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Temperature-induced phase transitions in the correlated quantum Hall state of bilayer graphene
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The quantum Hall system can be used to study many-body physics owing to its multiple internal electronic
degrees of freedom and tunability. While quantum phase transitions have been studied intensively, research on
the temperature-induced phase transitions of this system is limited. We measured the pure bulk conductivity of a
quantum Hall antiferromagnetic state in bilayer graphene over a wide range of temperatures and revealed the two-
step phase transition associated with the breaking of the long-range order, i.e., the Kosterlitz-Thouless transition,
and short-range antiferromagnetic order. Our findings are fundamental to understanding electron correlation in
quantum Hall systems.
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I. INTRODUCTION

The quantum Hall state is one of the most strongly elec-
tronically correlated states owing to its quenched kinetic
energy. When multiple internal electronic degrees of freedom
exist, an exchange interaction stabilizes a many-body-ordered
ground state if a one-particle Landau level (LL) is partially
filled [1–3].

A well-known example that has been intensively stud-
ied is the double-layer quantum Hall system at the total
filling factor ν = 1 [3]. This system is considered as an easy-
plane ferromagnet of the pseudospin defined by the layer
degree of freedom. Rich varieties of phase transitions have
been investigated for control parameters such as temperature,
layer separation, magnetic field, interlayer charge imbalance,
and interlayer tunneling. Observation and characterization of
the yet elusive temperature-induced Kosterlitz-Thouless (KT)
transition remains as one of the central and longstanding is-
sues in this field.

As many-body-ordered states in quantum Hall systems
are characterized by energy gap opening and ordering, they
should have analogies with other correlated insulators such as
Mott insulators and two-dimensional moiré flat band systems.
Because both the interaction energy and one-particle energy
of the quantum Hall state can be controlled by parameters
such as the carrier density (filling factor), out-of-plane and
in-plane magnetic field, and out-of-plane electric field, it can
be a tunable experimental platform for investigating general
correlated effects and phase transitions.

Although the quantum phase transitions in quantum
Hall states have been extensively studied both experimen-
tally and theoretically, few studies have been conducted on
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temperature-induced classical phase transitions [4–6]. This
is because, theoretically, finite temperature behavior is much
more difficult to investigate than zero-temperature behavior.
Furthermore, experimentally, the coexistence of the bulk and
edge states makes the temperature dependence of observables
more complex than in homogeneous systems.

The zero-energy LL of bilayer graphene (BLG) is a
promising platform for studying temperature-induced phase
transitions. It exhibits various ordered states owing to the
interplay of spin, layer, and orbital degrees of freedom, and
controllability of the layer degree of freedom by an out-of-
plane external electric field (displacement field D) [7–37]. At
ν = 0 (half filling of the zero-energy LL), the canted anti-
ferromagnetic (CAF) state is thought to be stabilized by the
short-range Coulomb interaction under a small D, whereas the
layer polarized (LP) state is favored under a large D [7–28].
The ferromagnetic state is favored for enhanced Zeeman en-
ergy by a tilted magnetic field [15–18,25–27]. In this paper,
we focus on the CAF state, where the spins tend to align
ferromagnetically within each layer and antiferromagnetically
between the layers [25–27] [Fig. 1(a)]. The spins tend to lie in
the plane with a small canting along the out-of-plane mag-
netic field to minimize both the antiferromagnetic exchange
energy and Zeeman energy. Under a perpendicular magnetic
field, the degree of canting is estimated to be only 1–2 ° [25];
therefore, we can treat the CAF state as an ideal easy-plane
antiferromagnet with U (1) symmetry. It is also thought to be
stabilized in the ν = 0 state of monolayer graphene without
staggered potential, where the layer degree of freedom in BLG
is replaced with the sublattice degree of freedom.

Importantly, the CAF state does not have a zero-gap edge
state unless the edge is a zigzag edge, owing to valley scatter-
ing at the edge. This simplifies the analysis of the temperature
dependence of its bulk conductivity. In addition, the energy
gap of the CAF state in BLG is much larger than that in a
double-layer semiconductor quantum well [2], owing to the
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FIG. 1. Schematic of the canted antiferromagnetic (CAF) state
and sample structure. (a) Configuration of the spins in the CAF
state in bilayer graphene (BLG). The orange (blue) lines are the top
(bottom) layers of the BLG. The red dots indicate the electrons, and
their spins are indicated by the purple arrows. Optical microscope
image of (b) Corbino 1, (c) Corbino 2, (d) two-terminal, and (e)
Hall bar samples. (f) Schematic cross-section along the broken red
line in (b). BLG is encapsulated by high-quality hexagonal boron
nitride (h-BN) crystals with a thickness of 30–50 nm and sandwiched
between the gold top gate and p-doped Si back gate.

smaller separation between layers, which increases the phase
transition temperature.

