uE ,H are
known at the boundary, they can be computed everywhere else using
the representation formula of Eq. (4). (b) In the boundary element
method, the nanoparticle boundary is discretized using boundary
elements of triangular shape and (c) the tangential electromagnetic
fields are approximated using Raviart-Thomas shape elements f e

ν .
The working equations can be expressed in the form of matrix-vector
multiplications, and the solutions uE ,H are obtained through matrix
inversion.

where k j is a wave number,
↔
I the unit matrix, and we

have used the outer product with (∇∇)i j = ∂i∂ j . Within an
unbounded medium, the electric field E inc(r) due to a current
distribution J(r′) can then be expressed as [6]

E inc(r) = iμ0ω

∫ ↔
G j (r, r′) · J(r′) d3r′, (3)

where μ0 is the permeability of free space (we consider non-
magnetic materials only) and ω is the angular frequency of the
oscillating current distribution. Thus, the Green’s function is
proportional to the electric field at position r generated by a
unit current source at position r′. For reasons to become clear
in a moment, we denote E inc(r) as an incoming field.

In what follows, we consider the situation depicted in Fig. 1
of a nanoparticle with permittivity ε1, which may depend on
frequency ω, embedded in a background medium with permit-
tivity ε2. In principle, our formalism also applies to geometries
of coupled or coated particles, as long as the permittivity
functions ε are local, homogeneous, and isotropic, but we here
discuss the situation of a single particle only. Following the
seminal work of Stratton and Chu [33], we express the electric
field E(r) outside the nanoparticle in terms of the tangen-
tial electromagnetic fields n̂ × E, n̂ × H at the nanoparticle
boundary ∂� through (see also Ref. [6, Eq. (5.26)])

E(r) = E inc(r) +
∮

∂�

{
iμ0ω

↔
G2(r, s′) · n̂′ × H (s′)

− [∇′ ×
↔
G2(r, s′)] · n̂′ × E(s′)} dS′. (4)

Here E inc(r) is the incoming field of Eq. (3) produced by
the current distribution in the embedding medium, n̂, n̂′
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are the outer surface normals of the nanoparticle boundary
at positions s, s′, and we denote positions on and off the
boundary with s and r, respectively. Similar expressions can
be obtained for the magnetic field and the electromagnetic
fields inside the nanoparticle. Equation (4) is reminiscent of
Huygen’s principle, which propagates the fields at the wave-
front (here n̂ × E, n̂ × H) to another position in space (here
r). Thus, once n̂ × E, n̂ × H are known at the boundary, we
can compute the electromagnetic fields everywhere else using
the representation formula of Eq. (4).

We next do some extra work and rewrite Eq. (4) and the
expressions for the remaining fields inside and outside the
nanoparticle in a more compact form. First, we introduce
the abbreviations uE

j (s) = n̂ × E(s), uH
j (s) = n̂ × H (s) for

the tangential electromagnetic fields at the boundary inside
( j = 1) and outside ( j = 2). For the usual boundary con-
ditions, the tangential electromagnetic fields are continuous
when crossing the boundary, but for the modified boundary
conditions of Eqs. (1), the fields are discontinuous and we thus
keep the index j on uE ,H

j . We introduce the single and double
layer potentials [6, Eqs. (5.34) and (5.35)],

[S ju](r) =
∮

∂�

↔
G j (r, s′) · u(s′) dS′

=
∮

∂�

[
g j (r, s′)u(s′) + 1

k2
j

∇g j (r, s′) ∇′ · u(s′)
]

dS′

(5a)

[D ju](r) =
∮

∂�

∇′ ×
↔
G j (r, s′) · u(s′) dS′

=
∮

∂�

∇′ × g j (r, s′)u(s′) dS′, (5b)

where g j (r, r′) is the scalar Green’s function given by the
fraction on the right-hand side of Eq. (2). In obtaining the
last expression in Eq. (5a), we have performed integration by
parts and have used that the remaining contribution becomes
zero for continuous tangential fields. If we assume that the
nanoparticle is excited only through sources located within the
background medium, we obtain for the representation formula
inside the nanoparticle [6,34]

E(r) = −iωμ0
[
S1uH

1

]
(r) + [

D1uE
1

]
(r), (6a)

H (r) = +iωε1
[
S1uE

1

]
(r) + [

D1uH
1

]
(r). (6b)

