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Dipolar optical plasmon in thin-film Weyl semimetals
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In a slab geometry with large surface-to-bulk ratio, topological surface states such as Fermi arcs for Weyl or
Dirac semimetals may dominate their low-energy properties. We investigate the collective charge oscillations
in such systems, finding striking differences between Weyl and conventional electronic systems. Our results,
obtained analytically and verified numerically, predict that time-reversal symmetry-broken Weyl semimetal thin
films will host a single ω ∝ √

q plasmon mode that results from collective, antisymmetric charge oscillations
between the two surfaces, in stark contrast to conventional 2D bilayers as well as Dirac semimetals with Fermi
arcs, which support antisymmetric acoustic modes along with a symmetric optical mode. These modes lie in the
gap of the particle-hole continuum and are thus spectroscopically observable and potentially useful in plasmonic
applications.
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I. INTRODUCTION

Weyl semimetals (WSM’s) are three-dimensional topo-
logical systems characterized by an even number of band-
touching points (Weyl nodes) such that, in the vicinity of these
points, the electronic states obey Weyl equations and as a
result are chiral [1]. The unique topology of these systems fol-
lows from the fact that the Weyl nodes act as sources or sinks
of Berry flux. A remarkable consequence of this becomes
apparent in slab geometries of these materials with surfaces
oriented so that the projections of different Weyl points onto
the surfaces do not lie on one another. In these cases one finds
topological “Fermi arcs” (FAs) in which the two-dimensional
Fermi surface of the slab is fractured into disjointed pieces
that reside on different surfaces. Each arc connects a pair of
Weyl nodes of opposite helicity. The states of these FAs inherit
the chirality of the bulk nodes with velocities that disperse in
a quasi-one-dimensional manner. Examples of such materials
include TaAs [2], NbAs [3], and more recently Co3Sn2S2,
for which FA modes have been identified in ARPES and
quasiparticle interference experiments [4,5].

Closely related to WSM’s are Dirac semimetals (DSMs).
The electronic structures of these systems host Dirac nodes,
which may be understood as a limit in which two Weyl nodes
of opposite chirality come together at the same momentum
point. FA states can also be present in a DSM slab with Dirac
node pairs separated in the two-dimensional momentum space
of the slab. In such materials a surface hosts an even number
of gapless modes that carry current in opposite directions,
with backscattering prohibited when a symmetry protecting
them is not violated. A possible example of such system are
the Cd2As3 family of materials [6], which support remarkable
transport properties [7–9].

When interactions among electrons are considered, these
materials should typically host collective modes, including
bulk [10–13] as well as surface plasmons mediated by the
FAs [14–23]. In contrast to thick systems, where electrons on
different surfaces have negligible influence on one another,
geometries of these systems with large surface-to-volume ra-
tios, specifically slabs, offer a platform in which the surface
states are influential and induce novel properties. For a thin-
film geometry, which is the primary focus of our work, FA
states of opposite surfaces can no longer be treated individu-
ally and the low-energy Fermi surface, in the two dimension,
interpolates states predominantly supported by the two sur-
faces and the bulk [24]. This intertwining of surface and bulk
states raises questions on the nature of the collective modes
that these materials can support, how they differ between
Dirac and the WSMs, and how both differ from analogous
conventional conducting systems. A natural paradigm for the
last of these is a doped bilayer semiconductor, as might be
realized in some heterostructures or double quantum wells.
These systems have been known for some time to support two
collective modes analogous to plasmons [25–36]. Generally,
at long wavelengths, one of these corresponds to charge oscil-
lates in the two layers which are in phase and disperses as

√
q

(with q the momentum of the excitation). The other involves
antisymmetric charge oscillations and disperses linearly in q,
i.e., acoustically. The nonanalytic behavior of the symmet-
ric plasmon mode dispersion is a direct consequence of the
long-range nature of the Coulomb interaction. The acoustic
nature of the second mode arises because the long-range part
of the interactions is screened by the out-of-phase nature of
the density oscillations.

As we show below, plasmons in WSM and DSM slabs have
some properties in common with the bilayer semiconductor
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paradigm but also display some remarkable differences. Most
dramatically, we find that, for the case of magnetic WSMs,
the WSM slab hosts a single low-energy plasmon mode dis-
persing as

√
q, but that, at long wavelengths, the density

oscillations are antisymmetric across surfaces as is the case for
the acoustic mode of a doped bilayer semiconductor. This be-
havior turns out to be a consequence of the opposite helicities
of single-particle modes on the two surfaces and so is a direct
consequence of the unusual topological nature of the WSM.
Our prediction offers a new avenue for demonstrating this he-
licity beyond direct surface transport measurements [37–39].
In terms of material candidates, magnetic semimetal-
lic phases in spinel compounds (such as VMg2O4) [40]
can serve as likely systems where such physics can be
explored.

In recent years, detection of plasmons and their dispersions
in two-dimensional systems have become possible using scan-
ning near-field optical microscopy [41,42]. Such techniques
use nanoprobes to produce and detect the electric field of
plasmons and deduce the plasmon dispersion by observing the
wavelength of interference patterns as a function of frequency.
These techniques could in principle be applied to thin-film
geometries of WSMs and DSMs and in the former case would
only be visible for frequencies above the scale at which the
charge antisymmetry becomes sufficiently imperfect that elec-
tric fields can escape through the film surfaces and couple to
an external probe. For lower frequencies, the electric fields
would be confined within the thin film, making the system
a natural waveguide. This suggests energy transport by the
system may be particularly efficient in this low-frequency
range.

II. HEURISTIC EXPLANATION

Before presenting the results of our detailed analysis, we
explain qualitatively how the phenomena described above can
emerge in WSM and DSM thin films.