The CAF state has also attracted considerable interest for
its unique electronic transport properties. Long-range spin
current transport arising from the easy-plane antiferromag-
netic order [38–41], a kind of charge-neutral current orig-
inating from the spin-dependent layer polarization [42,43],
and KT-like critical behavior of the conductance [11,44]
have been observed. In addition, recent theories indicate the
easy-plane antiferromagnetism in magic-angle-twisted BLG,
which is like the CAF, as an origin of its superconductivity
[45].

Previously, the temperature dependence of the conductivity
of the CAF state was measured in limited temperature ranges
[11,15,18]. However, few discussions have been made on
temperature-induced phase transitions, as will be discussed
later.

In this paper, we employed Corbino samples, which
eliminate any type of edge transport to certainly measure
the bulk conductivity in the CAF state and to study its
temperature-induced phase transition. The observed non-
monotonic temperature dependence of the bulk conductivity
implies a two-step phase transition, which is explained well
by the two energy scales of the CAF state: the short- and
long-range Coulomb interaction energies.

II. SAMPLES AND METHODS

Our measurements employed four samples: Corbino 1,
Corbino 2, two-terminal, and a Hall bar. All the samples were
dual-gated BLG encapsulated by hexagonal boron nitride
(h-BN) [Figs. 1(b)–1(f)] and fabricated by the dry transfer
technique (details are provided in Appendix A). For Corbino
1 and 2, the dimensions of the active region covered with the
top gate are the same [Figs. 1(b) and 1(c)]. While a p-doped Si
substrate is used as a back gate for Corbino 1, a graphite back

gate which was patterned in the same shape as the top gate
is used for Corbino 2. For Corbino 2, the nonactive region,
which is not covered with the top gate, is heavily doped by
the Si back gate. Therefore, most of the measured resistance
originates from the active region. For Corbino 1, the resistance
is the series resistance of the active and nonactive regions.
Because the CAF state is established at VTG = 0 in Corbino 1,
the active and nonactive regions homogeneously become the
CAF state under these conditions. This ensures the validity
of the temperature-dependence measurement, as mentioned
later.

Although the CAF state generally has no ballistic edge
state owing to valley scattering at the edge [7–16,25–28],
there is a possibility of diffusive edge transport owing to the
hopping transport across sparsely existing zigzag edge regions
[46]. The Corbino samples, which do not experience edge
transport, allow for the measurement of pure bulk conductiv-
ity.

The conductivity was measured by a four-probe technique
using lock-in amplifiers (3.77 Hz) with a constant current of
∼3 nA.

III. RESULTS AND DISCUSSIONS

A. Gate dependence

In Fig. 2, we show the carrier density n and displacement
field D dependence of the conductivity of Corbino 1 and 2,
which was obtained from its gate voltage dependence under
a perpendicular magnetic field B = 0 and 9 T at temperature
T = 2.3 K. Here, n and D are determined by n = εTG

edTG
VTG +

εBG
edBG

VBG and D = − εTG
dTG

VTG + εBG
dBG

VBG, where εTG and εBG are
dielectric constants of the insulating layers for the top and
back gates, e is the elementally charge, and dTG and dBG

are thicknesses of the insulating layers for the top and back
gates determined by atomic force microscopy (AFM) mea-
surement, respectively. We adopted εh−BN

∼= 4ε0 and εSiO2
∼=

3.58ε0 (detail of the conversion is provided in Appendix B).
Periodic conductivity dips due to the formation of LLs were
observed under a magnetic field and assigned to filling factors
of ±8, ±4, ±3,±2, ±1, and 0, as indicated in Figs. 2(c)
and 2(d). In Corbino 1, diagonal lines appeared in a direction
perpendicular to the VBG axis [blue arrows in Figs. 2(a) and
2(c)]. These lines corresponded to the minimum conductivity
of the inactive region not covered by the top gate. On the other
hand, the inactive region in Corbino 2 was highly doped by
the Si back gate, and its conductivity was much higher than
that of the active region. Therefore, the measured conductivity
was mainly determined by the active region, and the diagonal
lines were not observed. Focusing on ν = 0 (n = 0), we found
that the conductance dip vanished around |D| = 0.16 V/nm in
Corbino 2. The two (separated) insulating states that appeared
at |D| < 0.16 V/nm and |D| > 0.16 V/nm were assigned to
the CAF and LP states, respectively [15,25–28].