Similarly, for positions r outside the particle, the electromag-
netic fields can be obtained from

E(r) = E inc
2 (r) + iωμ0

[
S2uH

2

]
(r) − [

D2 uE
2

]
(r), (6c)

H (r) = H inc
2 (r) − iωε2

[
S2uE

2

]
(r) − [

D2uH
2

]
(r). (6d)

The reader might like to check that Eqs. (4) and (6c) are
indeed identical. The representation formulas of Eq. (6) can
be used for two purposes. First, once the tangential electro-
magnetic fields are known at the boundary, we can compute
the electromagnetic fields everywhere else. Second, they can
be used to determine the tangential fields at the boundary
themselves. To this end, we have to perform the limit r → s in
Eq. (6), where the position r approaches the boundary from ei-
ther the inside or outside, and exploit the boundary conditions

of the fields. While the limit can be performed safely for the
single-layer potential, limr→s n̂ × [S ju](r) = n̂ × [S ju](s), in
the evaluation of the double layer potential we have to be
careful on whether we approach the boundary from the inside
or outside [6]:

lim
r→s

n̂ × [
D1,2u

]
(r) = ± 1

2 u(s) + n̂ × [
D1,2u

]
(s). (7)

Here the positive sign has to be taken for the limit from the
inside, and the negative sign for the limit from the outside.
Thus, if we consider in Eqs. (6a) and (6b), the tangential fields
n̂ × E, n̂ × H and approach the boundary from the inside,
we get

1
2 uE

1 (s) = −iωμ0n̂ × [
S1uH

1

]
(s) + n̂ × [

D1uE
1

]
(s), (8a)

1
2 uH

1 (s) = +iωε1n̂ × [
S1uE

1

]
(s) + n̂ × [

D1uH
1

]
(s). (8b)

Similarly, we obtain from Eqs. (6c) and (6d)
1
2 uE

2 (s) = n̂ × E inc
2 (s) + iωμ0n̂ × [

S2uH
2

]
(s)

− n̂ × [
D2uE

2

]
(s), (8c)

1
2 uH

2 (s) = n̂ × H inc
2 (s) − iωε2n̂ × [

S2uE
2

]
(s)

− n̂ × [
D2uH

2

]
(s). (8d)

Below we will show how to transform Eq. (8) into matrix
equations using a BEM approach. Before doing so, we rewrite
the boundary conditions of Eq. (1) using the tangential elec-
tromagnetic fields. The identity [35, Cor. 3.1.16]

n̂ · ∇ × u = −∇‖ · (n̂ × u)

and the curl equations ∇ × E = iμ0ωH , ∇ × H = −iεωE
enable us to express the normal components E⊥, H⊥ as

E⊥
j = n̂ · E j = − i

ε jω
∇‖ · uH

j , (9a)

H⊥
j = n̂ · H j = i

μ0ω
∇‖ · uE

j . (9b)

With this, the mesoscopic boundary conditions of Eqs. (1c)
and (1d) for the tangential electromagnetic fields can be cast
to the form

uE
2 − uE

1 = id⊥
ω

n̂ × ∇‖∇‖ ·
(

uH
2

ε2
− uH

1

ε1

)
, (10a)

uH
2 − uH

1 = −iωd‖ n̂ × (
ε2uE

2 − ε1uE
1

)
. (10b)

The remaining boundary conditions for the normal compo-
nents are obtained by taking on both sides of Eqs. (10) the
divergence ∇‖· along the boundary directions.

B. Boundary element method

We next submit the boundary integral Eq. (8) and the
boundary conditions of Eq. (10) to a BEM and a Galerkin
scheme. For that, let us introduce the pairing

〈
w, u

〉 =
∮

∂�

w(s) · u(s) dS, (11)

where w(s) is an arbitrary tangential vector function. We use
this pairing to bring the boundary integral Eq. (8) and the
boundary conditions Eq. (10) to a variational form which
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is necessary to apply a Galerkin method. Equation (8a) is
considered in the form