Below we consider a system with conducting states on
opposite surfaces of a slab separated by a dielectric bulk,
which we assume in this model to have no qualitative effect
on the collective modes. The resulting system is similar to
a pair of interacting two-dimensional systems, which, as de-
scribed above, typically supports a symmetric plasmon (∼√

q)
mode and an antisymmetric acoustic (∼q) mode [25–28]. At
long wavelengths the collective modes may be well described
in the random-phase approximation (RPA). In the case of
plasmons these are self-sustained oscillations in which the
electron densities respond in the same fashion as noninter-
acting electrons to an effective potential, generated by the
Coulomb interaction, which is induced by the density os-
cillation. We write these (noninteracting) response functions
as χ1(q, ω), χ2(q, ω) for the top and the bottom surfaces,
respectively, where q = (qx, qy ) is the surface momentum.
The bare intra- and interlayer Coulomb interactions are given
by Vi j (q, ω) with i, j = 1, 2. Explicitly, V11 = V22 = αc/q and
V12 = V21 = αce−qL/q, where L is the separation between the
layers and αc = 2πe2/ε, where ε is the effective dielectric
constant of the bulk, separating surfaces. At the RPA level,
if the interacting response functions are written as χ̃i j (q, ω),

FIG. 1. The self-consistent equations for the interacting response
functions χ̃ab (filled), where a, b, λ = ±1 are layer indices, written
at RPA approximation with single curly lines being the interac-
tion Vaλ and the unfilled loop being the noninteracting response
function χabδab. The self-consistent equation reads χ̃ab = χaδab +∑

λ χaVaλχ̃λb.

then (see Fig. 1)(
1 − V11χ1 −V12χ1

−V21χ2 1 − V22χ2

)(
χ̃11

χ̃21

)
=

(
χ1

0

)
, (1)

where for brevity, we have dropped the q, ω indices. The ma-
trix on the left is the dielectric matrix ε(q, ω). An equivalent
relation can be written for χ̃22 and χ̃12. The conditions for
self-sustaining collective modes are found from Det ε(q, ω) =
0, which gives [29]

1 − V (q)(χ1(q, ω) + χ2(q, ω))

+ V (q)2(1 − e−2qL )χ1(q, ω)χ2(q, ω) = 0. (2)

In the limit when L � q, this equation reduces to

(1 − V (q)χ1(q, ω))(1 − V (q)χ2(q, ω)) = 0, (3)

which is the condition for decoupled collective modes for
individual surfaces.

To analyze the nature of the charge oscillation for a plas-
monic mode, it is useful to expand the χi’s as a function of
q/ω in the limit when ω > vF q,

χi = μi
q

ω
+ νi

q2

ω2
+ · · ·, (4)

where μi and νi are constants to be derived later.
Furthermore, in the limit of small q, when qL � 1, one can

write Eq. (2) as

1 − V (χ1 + χ2) + 2qL V 2χ1χ2 ≈ 0

⇒ 1 −
(a1

ω
+ a2q

ω2
+ · · ·

)
+

(
b1q

ω2
+ · · ·

)
≈ 0. (5)

Here a1 = αc(μ1 + μ2), a2 = αc(ν1 + ν2), and b1 =
2Lα2

c μ1μ2.
Now, if a1 is nonzero then the lowest-order term in the

above equation is of O(q0), and the plasmon in the limit
ω � vF q has a gap of order � = a1 in the limit q → 0. On
the other hand, if a1 = 0 but a2 
= 0, which as we explain
below is the case of interest here, then to lowest order the
equation becomes

1 − a2q

ω2
= 0 ⇒ ω =

√
a2 − b1

√
q. (6)

This is the
√

q (optical) plasmon mode. When ω and q sat-
isfy this dispersion relation the determinant of the dielectric
function vanishes.

1. Polarizability of the Fermi arcs

In the cases of WSMs and DSMs these surface states may
be modeled as a collection of helical states dispersing linearly

075426-2



DIPOLAR OPTICAL PLASMON IN THIN-FILM WEYL … PHYSICAL REVIEW B 105, 075426 (2022)

in the x̂ direction,

E (±)
s (k) = (±)sh̄vF kx; −k0 < ky < k0. (7)

Here s is a (pseudo)spin index, with s = 1 on one surface
and s = −1 on the other for Weyl FAs, and vF is the Fermi
velocity. The index s may be ±1 on each surface for Dirac
FAs, and the overall ± sign in Eq. (7) applies only to the Dirac
case and indicates which surface the arcs lie on. For both the
Weyl and the Dirac cases the FAs are taken for simplicity to
lie on straight lines between momenta ky = ±k0.

In the limit of small q, for a given spin-sector s = 1, for the
top surface,

χ1,s=1(q, ω) =
∫

d2k
4π2

nF (Ek) − nF (Ek+q)

h̄ω − h̄vF qx

= −
∫

d2k
4π2

∂nF (Ek)

∂Ek
q.

∂Ek

∂k
1

h̄ω − h̄vF qx

= k0

2π2

qx

h̄ω − h̄vF qx
. (8)

We write ω = vF kF ω̄, qx = kF q̄x, and k0 = kF k̄0 so that ω̄, q̄x,
and k̄0 become dimensionless variables. Then Eq. (8) may be
written in the form

χ1,s=1(q, ω) ≡ χWSM
1 (q, ω) = kF

2π2h̄vF

k̄0q̄x

ω̄ − q̄x

= βq̄x

ω̄ − q̄x
, (9)

where β = kF k̄0
2π2 h̄vF

. Similarly,

χ1,s=−1(q, ω) ≡ χWSM
2 (q, ω) = − βq̄x

ω̄ + q̄x
. (10)

Note in the limit of small q, χW SM
1 = −χW SM

2 , a direct re-
flection of the opposite helicities of the two surface modes.
This property plays an important role in the WSM collective
modes. The noninteracting polarizabilities for the top and
bottom surfaces of a DSM are the same as one another and
are given by

χDSM
1 (q, ω) = χDSM

2 (q, ω) = β

(
q̄x

ω̄ − q̄x
− q̄x

ω̄ + q̄x

)

= 2βq̄2
x

ω̄2 − q̄2
x

. (11)

Expanding for small q̄/ω̄, similar to Eq. (4), one finds μ1 =
−μ2 = β cos θ , ν1 = ν2 = β cos2 θ for the Weyl FA. For the
Dirac FA, μi = 0 and ν1 = ν2 = 2β cos2 θ . (In these expres-
sions θ = cos−1 qx

q .)