The phase transition from the CAF state to the LP state
was more clearly observed in the D and B dependences at
n = 0 [Fig. 2(e)]. The displacement field D∗ at the boundary
between the CAF and LP regions linearly increases as B
increases, which is quantitatively consistent with the results of
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FIG. 2. n (carrier density) and D (displacement field) dependence of the conductivity in Corbino samples. A plot of conductivity σ vs the
carrier density n and displacement field D at T = 2.3 K for (a) Corbino 1 at B = 0 T, (b) Corbino 2 at B = 0 T, (c) Corbino 1 at B = 9 T, and
(d) Corbino 2 at B = 9 T. The red numbers are the filling factors assigned to the conductance dips in the n axis. Blue arrows in (a) and (c)
indicate the diagonal conductivity dip line originated from the inactive region of the sample not covered by the top gate. (e) A plot of σ vs the
perpendicular magnetic field B and D for Corbino 2 at n = 0 and T = 2.3 K. The orange broken line indicates the phase boundaries between
the canted antiferromagnetic (CAF) and the layer polarized (LP) regions.

a previous study [15]. Here, we convert D∗ into the energy unit
�D∗ using the linear relationship between the displacement
field and the energy gap at a zero magnetic field:

�D∗ ≡ �(D∗) ∼= 130 × D∗(V/nm) (meV). (1)

The function �(D) = 130 meV/D (V/nm) is the energy
gap induced by applying the displacement field D at a zero
magnetic field [19].

The physical meaning of �D∗ is the difference in the in-
teraction energy between the CAF and LP states, which is
overcome by the polarization energy at D = D∗.

B. Temperature dependence

Having confirmed the known gate-dependence property of
the ν = 0 quantum Hall state, we studied the temperature
dependence of the conductivity at the center of the CAF
state (n = 0, D = 0). Owing to the gate leakage problem of
Corbino 2 at high temperatures, a wide range of temperature
dependences were measured for the Corbino 1, two-terminal,
and Hall bar samples. This measurement for Corbino 1 was
not affected by its nonactive region because the center of the
CAF state is at VTG = 0 and VBG = 0; therefore, the entire
sample was in the CAF state.

Figure 3(a) shows the temperature dependence of con-
ductivity in Corbino 1. It exhibits nonmonotonic behavior

075427-3



M. TANAKA et al. PHYSICAL REVIEW B 105, 075427 (2022)

FIG. 3. Temperature dependence of the conductivity and parameters. (a) Standard plot and (b) Arrhenius plot of the temperature
dependence of the conductivity for Corbino 1 at T = 2.3–200 K for magnetic fields of 0, 2, 4, 6, and 8 T. The temperature regions separated
by black broken lines are regions I, II, and III for B = 8 T. (c) Magnified plot of (b) around region III. (d) Magnetic field dependence of TC1

of Corbino 1 (black dots), TC2 of Corbino 1 (blue dots), the first kink of the two-terminal sample (black open square), TC2 of the two-terminal
sample (blue open square), the first kink of Hall bar sample (black cross), and TC2 of Hall bar sample (blue cross). Temperature dependence
of the conductivity of (e) two-terminal and (f) Hall bar samples in Arrhenius plot. Black arrows indicate the first kink, whose magnetic field
dependence is shown in (d). Temperature dependence of the conductivity of Corbino 1 at ν = ±4 and 8 at (g) B = 4 T and (h) B = 9 T. Black
broken lines indicate the Arrhenius fitting in high-temperature region.

above B = 4 T. At B = 8 T, it behaves as an insulator below
T = 20 K, a metal at higher temperatures, and an insulator
above T = 80 K [Fig. 3(a)]. We define these three temperature
regions as I, II, and III, respectively. We define the boundary
temperature between I and II (II and III) as TC1 (TC2), where
conductivity takes a local maximum (minimum), and they are
shown in Figs. 3(d) and 4(a).

Figure 3(b) is an Arrhenius plot of Fig. 3(a), and Fig. 3(c)
is its magnification at high-temperature region. The tempera-
ture dependence in Region I is well fitted with the activation
energy �I.. Region III is roughly fitted by activation en-
ergy �III, although we observe a slight deviation around
the highest temperature, and we must interpret the fitted
�III as a lower bound of activation gap rather than actual
activation gap. Magnetic field dependence of the activation
gap is shown in Fig. 4(a) and will be further discussed in
Sec. C.

In the two-terminal sample, TC1 defined by the local maxi-
mum was not defined well under a high magnetic field >6 T,
although kinks were observed [black arrows in Fig. 3(e)],
which are comparable with TC1 of the Corbino sample and
might be remnants of TC1 [Fig. 3(d)]. In the Hall bar sample,

the first kinks [black arrows in Fig. 3(f)] are comparable with
TC1 of the Corbino sample [Fig. 3(d)]. In the Hall bar sample
and the two-terminal sample, TC2 is not well defined for a high
magnetic field >6 T. As the vanishing TC2 is only observed
under a high magnetic field, they might be due to trivial edge
conduction. Another possible reason is the sample-dependent
amount of impurity.

The nonmonotonic T dependence has been reported in
previous studies [11,15,18]. However, its origin has not yet
been determined. In a previous study, it was pointed out that
nonmonotonicity can originate from the coexistence of bulk
and edge states [18]. However, our results in the Corbino
sample revealed that the nonmonotonicity of the CAF state
is due to an intrinsic bulk property.