0 = 〈
n̂ × w, 1

2 uE
1 + iωμ0n̂ × S1uH

1 − n̂ × D1uE
1

〉
= 〈

w,− 1
2 n̂ × uE

1 + iωμ0S1uH
1 − D1uE

1

〉
, (12a)

where we have used 〈w, n̂ × f 〉 = −〈n̂ × w, f 〉 and the iden-
tity n̂ × n̂ × w = −w. Similarly, we get for Eqs. (8b)–(8d)〈

w,− 1
2 n̂ × uH

1 − iωε1S1uE
1 − D1uH

1

〉 = 0, (12b)〈
w,− 1

2 n̂ × uE
2 − iωμ0S2uH

2 + D2uE
2

〉 = 〈
w, E inc

2

〉
(12c)〈

w,− 1
2 n̂ × uH

2 + iωε2S2uE
2 + D2uH

2

〉 = 〈
w, H inc

2

〉
. (12d)

Using the pairing of Eq. (11), we can employ integration
by parts [35, Sec. 3.1] to shuffle around derivatives via∮

∂�

w(s) · ∇‖u(s) dS = −
∮

∂�

(∇‖ · w(s))u(s)dS

= −〈∇‖ · w, u〉, (13)

where u is some scalar function, and in the last equality
we have introduced a shorthand notation. This can be used
to represent the single layer potential of Eq. (5a) on the
boundary as

〈w,S ju〉 =
∮

∂�

[
w(s) · u(s′) − 1

k2
j

(∇‖ · w(s))(∇‖ · u(s′))
]

× g j (s, s′) dSdS′. (14)

Submitting the boundary conditions of Eq. (10) to the pairing
leads us to 〈

w, uE
1

〉 − id⊥
ωε1

〈∇‖ · n̂ × w,∇‖ · uH
1

〉
= 〈

w, uE
2

〉 − id⊥
ωε2

〈∇‖ · n̂ × w,∇‖ · uH
2

〉
〈
w, uH

1

〉 + iωε1d‖
〈
w, n̂ × uE

1

〉
= 〈

w, uH
2

〉 + iωε2d‖
〈
w, n̂ × uE

2

〉
, (15)

where we have again employed Eq. (13) to simplify the ∇‖∇‖·
term, which would be hard to handle in a computational
approach otherwise. In the BEM approach, we approximate
the boundary through a discretization in terms of triangular
boundary elements τi,

∂� ≈
⋃

i

τi. (16)

For simplicity, we assume that all boundary elements τi have
a triangular shape, although our approach would also work for
other discretizations, e.g., using quadrilateral or mixed shapes.
We additionally discretize the tangential fields u through
Raviart-Thomas or Rao-Wilton-Glisson basis elements, see
Fig. 1, which guarantee continuity of the tangential fields
when going from one triangle to an adjacent one [6,34].
Technically, this is done by assigning to each edge ν of the
discretized boundary a value for �u�ν and by using tangen-
tial basis functions f e

ν that are nonzero in the two adjacent
triangles only (a so-called local support), and which are con-
structed such that the outflow from one triangle equals the

inflow to the other triangle. For details, see Refs. [6,34]. The
tangential fields can then be approximated through

ūE ,H
j (s) =

n∑
ν=1

f e
ν (s) �uE ,H

j �ν, (17)

where n is the total number of individual edges that determines
the number of degrees of freedom for the BEM approach.
Within the Galerkin scheme, we insert the functions ūE ,H

j

instead of uE ,H
j in Eqs. (12) and (15) and use as test functions

the basis functions f e
ν . This gives〈

f e
ν,− 1

2 n̂ × ūE
1 + iωμ0S1ūH

1 − D1ūE
1

〉 = 0, (18a)〈
f e

ν,− 1
2 n̂ × ūH

1 − iωε1S1ūE
1 − D1ūH

1

〉 = 0, (18b)〈
f e

ν,− 1
2 n̂ × ūE

2 − iωμ0S2ūh
2 + D2ūE

2

〉 = 〈
f e

ν, E inc
2

〉
, (18c)〈

f e
ν,− 1

2 n̂ × ūH
2 + iωε2S2ūE

2 + D2ūH
2

〉 = 〈
f e

ν, H inc
2

〉
, (18d)

and 〈
f e

ν, ūE
1

〉 − id⊥
ωε1

〈∇‖ · n̂ × f e
ν,∇‖ · ūH

1

〉
= 〈

f e
ν, ūE

2

〉 − id⊥
ωε2

〈∇‖ · n̂ × f e
ν,∇‖ · ūH

2

〉
〈
f e

ν, ūH
1

〉 + iωε1d‖
〈
f e

ν, n̂ × ūE
1

〉
= 〈

f e
ν, ūH

2

〉 + iωε2d‖
〈
f e

ν, n̂ × ūE
2

〉
. (19)