2. Single-surface plasmon modes

For a single surface with Dirac or Weyl FA, the dispersions
of the plasmon modes can be found by solving

1 − V (q)χ (q, ω) = 0. (12)

For the Dirac FA,the equation reduces to

ω̄2 − q̄2 cos2 θ − 2ᾱcβq̄ cos2 θ = 0,

where ᾱc = αc/kF . When q̄ � ω̄, this results in a single plas-
mon mode with dispersion

ω = vF

√
2αcβ cos θ

√
q. (13)

For the Weyl FA, the same equation reduces to

ω̄ − sq̄ cos θ − ᾱcβ cos θ = 0,

resulting in a gapped, chiral plasmon mode

ω = vF αβ cos θ + svF cos θq. (14)

As such, the chirality of the plasmon mode is the result of the
helicity of the FA states.

3. Two-surface plasmon modes

For the two surfaces of the slab geometry, we substitute
the noninteracting response functions of the two surfaces in
Eq. (2) for the collective modes. For the Dirac system, as
χDSM

1 = χDSM
2 = χDSM, the equation reduces to

1 − V (q)χDSM(q, ω) = ±e−qLχDSM(q, ω). (15)

For the (+) on the right-hand side, for qL � 1, this results in
the dispersion

ω̄2 − cos2 θ q̄2 − 4ᾱcβ cos2 θ q̄ = 0. (16)

For the (−) sign, for qL � 1, we obtain the dispersion

ω̄2 − cos2 θ q̄2 − 2ᾱcβL̄ cos2 θ q̄2 = 0, (17)

where L̄ = LkF . Keeping smallest orders in q̄, thus we get two
plasmon modes with dispersions

ω
(1)
D = vF

√
1 + 2αcβL cos θ q, ω

(2)
D = vF

√
4αcβ cos θ

√
q.

(18)

The strong anisotropies in these expressions reflect those of
the DSM FAs but beyond this are similar to two-dimensional
semiconductor bilayers in hosting a symmetric

√
q mode and

an antisymmetric acoustic mode. By contrast, for the WSM,
in the limit of qL � 1, the equation for collective mode
reduces to

ω̄2 − q̄2 cos2 θ ≈ 2ᾱcβ(1 + ᾱcβL̄) cos2 θ q̄. (19)

In the lowest order in q̄, we obtain the plasmon dispersion (in
terms of dimension full variables)

ωW = vF

√
2αcβ

√
1 + αcβL cos θ

√
q. (20)

Notice that in either case the plasmon dispersions become
steeper with increasing L, k0 and become softer with increas-
ing θ from 0o. We have verified these behaviors numerically.

4. Charge oscillation for the
√

q mode

Remarkably, the density oscillations on the two surfaces
turn out to be antisymmetric across the surfaces. The effect is
a direct result of the single-particle surface mode helicities and
in this way reflects the unusual topology of the WSM system.
To see this, the net charge fluctuations on the two surfaces
δρi(q, ω) (i = 1, 2) are written in terms of the response func-
tions in the presence of external potentials φext,i on the ith
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surface as(
δρ1

δρ2

)
=

(
χ̃11 χ̃12

χ̃21 χ̃22

)(
φext,1

φext,2

)
= ε−1

(
χ1φext,1

χ2φext,2

)

⇒ ε

(
δρ1

δρ2

)
=

(
χ1φext,1

χ2φext,2

)
. (21)

For self-sustained charge oscillations, (δρ1, δρ2) is the eigen-
vector of the ε matrix with zero eigenvalue. This implies

δρ1

δρ2
= χ1V12

1 − V11χ1
. (22)

For the WSM, μi 
= 0, so that for small q and for the ω ∝√
q mode, χ1 ∝ √

q whereas V11,V12 ∝ 1/q. This implies

δρ1

δρ2

∣∣∣∣
WSM

≈ −V12

V11
≈ −1, (23)

resulting in antisymmetric oscillation. We note that this anti-
symmetric nature also holds for the eigenvector of the ε matrix
when ω and q satisfy the plasmon mode dispersion relation.

For the case of a DSM (as well as for a normal metal), for
small q and for the ω ∝ √

q mode, χi ∝ q. In this case, the
resulting density amplitudes follow

δρ1

δρ2

∣∣∣∣
Dirac

≈ ν1

ν2
. (24)

As ν1 = ν2, this implies a symmetric charge oscillation.
For the ω ∝ q mode, a similar argument yields δρ1/δρ2 ≈
−V12/V11, i.e., an antisymmetric charge-oscillation mode.

This result is in stark contrast to what is found in the DSM
and in conventional semiconductor bilayers. Because of the
antisymmetry, electric fields associated with the WSM plas-
mon mode will tend to be confined within the interior of the
WSM slab. This suggests that radiative losses by such plas-
mons will be limited so that energy transport by them through
the slab will be long-lived relative to comparable DSMs and
bilayer semiconductor systems. In Appendix A, we consider
the case of multiple FAs which further reveal the condition
for the existence of such

√
q modes. If we assume straight

FAs with the ith FA on the top surface dispersing along the n̂i

direction in the Brillouin-zone, each having the same length,
then the condition for the system to support a confined plas-
mon mode is

∑
i cos θi 
= 0, where cos θi = n̂i · �q/q. This can

occur in systems with broke time-reversal symmetry.
The simple heuristic model presented here leaves out a

number of properties that are relevant to more realistic mod-
els of these systems. In particular, bulk states, which host
a particle-hole continuum of excitations, may dampen the
plasmon modes. This may occur through interactions between
the surface and the bulk electrons as well as through their
direct coupling at the single-particle state level. Moreover,
the surface states may themselves hybridize for a thin enough
slab. By a numerical analysis of a more detailed model, we
now show that these modes indeed persist in spite of these
effects.