Nonmonotonicity of the temperature dependence of the
conductivity was not observed at ν = ±4 and ±8 [Figs. 3(f)
and 3(g)], indicating that it is related to the electronic correla-
tion. At ν = ±4 and ±8, temperature dependence is stronger
at high temperature and weaker at low temperature. These
two temperature regimes are attributed to thermal activation
across the LLs and hopping transport, respectively, which is
quantitatively consistent with previous research [47].
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FIG. 4. Parameters and characteristic energy of the temperature
dependence and estimation of vortex and impurity densities. (a)
Magnetic field dependence of TC1 (black dots), TC2 (blue dots),
�I (black cross), and �III (blue cross) in Corbino 1, �D∗ (orange
broken line) in Corbino 2, TCNL (green dots), ES (blue shade), and
ECAF (orange shade). (b) Energy gap (stabilization energy) of the
canted antiferromagnetic (CAF) and layer polarized (LP) state as
a function of D. The purple (orange) line is the energy gap of
the CAF (LP) state as a function of D. Solid lines indicate that
it is the ground state. (c) The free vortex density was calculated
by nVTX(T ) = A−2 exp(−2B/

√
T/TC1 − 1), where A = 0.27 × mag-

netic length (= √
B(= 8 T)/�0) and B = 1.99. The impurity density

was calculated by nimp(T ) = 0.043 × 1012 cm−2 × T exp(−2 K/T ).

C. Discussion on the temperature dependence

1. Characteristic energy scale

We now consider the origin of the nonmonotonic T
dependence and physical significance of the characteristic
temperatures based on the mean-field theory of quantum Hall
ferromagnetism. Generally, the energy gap of a quantum Hall
ferromagnetic system consists of three terms [25]:

E = E1 + EL + ES, (2)

E1 = μBBtotal + �(D), (3)

EL � e2

4πεlB
∝ √

B⊥, (4)

ES �
∫

dr2

[
φ∗(r)

e2

4πεa
φ(r)

]2

= 1

l2
B

∫
dr′2

[
φ∗(r′)

e2

4πεa
φ(r′)

]2

(r′ = r/lB)

∝ 1/l2
B ∝ B⊥, (5)

where Btotal (B⊥) is a total (out-of-plane) magnetic field, ε is
the in-plane dielectric constant, lB is the magnetic length, a
is the lattice constant, and φ(r) is the wave function of the
zeroth LL.

E1 represents the one-particle energy, which contains
the Zeeman energy and polarization energy. EL represents
Coulomb interaction in a longer scale than a lattice constant
that is symmetric in the spin and valley space. Since it does

not depend on lattice-scale spin and valley configuration, it
is identical for any spin and valley configuration. This is
proportional to the square root of the perpendicular magnetic
field. Based on the theoretical calculation, EL � 10

√
B[T ] K

is estimated [25].
ES is the lattice-scale short-range Coulomb interaction,

which is valley asymmetric and proportional to the perpen-
dicular magnetic field. This term is different for the different
spin and valley configurations.

Here, we consider the energy gap of the CAF state ECAF =
E1,CAF + EL + ES,CAF and that of the LP state ELP = E1,LP +
EL + ES,LP as a function of B and D. When ECAF > ELP, the
ground state is the CAF state and vice versa.

The CAF state does not have polarization; therefore, E1,CAF

is determined only by the Zeeman energy. Since out-of-plane
spin canting is ∼2 ° under a perpendicular magnetic field, E1

in the CAF state is E1,CAF = sin 2◦μBB[T ] K � 0.025B[T ] K.
EL is identical for any kind of state, and Ref. [25] gives

the estimation of EL = 10
√

B[T ] K. Regarding ES, Ref. [25]
gives the theoretical estimation for the CAF state ES, CAF =
10–20B[T ] K. In our experimental range of the magnetic
field, ES, CAF > EL � E1, CAF, so we can ignore E1, CAF.

In the LP state which has the layer polarization, E1 then
becomes E1, LP = �(D) ∼= 940 × D(V/nm) K. Here, �(D) is
the polarization energy defined in Eq. (1). EL is much smaller
than E1, LP when the LP state is the ground state because
E1,LP > ES,CAF � EL.

It is difficult to estimate the value of ES, LP. In a previ-
ous study, the energy gap of the LP state at D = 0.2 V/nm
measured by scanning tunneling microscopy is almost inde-
pendent of the perpendicular magnetic field [48]. This implies
that the magnetic-field-dependent term EL + ES, LP is much
smaller than the total energy gap; that is, the total energy gap
is mainly determined by E1,LP.

Figure 4(b) is a schematic diagram of ECAF and ELP as a
function of D. We note that the difference between them at
D = 0 is given by �(D∗) = ES,CAF + ES, LP

∼= ES,CAF.
In Fig. 4(a), we compare the theoretically expected val-

ues of ECAF
∼= ES,CAF + EL and EL and energy scales in the

observed nonmonotonic temperature dependence. As we dis-
cussed above, �(D∗) = ES,CAF + ES, LP

∼= ES,CAF = ECAF −
EL is comparable with ECAF given that ES,CAF � EL. Also,
we find that TC1 is comparable with EL, and TC2 and �III are
comparable with ECAF. This indicates that TC1 corresponds to
the long-range Coulomb interaction and TC2 corresponds to
the total energy gap of the CAF state, which is mainly de-
termined by the short-range Coulomb interaction. Therefore,
the change of the temperature dependence at TC1 is associated
with the breaking of the quasi-long-range order (QLRO), and
the change at TC2 is associated with the breaking of the short-
range order or an excitation across the CAF energy gap.