These equations are used to determine the unknown expansion
coefficients �uE ,H�ν . Combining the electric and magnetic
components of the solution vectors according to

u j =
(

�uE
j �

�uH
j �

)
, (20)

we rewrite Eq. (18) in the compact form(
1
2 I − A1

)
u1 = 0, (21a)(

1
2 I + A2

)
u2 = q. (21b)

A more detailed discussion, as well as a definition of the
matrices I and Aj is given in Appendix. Equation (21) is
usually referred to as the Calderon identities. To solve for the
unknowns u1, u2, we have to combine the two equations and
invoke the boundary conditions of Eq. (19), which can be cast
to the form

B1u1 = B2u2, (22)

with the matrices B1, B2 given in Eq. (A8). This expression
together with the Calderon identities of Eq. (21) allow us to
obtain the desired solutions. We here introduce a scheme that
is inspired by the Poggio-Miller-Chang-Harrington-Wu-Tsai
formulation [36–38] where the two Calderon identities are
subtracted:[(

1
2 I + A2

) − (
1
2 I − A1

)
B−1

1 B2

]
u2 = q. (23)

The B−1
1 B2 term accounts for the modified boundary con-

ditions, which would become one for the case where both
Feibelman parameters are set to zero. Thus, the solution of
the BEM equations, namely, the inversion of the term in
brackets of Eq. (23), is highly similar to the usual solution

075428-4



NANOSCALE ELECTROMAGNETISM WITH THE BOUNDARY … PHYSICAL REVIEW B 105, 075428 (2022)

(a) (b)

FIG. 2. Extinction cross sections for gold nanosphere (diameter 20 nm, dielectric function taken from Ref. [39]) embedded in
water (refractive index nb = 1.33). We use large and frequency-independent Feibelman parameters of (1) d⊥ = 0.5 nm, d‖ = 0, (2)
d⊥ = −0.5 nm, d‖ = 0, (3) d⊥ = 0, d‖ = 0.5 nm, (4) d⊥ = 0, d‖ = −0.5 nm. The circle symbols report results of our BEM approach using
the sphere discretization with 400 vertices shown in the inset of (a), the cross symbols report results of Mie theory including Feibelman
parameters. BEM and Mie results are in perfect agreement throughout. The dashed line shows for comparison results of standard Mie theory
without Feibelman parameters.

scheme. Once the tangential electromagnetic fields u2 are
known, we can compute the fields everywhere in the embed-
ding medium using the representation formulas of Eq. (6). The
solution u1 inside the nanoparticle can be obtained through
u1 = B−1

1 B2u2.

III. RESULTS

We have implemented the working Eq. (23) in our home-
made BEM solver NANOBEM [40]. Figure 2 shows results for
an optically excited gold nanosphere with 20 nm diameter,
which is embedded in water. For the permittivity function
we use tabulated values extracted from an optical experiment
[39]. We set the Feibelman parameters d⊥, d‖ to constant
but otherwise arbitrary values, which are reported in the
figure caption, and compare our results with those of a
Mie theory including Feibelman parameter [24]. As can be
seen in the figure, the results of our BEM simulations and
Mie theory are in perfect agreement and almost indistin-
guishable throughout, thus demonstrating the accuracy of
our computational approach. We will comment on the per-
formance of our modified BEM approach further below in
Sec. IV. Quite generally, with this proof-of-principle result,
we are now in the position to perform simulations including
Feibelman parameters for any other setup that can be mod-
eled within a BEM approach. In the following, we discuss
two simple setups, namely, coupling of nanoparticles and
the computation of resonance modes, mainly to demonstrate
the potential of our scheme. More detailed investigations,
including also Feibelman parameters extracted from ab initio
calculations, will be presented elsewhere.