III. COLLECTIVE MODES IN A TIGHT-BINDING MODEL

Our quantitative analysis employs a multiband band model
of a semimetal with Weyl points which is block-diagonal in

FIG. 2. Low-energy bands of the WSM slab. The n = ±1 bands
contain all the FAs as well as bulk states. A Fermi surface at low
energy is marked with states at the dotted side and is supported by
one surface and the states at the dashed-dotted side is supported by
the other surface, whereas the states at the solid sides have support
dominantly in the bulk

2 × 2 blocks, each of which contains a pair of Weyl nodes.
The model generalizes to n pairs of Weyl nodes for which
the Hamiltonian consists of n blocks of two band systems.
The basic Hamiltonian block for the semimetal may be written
as [24,43]

Hη = (σyqx − σxqz ) + σzMη(ky), (25)

where η maybe +1 or −1. In Eq. (25) σ are Pauli matrices
acting on spin amplitudes, and the mass is given by Mη(ky) =
η (m − cos(ky)). We have taken the lattice-spacing a to be
unity and have scaled the Hamiltonian by h̄vF /a, with vF be-
ing the Fermi velocity near the nodes. The momenta are scaled
by 1/a, making all the variables unitless. The value of m
determines whether the spectrum is gapped; for 0 < m < 1, it
contains two Weyl nodes and for either choice of η, these Weyl
nodes situate at k = (0,±k0, 0) where 2k0 = 2 cos−1(m) is
the momentum separation between them. For a given η (say,
η = 1), the Hamiltonian Eq. (25) breaks time-reversal sym-
metry. This serves as the simplest model of a WSM. If one
retains one block each of the form Hη=+ and Hη=−, which
are time-reversal partners, together they serve as a four-band
model for a DSM.

For a slab geometry with a finite thickness L along the z
direction, the electronic states from these Hamiltonians can
be obtained by imposing appropriate boundary conditions on
the surfaces [24] (for details, see Appendix B). The resulting
energy bands are indexed by n = ±1,±2 · · · (± for positive
and negative energy bands), for each η sector. We focus on the
case when the chemical potential is positive and the system is
near charge neutrality, in which case for the low-energy col-
lective excitations, one may neglect bands other than n = ±1.
For such a choice of Fermi energy, the Fermi surface contains
the FA states of both surfaces as well as bulk states, as shown
in Fig. 2.
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FIG. 3. Particle-hole continuum (lighter area) and the sharp plas-
monic modes (marked) as a function of q along the direction of
tan−1(qy/qx ) = 600. The left and the right plots are for the WSM
and DSM thin films, respectively. For numerical results we choose
L = 25, μ = 0.04, m = 0.8 and we use 51 divisions along z in find-
ing the B matrix (see Appendix C for details).

To proceed we expand the second-quantized field operators
in eigenstates of the Hamiltonian, φη,n,k(z) as

�(r, z) = 1√
LxLy

∑
k

exp(ik · r)
∑
η,n

φη,n,k(z)cη,n,k,

where cη,n,k annihilates an electron from the nth band in state
η, k with η = ±1 (η = 1) for a DSM (WSM). To find the
plasmon modes we consider the density response function
(see Appendix C)

χ (q, z, z′, ω) = −i
∫

dtdreiq·r+iωt 〈[ρ(r, z, t ), ρ(0, z′, 0)]〉,

with ρ(r, z, t ) = �†(r, z, t )�(r, z, t ), the time-dependent
density operator in the Heisenberg picture. The poles of
χ (q, z, z′, ω) denote the values of ω and q where there are
collective excitations. In the time-dependent Hartree approxi-
mation, this response function obeys the equation

χ (q, z, z′, ω) = χ0(q, z, z′, ω)

+
∫ L

0
dz2B(q, z, z2, ω)χ (q, z2, z′, ω), (26)

where

B(q, z, z2, ω) =
∫ L

0
dz1Vq(|z1 − z2|)χ0(q, z, z1, ω) (27)

contains the Coulomb interaction Vq(|z|) = αe−q|z|
q , written in

terms of α which we now set to 1 (for a generic material, α is
given by α ≈ c

vF
× 1

137 , with vF being the Fermi velocity). In
these expressions χ0 is the noninteracting response function.
To solve these equations, the integral of the coordinate z1 is
performed analytically, while the integral over the coordinate
z2 is approximated by a discrete sum with �z the interval be-
tween grid points. The poles of the response function can then
be found by solving det[I − �zB(q, ω)] = 0, where B(q, ω)
is a matrix whose components are given by B(q, ω, z, z′).

IV. NUMERICAL RESULTS

Figure 3 illustrates typical results from our numerical
model. At low frequencies and wave vectors, sharp modes

FIG. 4. At the condition of the plasmonic mode, one of the
eigenvalues of the matrix I − �zB(q, ω) vanishes. We plot the corre-
sponding (normalized) eigenvector ψ (z), showing the ω ∝ √

q mode
in the Weyl (right most) is indeed an antisymmetric mode, which is
contrary to the DSM. Parameters are the same as in Fig. 3.

are visible which are consistent with expectations from the
heuristic model discussed above. Specifically, for the WSM,
a single plasmon mode dispersing as

√
q is apparent, whereas

for the DSM there is in addition an acoustic mode. An im-
portant consideration in obtaining these modes is whether
the density response associated with them is truly sharp, as
required for a self-sustaining mode. This can only occur if
the particle-hole excitations associated with poles of χ0, the
noninteracting response, are absent for the values of q and ω

at which the plasmon modes are present. It is here that the
bulk states, absent in our heuristic model, have an impact.