2. Origins of nonmonotonic temperature dependence

We consider the origin of the nonmonotonic temperature
dependence of the conductivity based on the correspondence
between TC1 (TC2) and long (short)-range Coulomb interac-
tion energy. In Region III, the temperature dependence of
the conductivity is roughly fitted to the Arrhenius formula
[Figs. 3(b) and 3(c)], and its activation energy is comparable
with TC2. Therefore, the conduction mechanism should be
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thermal excitation across the energy gap of the CAF state,
which is mainly determined by the energy scale needed to
break the local antiferromagnetic order (ES,CAF).

In Region I, the temperature dependence is fitted to the
Arrhenius formula with activation energy smaller than TC1,
although it slightly deviates and exhibits weaker temperature
dependence for <5 K. Because the temperature of Region I is
significantly lower than the energy gap, the hopping of carriers
excited from the impurity states should be dominant.

In Region II, the temperature dependence becomes metal-
lic. As TC1 corresponds to the long-range Coulomb interac-
tion, breaking of the QLRO is expected above TC1. Because
the CAF state has in-plane rotational symmetry, this order
breaking is represented by the KT transition associated with
the creation of unbounded vortices and antivortices. The cre-
ation of vortices and antivortices can affect the conductivity
in the following two ways. First, these vortices can act as
scattering centers of the electron spin-flipping process for
independently excited free electrons. This increases the scat-
tering rate of the electron and contributes to the decrease in
conductivity.

Second, on the other hand, vortices in quantum Hall states
have electrical charges and can act as conductive carriers,
which contribute to the increase of conductivity.

Whether the conductivity decreases or increases above TC1

depends on which are dominant carriers, individually excited
free electrons, or correctively excited vortices.

In the next section, we estimate the number of vortices
and impurities. The result of the estimation indicates that
the number of individually excited electrons and holes from
impurity states is much larger than the number of vortices
near the KT transition temperature. In such a situation where
the conduction is not dominated by vortices but by indi-
vidually excited carriers, the number of conductive carriers
does not change significantly at the KT transition. Therefore,
the creation of unbounded vortices results in a decrease in
conductivity because increased vortices promote spin flips of
electrons and holes, which increases the number of possible
scattering processes. As the temperature increases, more vor-
tices are created, and the scattering rate is increased. This
type of conductivity reduction is generally observed in the
ordered-disordered magnetic phase transition of most mag-
netic materials. A well-known example is a butterfly-shaped
magnetoresistance at the magnetization flip of Ising ferromag-
nets due to increased domain wall owing to the magnetization
flip [49]. It is also known that the creation of skyrmions
enhances the magnetic scattering and leads to increased re-
sistance compared with the ferromagnetic phase [50].

3. Vortices density above KT transition

As discussed in the previous sections, TC1 is thought to be
assigned to the KT transition temperature TKT. Above TKT,
free vortices and antivortices that have electrical charges are
excited. Here, we estimate the free vortex density and argue
that it makes a small contribution to the number of conduction
carriers.

The density nVTX of the vortices and antivortices is propor-
tional to 1/ξ 2

KT [44], where ξKT is the correlation length (the
typical distance between vortices and antivortices). According

to the KT theory [54], the temperature dependence of ξKT

above the KT transition is

ξKT = A exp

(
B√

T/TKT − 1

)
, (6)

where A is a length-dimension constant, and B is a dimension-
less constant with an order of unity. Because the conductivity
dominated by vortices should be proportional to nVTX [44],
the temperature dependence of the conductivity arising from
free vortex motion is

σVTX ∝ A−2 exp

(
− 2B√

T/TKT − 1

)
. (7)

If the free vortices are the main conduction mechanism
around TC1, the conductivity should exponentially increase
above TC1 according to Eq. (7). However, we observe a de-
crease in conductivity above TC1. This indicates that free
vortices are not the main conduction mechanism at ap-
proximately TC1. To test this hypothesis, we estimated the
free vortex density and compared it with another possi-
ble conduction mechanism: carriers excited from charged
impurities.