In the following, we use a Drude dielectric function rep-
resentative for gold [18], with a plasma frequency of h̄ωp =
3.3 eV and a damping constant h̄γ = 0.165 eV, together with

the Feibelman parameters for the hydrodynamic model [23]:

d⊥(ω) = − β√
ω2

p − ω2
, d‖ = 0. (24)

The β parameter accounts for the hydrodynamic pressure
of an electron gas, its value of β = 0.0063 c is taken from
Ref. [18]. Figure 3 shows the optical spectra for two cou-
pled gold nanospheres and for different gap distances. One

0.8 1 1.2 1.4 1.6 1.8 2 2.2

Photon energy (eV)

0

500

1000

1500

2000

2500

3000

3500

4000

E
xt

in
ct

io
n 

cr
os

s 
se

ct
io

n 
(n

m
2
)

2 nm

4 nm

8 nm

w/  Feibelmam
w/o Feibelman

FIG. 3. Extinction cross section for coupled gold nanospheres
with a diameter of 20 nm and for gap distances of 2, 4, and
8 nm, as indicated on the right-hand side (we use nb = 1.33). The
spectra are offset for clarity, and the polarization of the incoming
light is along the symmetry axis of the coupled spheres. The two
peaks are associated with bonding and anti-bonding dimer modes,
and the splitting increases with decreasing gap distance owing to the
increased coupling strength.
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FIG. 4. Computation of resonance modes and optical spectra for
nanoellipsoids using a dielectric function representative for gold
[18]. (a) Extinction cross sections for prolate nanoellipsoids with a
short axis of 20 nm and a long axis of 40 nm (circles) and 60 nm
(squares); the polarization of the incoming light is parallel to the
long axis. The open symbols show results from the full BEM sim-
ulations, the open symbols from the resonance mode approximation,
and the dashed lines from simulations without Feibelman parameters.
(b) Complex frequency plane. The solid line shows the contour used
in the computation of the resonance modes and the symbols the
location of the resonance mode energies.

observes two peaks associated with the bonding and anti-
bonding dimer modes [6], and the peak splitting increases
with decreasing gap distance owing to the enhanced coupling
between the spheres. For the chosen parameters, the simu-
lation results with (solid lines) and without (dashed lines)
consideration of Feibelman parameters are similar, apart from
an approximately constant shift.

As a final example, in Fig. 4 we show results of simulations
with resonance or quasinormal modes [28–32] for gold na-
noellipsoids, following the prescription given in Refs. [40,41].
Importantly, the calculation of the resonance modes is almost
identical for simulations with and without mesoscopic bound-
ary conditions, with the exception of the additional boundary
matrices to be considered in Eq. (23) [42]. Figure 4(b) shows
the complex resonance energies obtained from our contour
integral method [40,41], and Fig. 4(a) the extinction spectra
obtained from the full BEM simulations (open symbols) and
the resonance mode expansionss (full symbols). We observe
that the spectra are in perfect agreement. The simulation
results presented in Figs. 3 and 4 demonstrate that all simu-
lations that can be performed with standard BEM solvers can
indeed be equally well performed with BEM solvers incorpo-
rating mesosocopic boundary conditions.

IV. DISCUSSION AND SUMMARY

We finally comment on the computer times for BEM sim-
ulations with and without mesoscopic boundary conditions,
which is related to the additional computation of the B−1

1 B2
term in Eq. (23). For coarse boundary discretizations with a
few hundred boundary elements, the main computational cost
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FIG. 5. Error between tangential electric fields computed within
Mie theory and BEM simulations, evaluated at the centroids of the
boundary elements, see Eq. (25). We consider a gold nanosphere with
20 nm diameter and the same material and simulation parameters as
listed in the caption of Fig. 2, and compare simulation results for
boundary discretizations with a varying number of vertices N and
for a wavelength of 520 nm. With decreasing mesh size, the error
becomes smaller monotonously.

is the evaluation of the single and double layer potentials, see
Eq. (A1), and the evaluation and inversion of the boundary
matrices B1, B2 leads to no significant overhead. Things may
change for finer discretizations with a few thousand bound-
ary elements, where simulations can be slowed down by a
factor between 2 and 3 in comparison to normal BEM sim-
ulations. For nanoparticles with separated boundaries, such as
for coupled or coated particles, the evaluation of B−1

1 B2 can
be done blockwise, which leads to a significant speedup and
comparable computer times for simulations with and without
mesoscopic boundary conditions. Thus, the additional over-
head in Eq. (23) is usually small.