The continuum of noninteracting particle-hole excitations
in this system consists of two contributions: Interband and
intraband processes. Intraband particle-hole excitations exist
below any frequency ω = vF q, where vF is the Fermi velocity.
Interband excitations have a gap of 2μ at q = 0, where μ

is the chemical potential which drops as q increases. It is
apparent in Fig. 3 that they leave open a window of wave
vectors and frequencies where the plasmon modes enter and
remain sharp. Two comments are worth noting about these
particle-hole excitations: (i) They involve both the noninter-
acting FA states and the bulk states of the system, and (ii)
the relevant particle-hole excitations involve only the bands
closest to zero energy; higher energy bands are also present
but only contribute further particle-hole excitations that leave
open the region where the plasmon modes are sharp. We do
not include these explicitly in our calculation as they have no
qualitative impact on the results.

Our numerical model allows one to construct the charge
fluctuations associated with the collective modes [44] using
the eigenvectors of the density response matrix χ (q, z, z′, ω).
Results from such calculations are illustrated in Fig. 4 and
confirm the surprising difference between the WSM and the
DSM systems: Charge fluctuations that are antisymmetric
across surfaces appear in a

√
q mode for the WSM, whereas

in the DSM—as in conventional semiconductor bilayers—this
behavior is found in an acoustic mode. Note that for similar
parameter values, the antisymmetric mode of the WSM is con-
siderably higher in frequency than the acoustic antisymmetric
mode for the DSM, making the former more robust: The
proximity of the acoustic mode to the particle-hole continuum
edge makes it more susceptible to the broadening effects of
disorder which both relax momentum conservation and smear
out the sharp edge of the continuum.
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Another interesting aspect of the WSM plasmon modes is
the evolution of their support on the surfaces as q increases.
The heuristic model discussed above suggests that their an-
tisymmetry is eventually lost. This is indeed the case, but
rather than crossover into more standard symmetric behavior,
we find that the modes become increasingly localized on one
surface or the other depending on the sign of q in the direction
that the FAs disperse. Thus the plasmons become similar to
what one would expect for excitations of a single FA. The
crossover between this latter behavior and the antisymmet-
ric fluctuations occurs around q ∼ 1/L where one expects
interactions between surfaces to become important (also see
Appendix D).

V. DISCUSSION

In this study, we demonstrated that long-wavelength plas-
mons in a thin-film WSM display the long-range nature of the
Coulomb interaction by dispersing as

√
q, even as the asso-

ciated charge oscillations are antisymmetric across surfaces.
This behavior contrasts with that of DSMs and conventional
conducting bilayers, where such modes are symmetric. This
phenomenon is a direct result of the opposing helicities of FA
states on different surfaces. The possibility of observing these
modes is enhanced by the diverging slope as q → 0, which
keeps them well separated from the particle-hole continuum
and the degrading effects this can have due to disorder ef-
fects. Moreover, the dipole nature of the charge fluctuations
suppresses fringing fields outside the thin film which in prac-
tice can broaden these sharp modes and limit their potential
utility in plasmonic devices [45]. Interestingly, a dipole plas-
mon mode has very recently been observed [46], albeit in a
very different system, with very different underlying physics
leading to the dipole nature of the mode. Nevertheless, the
line-narrowing in the plasmon response due to suppression of
fringing fields is indeed observed.

The finite-size gap of the bulk states plays a crucial role
in keeping the dipolar nature of the

√
q mode intact which

in turn provides a limit to the temperature scale. Assuming a
few-layers of thickness for the slab, if L ≈ 100 Ao and the
Fermi velocity to be of the order 105 m/s, the “bulk-gap”
within which one sets the chemical potential is of the order

h̄vF
1

L
∼ h̄ × 105

10−8
s−1 = h̄ × 1013s−1 ∼ 5 meV, (28)

i.e., tens of kelvin. The effects of the bulk modes remote from
the Fermi surface may be ignored well below this temperature
scale.

In currently available WSMs, surfaces typically support
several FAs. Interesting realizations include spinel com-
pounds (such as VMg2O4) [40] which have been proposed to
support two noncolinear Fermi arcs on the (110) surface. We
expect thin films of such systems to support the antisymmetric
plasmon modes we have studied here, although the modes are
likely to be much less anisotropic with respect to wave vector.
Our studies suggest that thin films of this and other WSM
materials are potential platforms for exotic low-dimensional
plasmons with behaviors that naturally emerge from their
topological nature, making them unusually robust and poten-
tially useful in plasmonic systems.
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APPENDIX A: GENERALIZATION
TO MULTIPLE FA SYSTEMS

Here we consider the case of multiple FAs, which are still
assumed to be straight lines. Let us consider the ith FA, on the
top surface, to disperse along the n̂i direction in the Brillouin
zone. Further, we assume the length of the ith arc to be k0i

and the Fermi velocity to be vFi. Then, for the top surface, the
polarization function is given by

χ1(�q, ω) =
∑

i

k0i

2π2

q cos θi

h̄ω− h̄vFiq cos θi
≡

∑
i

q(βivFi cos θi )

ω− qvFi cos θi
,

(A1)

where βi = (1/2π2)k0i/h̄vFi and cos θi = n̂i · �q/q. In the limit
q � ω/vFi, for all i, we can write,

χ1(�q, ω) ≈ q

ω

∑
i

(βivFi cos θi )

+ q2

ω2

∑
i

(
βiv

2
Fi cos2 θi

) + · · ·. (A2)

For the bottom surface, we write,

χ2(�q, ω) ≈ − q

ω

∑
i

(βivFi cos θi )

+ q2

ω2

∑
i

(
βiv

2
Fi cos2 θi

) + · · ·. (A3)