The proportional coefficient A of Eq. (6) is ∼ 0.27× the
lattice constant (magnetic length) according to the theoretical
calculation [55]. In the same theoretical calculation, B = 1.99
is reported. Using these values, we calculated the free vortex
density 1/ξ 2

KT assuming TC1 = TKT and plotted it [Fig. 4(c)].
The impurity density was calculated based on the theoret-
ical calculation [30] from the correspondence between the
impurity density and the magnetic field at which the CAF
state begins to be observed. We observed the CAF state as a
conductivity gap above B = 4 T in Corbino 1 at T = 2.3 K.
This corresponds to the density of the impurity states of
0.1×1012 cm−2 in the energy window of 2.3 K. Here, we
assume that the density of the impurity states is constant to
the energy [56]; Dimp(T ) = C. The density of the impurity
states involved in the scattering process at temperature T is
nimp(T ) = C

∫ ∞
�

exp(−ε/T )dε = TCexp(−�/T ), where �

is the average energy spacing between the impurity states. By
fitting the temperature dependence of the conductivity below
TC1 to this function, we obtained � = 2 K. Using the relation
C × 2.3 = 0.1×1012 cm−2, we plotted the nimp(T ) [Fig. 4(c)].
Because the density of the nonimpurity states is zero in the
CAF energy gap, nimp(T ) is the total density of states of the
conductive carrier below TC1. Above TC1, the free vortex can
be an additional conduction carrier.

Because nimp(T ) is much larger than the free vortex density
in the vicinity of TC1, the KT transition does not lead to a
significant increase in the total conductive carriers above TC1,
which could explain why we observe a reduction in conduc-
tivity above TC1 rather than an increase in conductivity due to
the additional carriers of the free vortices.

In addition, we discuss the discrepancy of the KT transi-
tion temperatures between this paper and a previous study
in monolayer graphene [11]. In Ref. [11], they measured
magnetic field dependence of the conductivity at 0.3 K and
interpreted it as a magnetic-field-induced KT transition. In
their analysis, 0.3 K is above the KT transition temperature at
the magnetic field <18 T. This estimation of the KT transition
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temperature is much lower than TC1 in this paper. A possi-
ble reason for this discrepancy is the difference in mobility
of the samples. According to theory [44], the KT transition
temperature strongly depends on the density of impurities,
i.e., mobility. Considering >7 times larger mobility in our
samples than that of their samples [11], the discrepancy of
the KT transition temperature is consistent with the theoretical
calculation [44].

D. Nonlocal transport measurement

Finally, we employ nonlocal transport measurement to
get further insight into this scenario. The CAF state can
be described by the LL splitting between different spin and
valley degrees of freedom, as shown in Fig. 5(a). In this
state, Hall conductivity is both spin and valley contrasting.
Spin-valley Hall conductivity defined by σSVH = σH, →K −
σH, →K ′ − σH, ←K + σH, ←K is expected to be nonzero. Here,
σH, i j denotes the Hall conductivity for the electron with right
or left spin (i =→, ←) and K or K ′ valley ( j = K, K ′),
where the right and left spins are in-plane and determined
by spontaneous symmetry breaking of in-plane spin rotational
symmetry.

Here, σSVH allows for the conversion between the charge
current and spin-valley current, where the spin-valley current
is defined by jSV = j↑K − j ↑K ′ − j ↓K + j ↓K ′ . Assuming
that σSVH is homogeneous over the entire sample, we can
expect nonlocal resistance in the Hall bar geometry which
originates from the spin-valley current generation and detec-
tion, in analogy with spin Hall effect and valley Hall effect.

In the actual sample, σSVH cannot be homogeneous because
the CAF state has continuous spin rotational symmetry, and
long-range order does not exist according to Mermin-Wagner
theorem. However, if the correlation length of the QLRO in
the CAF state is comparable or longer than the sample dimen-
sion, integration of σSVH in the entire sample is not averaged
out, and we can expect the spin-valley Hall effect. In the case
that the correlation length is smaller than the sample, σSVH

is averaged out and spin-valley Hall effect is not expected
[Fig. 5(d)]. That is why the spin-valley Hall effect is the
signature of QLRO in the CAF state.

In our previous study [43], we measured the nonlocal re-
sistance in the Hall bar sample and revealed its origin. The
nonlocal resistance is defined by V3−5/I2−6 with the geometry
of terminals shown in Fig. 5(b). By measuring the temperature
and magnetic field dependence, we concluded that the main
origin of the nonlocal resistance in the CAF state is the spin-
valley Hall effect. In this paper, we used the same Hall bar
sample [Fig. 5(b)] and measured the nonlocal resistance in a
wider temperature range. Since this sample has a comparable
size with the Corbino sample, it is reasonable to compare the
degree of QLRO in these two samples.

Here, we measured the T dependence of the nonlocal re-
sistance in the range of 1.5 to 50 K. We previously found
that nonlocal resistance has a cubic scaling relationship with
the local resistance at low temperatures, which is consistent
with the model that assumes homogeneous spin- and valley-
dependent Hall conductivity in the entire sample [43]. In
Fig. 5(c), we show RNL /R3

L as a function of temperature.