In Fig. 5, we investigate the accuracy of our BEM im-
plementation. We consider a gold nanosphere with 20-nm
diameter and use the same material and simulation parameters
as listed in the caption of Fig. 2, and compare simulation
results for boundary discretizations with a varying number
of vertices N and correspondingly boundary elements. For
each discretization, we compute the tangential electric fields
at the centroids of the boundary elements and evaluate the
deviations from the exact fields obtained within Mie theory:

error =
√√√√∑

i

∣∣n̂i × (
EBEM

i − EMie
i

)∣∣2

∑n
i

∣∣n̂i × EMie
i

∣∣2 . (25)

As can be seen in Fig. 5, the error decreases monotonously
when increasing the number of vertices, where all simulation
setups exhibit a similar error slope. This demonstrates the
accuracy and robustness of the scheme described in this paper.

To summarize, we have presented a methodology for the
implementation of mesoscopic boundary conditions within a
BEM approach, and have demonstrated that the results of such
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an approach are in perfect agreement with Mie theory. Further
case studies have revealed that our implementation can be
used in all situations where normal BEM simulations can be
employed, and that the computational overhead is negligible
to moderate in most cases of interest. This establishes BEM
as a viable and efficient solution scheme for nanoscale elec-
tromagnetism, including mesoscopic boundary conditions.

ACKNOWLEDGMENTS

We thank Asger Mortensen for helpful discussions and
for suggesting the implementation of the mesoscopic bound-
ary conditions within a BEM approach. This work has been
supported in part by the Austrian Science Fund FWF under
Project No. P 31264 and by NAWI Graz.

APPENDIX

In this Appendix, we provide further details for the deriva-
tion of Eqs. (21) and (22). With the shape functions of
Eq. (17), we introduce the matrix elements for the discretized
single- and double-layer potentials

�S�νν ′ =
∮ ∮ [

f e
ν (s) · f e

ν ′ (s′) − ∇‖ · f e
ν (s) ∇′

‖ · f e
ν ′ (s′)

k2

]
× g(s, s′) dSdS′, (A1a)

�D�νν ′ =
∮ ∮

f e
ν (s) · ∇′g(s, s′) × f e

ν ′ (s′) dSdS′, (A1b)

together with the matrix

�I�νν ′ = 〈
f e

ν, n̂ × f e
ν ′
〉
. (A2)

For the incoming fields, we introduce the inhomogeneities

�qE �ν = 〈
f e

ν, E inc
2

〉
, (A3a)

�qH�ν = 〈
f e

ν, H inc
2

〉
, (A3b)

and combine the electric and magnetic components in a single
vector q = (�qE �, �qH�)T , in complete analogy to Eq. (20).
Together with the block matrices

I = −
(

�I� 0

0 �I�

)
, Aj =

(
�D j� −iμ0ω�S j�

iε jω�S j� �D j�

)
,

(A4)
we are then led to our final Eq. (21). For evaluating the bound-
ary conditions within the Galerkin scheme, we introduce the
matrices

�J�νν ′ = 〈
f e

ν, f e
ν ′
〉
, (A5)

�K�νν ′ = 〈∇‖ · f e
ν,∇‖ · f e

ν ′
〉
. (A6)

Inspection of Eq. (15) shows that we have to deal with a
term of the form 〈∇‖ · n̂ × f e

ν,∇‖ · f e
ν ′ 〉 rather than with the

expression of Eq. (A6). Any pairing between two functions u,
v can be rewritten by inserting the identity operator expanded
in the nonorthogonal basis of the shape elements via〈

u, v
〉 =

∑
νν ′

〈
u, f e

ν

〉
(�J�−1)νν ′

〈
f e

ν ′ , v
〉
. (A7)

With this, we then find 〈∇‖ · n̂ × f e
ν,∇‖ · f e

ν ′ 〉 =
−(�I��J�−1�K�)νν ′ , where the negative sign is because of
the reversed order of pairing functions in 〈n̂ × f e

ν, f e
ν ′ 〉 in

comparison to the matrix of Eq. (A2). We are thus finally led
to Eq. (22) with the matrix

Bj =
(

�J� − i
ωε j

d⊥�K̃�

iωε jd‖�I� �J�

)
, (A8)

where we have introduced �K̃� = −�I��J�−1�K�.
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