Following the notation of Eq. (4), we can identify

μ1 = −μ2 =
∑

i

βivFi cos θi

ν1 = ν2 =
∑

i

βiv
2
Fi cos2 θi. (A4)

Then, recalling a1 = αc(μ1 + μ2), a2 = αc(ν1 + ν2), and
b1 = 2Lα2

c μ1μ2, for small q, we have a single optical mode

ω =
√

a2 − b1
√

q. (A5)

As long as μ1, μ2 
= 0, i.e.,
∑

i βivFi cos θi 
= 0, for small q
and for the ω ∝ √

q mode, χ1 ∝ √
q whereas V11,V12 ∝ 1/q,
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(a)

(b)

FIG. 5. We consider four FAs whose orientations are shown in
(a). The energy dispersion of the FAs are, respectively, E1 = h̄vF kx ,
E2 = h̄vF [(kx − d2x ) cos(θ2 + θq ) + (ky − d2y ) sin(θ2 + θq )],
E3 = h̄vF [(kx − d3x ) cos(θ3 − θq ) − (ky − d3y ) sin(θ3 − θq )],
E4 = h̄vF [(kx − d4x ) cos(θ4 + θq ) + (ky − d4y ) sin(θ4 + θq )].
θq = cos−1(k̂x.q̂) and �d2, �d3, �d4 are the middle point of the FAs 2,
3, 4 with respect to the middle point of the FA 1. The blue arrow
lines represent the dispersion direction of each FAs. (b) Plasmon
dispersion for four Fermi arcs on each layer with θ1 = 45o = θq,
θ2 = 75o, θ3 = 165o, θ4 = 55o, and αc = 0.5. The length of FAs
are, respectively, k0,1 = 1.0, k0,2 = 0.8, k0,3 = 0.6, and k0,4 = 0.7.
There is a single plasmon mode with dispersion ω ∝ √

q and
other plasmon mode disperse as ω ∝ q. The inset in (b) shows the
variation of ψ1 and ψ2 as a function of q for ω ∝ √

q mode where

φ = (ψ1
ψ2

) is the eigenvector of ε matrix with zero eigenvalue.

and the discussion of the Sec. II 4 can be followed. This results
in an antisymmetric oscillation for the

√
q mode.

As an example we show numerical results for four FAs on
each surface. The FAs are oriented on surface 1 as shown in
Fig. 5(a). The FAs on surface 2 have opposite helicities of
those of 1 but are otherwise the same. The plasmon modes are
found by solving Eq. (3) in the (q, ω) plane. Figure 5(b) shows
that there is a single plasmon mode with a

√
q dispersion. The

antisymmetric charge oscillation associated with this mode at

small q is demonstrated by examining the eigenvector of the
dielectric matrix with zero eigenvalue, which is shown in the
inset of Fig. 5(b).

APPENDIX B: EIGENSTATES IN SLAB GEOMETRY

The low-energy Hamiltonian we consider in the main text,
which contains two Weyl nodes labeled by η = ±1, is

Hη = (σyqx − σxqz ) + σzMη(ky), (B1)

with Mη(ky) = η(m − cos ky). The two Weyl nodes are at
k = (0,±k0, 0) with k0 = cos−1(m/λ). For the η = +1 block,
M+ < 0 between ky ∈ (−k0, k0). For a surface perpendicular
to the z direction, along the ky axis these two points are con-
nected by a FA on the surface Brillouin zone. For the η = −1
block, M− > 0 between ky ∈ (−k0, k0), and again there is a
FA connecting these points on the ky axis for the same surface.
The WSM/DSM slab is confined between z = 0 and z = L.

Following Ref. [20], we adopt an infinite mass boundary
condition by taking the Hamiltonian of the vacuum to be the
same as Eq. (B1), except for the mass term, whose form is
taken to be Mvac

η = ηm0, with m0 → ∞. This construction is
required to ensure that for ky between the Weyl nodes, the
effective mass term (Mη(ky)) for the WSM and the vacuum
(Mvac

η ) are oppositely signed. By matching the wave function
at the boundary one arrives at the transcendental equation

tanh
(
L
√

M2
η − ξ

)
L
√

M2
η − ξ

= − 1

LηMη

. (B2)

Solutions of this equation, ξn, which we label by the band
index n, yields the band energies En = sign(n)

√
ξn + q2

x .
For a given solution of energy E , for the block η, defin-

ing K = Mη(ky) − E , f = qx − iqz, g = qx + iqz, one finds
the corresponding wave functions

φη,k(z) = 1√
N

{
(K+ ηg)

(
i f
K

)
eiqzz+ (K+ η f )

(−ig
−K

)
e−iqzz

}
.

(B3)

For real qz = √
χ − Mη(ky)2 (when χ > m2, f = g∗), the nor-

malization factor has the form

N = 2|K + η f |2(K2 + | f |2)L

+ Im

[
(K + η f )2(K2 + g2)

(
e−2iLqz − 1

qz

)]
. (B4)

For purely imaginary qz = iκ (when χ < m2), f = qx + κ ,
g = qx − κ , the normalization is

N = −2(K + η f )(K + ηg)(K2 + gf )L

+ [(K + ηg)2( f 2 + K2)e−κL

+ (K + η f )2(g2 + K2)eκL]
sinh(κL)

κ
. (B5)

These are the full solutions of the low-energy states for the
semimetal slab.
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APPENDIX C: DETAILS OF THE DENSITY-DENSITY RESPONSE FUNCTION

In terms of the wave functions, we write the charge-density operator ρ(r, z) = �(r, z)†�(r, z) where r = (x, y) and �(r, z) is
the field operator

�(r, z) = 1√
LxLy

∑
k

exp(ir.k)
∑
η,m

φη,m,k(z)cη,m,k,

where the summation over the band indices m include positive as well as negative bands; cη,m,k is the electronic annihilation
operator and the η summation is absent in the case of WSM. The φη,m,k are eigenstates of the noninteracting Hamiltonian, i.e.,
H0(k)φη,m,k = εη,m,kφη,m,k. The interaction Hamiltonian is then