FIG. 5. Nonlocal transport measurement. (a) Schematic of the
Landau level (LL) splitting and spin and valley contrasting Hall
conductivity. Vertical direction indicates the energy. The gray lines
are the energy level of LLs for different spins (→, ←) and valleys
(K , K ′). A Green broken line indicates zero energy. (b) Optical
microscope image of the Hall bar sample and terminal numbers.
The nonlocal resistance is defined by V3−5/I2−6. (c) The plot of
RNL/R3

L as a function of temperature in the Hall bar sample. The
arrows indicate TCNL TCNL for B = 8 T. The inset shows RNL as a
function of RL at B = 8 T in the same temperature range. The black
line and arrow indicate cubic dependence and TCNL, respectively. (d)
Schematic of the phase transition and spin-valley Hall conductivity
in the canted antiferromagnetic (CAF) state. At low temperatures
(T < EL , bottom), vortices and antivortices are always bound, and
the system has a quasi-long-range order (QLRO). In this case, the
average of the spin-valley Hall conductivity over the sample is
nonzero. Above T = EL , QLRO is broken, and the correlation length
begins to exponentially decrease as the temperature increases, but
antiferromagnetic orders are still preserved locally (top). In this case,
the average of the spin-valley Hall conductivity over the sample is
zero.

It is nearly constant at low temperatures, indicating the ho-
mogeneous spin- and valley-dependent Hall conductivity. At
higher temperatures, it drops and exhibits a dip [a black arrow
in Fig. 5(c)]. This drop indicates a drop in the spin- and
valley-dependent Hall conductivity or collapse of its ho-
mogeneity. At higher temperatures, it increases as the
temperature increases, indicating another mechanism of non-
local transport, such as the thermal effect [43,57].

We defined the dip temperature as TCNL and plotted it in
Fig. 4(a). Here, TCNL increases as B increases and is com-
parable with EL and TC1. This supports the scenario that KT
transition occurs, and QLRO is broken at TC1.
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IV. CONCLUSIONS

In summary, we observed nonmonotonic temperature de-
pendence of the conductivity in the CAF state characterized
by two different energy scales. Based on the mean-field theory
of quantum Hall ferromagnetism, we attribute these to the
KT transition and the breaking of the local antiferromagnetic
order. This is the first observation of a two-step temperature-
induced phase transition of a quantum Hall magnet, which
was theoretically argued for the ν = 0 quantum Hall state
of monolayer graphene [44]. In Mott insulators, a similar
two-step phase transition associated with the breaking of the
long- and short-range antiferromagnetic orders is commonly
observed [51–53], indicating the similarity between quantum
Hall systems and correlated crystals. This paper could inform
further studies of temperature-induced phase transitions in
quantum Hall magnetic systems as gate-controllable experi-
mental platforms.
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APPENDIX A: FABRICATION DETAIL

We used a mechanical exfoliation technique to prepare
BLG and h-BN flakes. The number of layers in each graphene
flake on the SiO2 (285 nm)/Si substrate was determined by
the contrast of the optical microscope image. After choosing
clean h-BN and graphene flakes using AFM, we stacked them.
First, an h-BN flake was picked up using a stamp made of
a polycarbonate thin film on a round polydimethylsiloxane
(PDMS). The thickness of an h-BN flake is roughly estimated
to be 30–50 nm from its color in an optical microscope im-
age. We then picked up a BLG flake with the h-BN flake
and released them on another h-BN flake with a thickness
of ∼30–50 nm for the Corbino 1 and two-terminal samples.
For the Corbino 2 and Hall bar samples, we picked up the
second b-BN flake and released the h-BN/BLG/h-BN stack
on the graphite, whose thickness was ∼5–10 nm. Graphite

FIG. 7. Dual gate dependence of the conductivity in Corbino 2
measured at B = 9 T and T = 2.3 K. (a) Conductivity vs the top gate
voltage VTG and back gate voltage VBG. The red numbers indicate the
filling factors for conductivity dips indicated by broken red lines. (b)
Conductivity vs the carrier density n and displacement field D. This
figure is identical to Fig. 2(d).

was used as a back gate for these two samples. After they
were fabricated, the h-BN/BLG/h-BN(/graphite) stacks were
annealed at 380 °C in an Ar/H2 atmosphere for 1.5 h to remove
the polycarbonate residue.

The top gate (Pd 5 nm/Au 30 nm) and Ohmic contacts (Pd
20 nm/Au 100 nm) were defined by electron beam lithography
and metal deposition by thermal evaporators [Fig. 6(a)]. Then
for the two Corbino samples, another h-BN (20–40 nm thick-
ness) was placed on the top gate as an insulating layer between
the outer Ohmic contact and electrodes for the center Ohmic
contact and the top gate. We created holes on the h-BN by
reactive ion etching in an Ar/O2/CF4 atmosphere [Fig. 6(b)],
and electrical contact was made to the top gate and center
Ohmic contact (Ti 5 nm/Au 250 nm) [Fig. 6(c)].