Hint = 1

2

∫
dR1dR2Vc(|R1 − R2|) : ρ(R1)ρ(R2) :,

where R = (r, z). Using the Fourier transformed form V (|R1 − R2|) = (1/4π2)
∫

d2q1Vq1
(|z1 − z2|), where Vq(|z1 − z2|) =

2πα exp(−q|z1 − z2|)/q, Hint can be written as

Hint = 1

8π2

∫ L

0

∫ L

0
dz1dz2

∫
d2q1Vq1

(|z1 − z2|)

×
∑

η1,η2,{li},k1,k2

φ
†
η1,l1,k1

(z1) φη1,l4,k1−q1
(z1) φ

†
η2,l2,k2

(z2) φη2,l3,k2+q1
(z2)c†

η1,l1,k1
c†
η2,l2,k2

cη2,l3,k2+q1
cη1,l4,k1−q1

.

The time-dependent density-density response function is defined as

χ (q, z, z′, t ) = −iθ (t )
∫

dreiq·r〈[ρ(r, z, t ), ρ(0, z′, 0)]〉 ≡ 1

LxLy

∑
η,η′,k,k′,m,m′,s,s′

χη,η′,m,m′,s,s′ (k, k′, q, z, z′, t ), (C1)

where

χη,η′,m,m′,s,s′ (k, k′, q, z, z′, t ) = −iθ (t ) φ
†
η,m,k(z) φη,m′,k+q(z) φ

†
η′,s,k′ (z′) φη′,s′,k′−q(z′)

× 〈[exp(iHt ) c†
η,m,k′ cη,m′,k+q exp(−iHt ), c†

η′,s,k′ cη′,s′,k′−q ]〉. (C2)

We take time derivative of Eq. (C2) to arrive at

∂t χη,η′,m,m′,s,s′ (k, k′, q, z, z′, t ) = −iδ(t ) φ
†
η,m,k(z) φη,m′,k+q(z) φ

†
η′,s,k′ (z′) φη′,s′,k′−q(z′)〈[ c†

η,m,k′ cη,m′,k+q, c†
η′,s,k′ cη′,s′,k′−q ]〉

− iθ (t ) φ
†
η,m,k(z) φη,m′,k+q(z) φ

†
η′,s,k′ (z′) φη′,s′,k′−q(z′)

× 〈i[exp(iHt ) [H, c†
η,m,k′ cη,m′,k+q] exp(−iHt ), c†

η′,s,k′ cη′,s′,k′−q ]〉. (C3)

The commutators of the single-particle terms are easily evaluated, yielding

[c†
η,m,kcη,m′,k+q, c†

η′,s,k′cη′,s′,k′−q] = (nF (εη,m,k) − nF (εη,m′,k+q) )δη,η′δm,s′δm′,sδk+q,k′ , (C4)

[H0, c†
η,m,kcη,m′,k+q] = (εη,m,k − εη,m′,k+q)c†

η,m,kcη,m′,k+q. (C5)

For the interaction term we use the Hartree approximation, so that one makes the replacement

[Hint, c†
η,m,kcη,m′,k+q] → [nF (εη,m′,k+q) − nF (εη′,m,k )]

∫ L

0

∫ L

0
dz1dz2Vq1

(|z1 − z2|)φ†
η,m′,k+q(z1) φη,m,k(z1)

×
∑

η2,l2,l3,k2

φ
†
η2,l2,k2

(z2) φη2,l3,k2+q(z2) c†
η2,l2,k2

cη2,l3,k2+q. (C6)

Using Eqs. (C4)–(C6) in Eq. (C3) leads to the self-consistent equation

∂tχη,η′,m,m′,s,s′ (k, k′, q, z, z′, t ) = −iδ(t )Fη,m,m′ (k, q, z, z′) [ nF (εη,m,k) − nF (εη,m′,k+q) ] δη,η′ δm,s′ δm′,s δk+q,k′

+ i (εη,m,k − εη,m′,k+q)χη,η′,m,m′,s,s′ (k, k′, q, z, z′, t )

+ i[nF (εη,m′,k+q) − nF (εη,m,k)]
∫ L

0

∫ L

0
dz1dz2Vq1

(|z1 − z2|)Fη,m,m′ (k, q, z, z1)

×
∑

η2,l2,l3,k2

χη2,η′,l2,l3,s,s′ (k2, k′, q, z2, z′, t ), (C7)
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where

Fη,m,m′ (k, q, z, z′) = φ
†
η,m,k(z) φη,m′,k+q(z) φ

†
η,m′,k+q(z′) φη,m,k(z′). (C8)

Fourier transforming Eq. (C7) with respect to time, this equation may be recast as

−iω χη,η′,m,m′,s,s′ (k, k′, q, z, z′, ω) = −iFη,m,m′ (k, q, z, z′) [ nF (εη,m,k ) − nF (εη,m′,k+q) ] δη,η′ δm,s′ δm′,s δk+q,k′

+ i (εη,m,k − εη,m′,k+q)χη,η′,m,m′,s,s′ (k, k′, q, z, z′, t )

+ i[nF (εη,m′,k+q) − nF (εη,m,k)]
∫ L

0

∫ L

0
dz1dz2Vq1

(|z1 − z2|)Fη,m,m′ (k, q, z, z1)

×
∑

η2,l2,l3,k2

χη2,η′,l2,l3,s,s′ (k2, k′, q, z2, z′, ω). (C9)

Summing over the indices η, η′ m, m′, s, s′, k, k′, we obtain

χ (q, z, z′, ω) = 1

LxLy

∑
η,k,m,m′

nF (εη,m,k ) − nF (εη,m′,k+q)