APPENDIX B: DUAL GATE DEPENDENCE
AND CONVERSION TO THE n AND D PLOT

In Fig. 7(a), we show the dual-gate dependence of the
conductivity measured at B = 6 and 9 T with T = 2.3 K.
The gate voltages were converted into the carrier density and
displacement field as follows:

n = εTG

edTG
VTG + εBG

edBG
VBG, (B1)

D = − εTG

dTG
VTG + εBG

dBG
VBG. (B2)

Here, εTG and εBG are dielectric constants of the insu-
lating layers for the top and back gates, respectively, e is

FIG. 6. Sample fabrication processes. Optical microscope images of Corbino 1 (a) after fabricating a top gate and Ohmic contacts, (b)
after making holes on the top h-BN by means of reactive ion etching, and (c) after fabricating electrodes for the top gate and Ohmic contacts
(completed sample).
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FIG. 8. n and D dependence of the conductivity in (a) Corbino 1 and (b) Corbino 2 measured at B = 0, 2, 4, 6, 9 T and T = 2.3 K. A blue
arrow for Corbino 1 at B = 0 T indicates the diagonal conductivity dip line originated from the inactive region of the sample not covered by
the top gate.

the elementally charge, dTG and dBG are thicknesses of the
insulating layers for the top and back gates, respectively. In
our Corbino sample, we adopted εTG

∼= 4ε0 (h-BN) and εBG
∼=

3.58ε0 (SiO2). Here, the difference in the dielectric constants
between h-BN and SiO2 for the back-gate insulating layer was
ignored, which resulted in a small uncertainty of D that was
less than a few percent.

After the assignment of the filling factor, as shown in
Fig. 7(a) and using the expected degeneracy of LLs at B =
9 T, we derived the values of the proportional coefficients in
Eq. (B1) as

εTG

edTG
= 5.8×1015 m−2V−1,

εBG

edBG
= 0.71×1015 m−2V−1. (B3)

These coefficients correspond to the thickness of the top
h-BN (38.12 nm) and the total thickness of SiO2 and bottom
h-BN (280 nm), which agree with the expected thicknesses.
By substituting these thicknesses into Eq. (B2), we derived the
displacement field D and obtained the n and D plots shown in
Fig. 7(b).

Next, we show the n and D dependences of the conductivity
at B = 0, 2, 4, 6, and 9 T in Corbino 1 and 2. In Corbino
1, diagonal lines appeared in a direction perpendicular to the
VBG axis (blue arrow in Fig. 8). These lines corresponded to
the minimum conductivity of the inactive region not covered
by the top gate. On the other hand, the inactive region in
Corbino 2 was highly doped by the Si back gate, and its
conductivity was much higher than that of the active region.
Therefore, the measured conductivity was mainly determined
by the active region, and the diagonal lines were not observed.
The conductivity dip at n = 0 and D = 0 indicates that the

formation of the CAF state appears above B = 4 T for Corbino
1 and B = 2 T for Corbino 2.

APPENDIX C: TEMPERATURE DEPENDENCE
IN THE LP STATE

We measured the temperature dependence of conductivity
for various D including the LP phase in one sample, as shown
in Fig. 9.

In the D and T plot shown in Fig. 9(a), the domelike highly
resistive region of the CAF and LP states are observed. The
conductance peaks at ±D∗ (border between the CAF and LP
states) become broader as temperature increases but do not
change their positions (value of D∗). Figure 9(b) shows the
cut of Fig. 9(a) at the LP state (red, orange, light-green, and
green solid curves) and the CAF state (black, blue, and purple
broken curves). All curves show the saturation of conductance
increase ∼ 20 K (1/T ∼ 0.05), but the negative dependence

FIG. 9. Temperature dependence of the conductivity for various
D at B = 9 T in Corbino 2. (a) Color plot of the conductivity as a
function of D and T at n = 0. (b) Arrhenius plot at different values
of D.
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of conductance on temperature is only seen in the CAF and LP
states at D = −0.254 V/nm (close to the CAF). The reduction
of conductance is more significant in the CAF state.

In the LP state, the two electrons in each orbital form
a spin singlet and occupy the upper or bottom layer. Since
they form a spin singlet at a site, it does not have mag-
netic ordering at least according to the existing theories [25].
Also, layer polarization symmetry in the LP state is externally
broken by an out-of-plane electric field; that is, it is not a
spontaneous symmetry breaking purely originated from the
electron correlation. Even when the temperature exceeds the
long-range Coulomb interaction energy, short-range domains
are not formed in the LP state due to the external electric
field. This is the essential difference between the CAF and LP

states. Therefore, we do not expect a two-step phase transition
in the LP state.

Nevertheless, it seems to show saturation of the conduc-
tance at a similar temperature with the CAF state. Since the
long-range Coulomb interaction energy is identical to the
CAF and LP states, there is a possibility that this saturation
is related to long-range Coulomb interaction energy.

We could measure only in a limited temperature range
(2–42 K) owing to the gate leak problem that started during
the measurement. Also, we do not have the data in multiple
samples.

To investigate the phase transition in the LP state and the
evolution from the CAF state to the LP state, we need more
data from multiple samples.
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