ω + iη + εη,m,k − εη,m′,k+q

[
Fη,m,m′ (k, q, z, z′)

+
∫ L

0

∫ L

0
dz1dz2Vq(|z1 − z2|)Fη,m,m′ (k, q, z, z1)χ (q, z2, z′, ω)

]

= χ0(q, z, z′, ω) +
∫ L

0

∫ L

0
dz1dz2Vq(|z1 − z2|)χ0(q, z, z1, ω)χ (q, z2, z′, ω), (C10)

where the noninteracting response function has the form

χ0(q, z, z′, ω) = 1

LxLy

∑
η,k,m,m′

nF (εη,m,k ) − nF (εη,m′,k+q)

ω + iη + εη,m,k − εη,m′,k+q
Fη,m,m′ (k, q, z, z′). (C11)

The integration over z1 can be performed analytically in Eq. (C10), allowing it to be rewritten as

χ (q, z, z′, ω) = χ0(q, z, z′, ω) +
∫ L

0
dz2B(q, z, z2, ω)χ (q, z2, z′, ω), (C12)

with

B(q, z, z2, ω) =
∫ L

0
dz1Vq(|z1 − z2|)χ0(q, z, z1, ω). (C13)

We convert the integration over z2 in Eq. (C12) into a summation over N discrete z2 points, allowing us to arrive at

χ (q, zi, z j, ω) = χ0(q, zi, z j, ω) +
N∑

k=1

�zB(q, zi, zk, ω)χ (q, zk, z j, ω), (C14)

with �z = L/(N − 1) and the discretized depths zi have indices i = 1, · · · , N . Equation (C14) can alternatively be written in
matrix form,

χ (q, ω) = χ0(q, ω) + �zB(q, ω)χ (q, ω) ⇒ χ (q, ω) = (I − �zB(q, ω))−1χ0(q, ω). (C15)

The entire calculation is similar for Dirac and WSMs, except that there is no summation over η for the case of the Weyl system.
The condition for plasmon modes then reads det[I − �zB(q, ω)] = 0.

APPENDIX D: FURTHER PROPERTIES
OF THE PLASMON MODES

1. Variation with θ = cos−1qx/q

The results from the simple heuristic model, Eqs. (18) and
(20), predict that the plasmon disperses more slowly with
increasing θ . To test this we numerically computed the plas-
mon dispersions for a range of θ . The results are plotted in
Figs. 6(a) and 6(b), essentially verifying this expectation. Fur-
thermore, for a given value of q, the quantity Im(Tr(χ (q, ω)))
captures the collective mode density of states. Figures 6(c) and
6(d) illustrate how this density of states behaves in presence

of the sharp plasmon mode. Note that widths of the peaks
at the plasmon mode frequencies are due to an infinitesimal
imaginary part added to the frequency for the calculation of
the response function.

2. Localization of the plasmon mode

When the condition for a plasmon mode is met, one of
the eigenvalues of the matrix (I − �zB(q, ω)) vanishes. At
this value of q and ω, χ is fully dictated by the eigenvec-
tor corresponding to the vanishing eigenvalue. This can be
understood in the following way: The inverse of the matrix
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(a) (c) (d)

(g)(f)(e)

(b)

FIG. 6. (a), (b) The variation of the two plasmon dispersions, for the ω ∝ √
q and ω ∝ q modes, respectively, as a function of the angle

θ = cos−1 qx/q, for the case of the Dirac system [for the Weyl system the variation for the single plasmon mode is qualitatively similar to
(a)]. At θ = 90o we obtain a single mode for the Dirac system. (c), (d) Nature of the response function for (c) Dirac and (d) Weyl system.
Sharp collective modes appear for two values of ω for a given q in the case of the Dirac system and once for Weyl system. Broader modes with
Im χ0 
= 0 here represent the intraband particle-hole continuum. (e)–(g) We plot the eigenvector of the plasmon distribution, ψ (z) (see Sec. IV)
and indicate the mean value of z in this eigenvector 〈z〉 = ∑n

i=0 �zziψ (zi ), where i denotes the discretization of the z direction between 0 and
L in n parts with �z = L/n. For (c)–(g), parameters chosen are the same as in Fig. 2 with θ = 60o, except in (e)–(g), θ = 0o.

(I − �zB(q, ω)) can be written in the basis of eigenvectors in
the form

(I − �zB(q, ω))−1 =
∑

λ

|λ〉〈λ|
λ

. (D1)

Thus when one of the eigenvalue, say λ0, approaches 0, the
sum over eigenvalues is dominated by this contribution, so
that

χ ≈ |λ0〉〈λ0|
λ0

χ0. (D2)

(a) (c) (e) (g)

(h)

(f)(d)(b)

FIG. 7. (a), (b) Plasmon dispersions for few values of the thickness L; (c), (d) plasmon dispersions for few values of the distance between
the Weyl nodes, given by 2k0; and (e), (f) plasmon dispersions for two values of the chemical potential μ, both of which lie between the bands
n = 1 and n = 2. All other parameters, in each case, are the same as in Fig. 2. (g) Plasmon dispersion (blue line) within the particle-hole
continuum (marked by black line), for a chemical potential μ = 0.23, which lies within the n = 2 and n = 3 band. (h) The corresponding
behavior of the plasmon eigenvector, showing significant bulk presence.
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The real-space density associated with the relevant eigenvec-
tor as a function of z, ψ (z) = 〈z|η〉 indicates whether the
density oscillations of the mode are symmetric or antisymmet-
ric with respect to z, or somewhere between these behaviors.
We plot some representative densities as a function of z in
Figs. 6(e)–6(g). For small q, the modes have relatively equal
support on the two surfaces as well as substantial support in
the bulk. For larger q, the modes are more localized near one
of the surfaces.

3. Variation with other parameters of the model

In Fig. 7 we show how the plasmon dispersions vary as
a function of the relevant scales of the problem, such as
the thickness of the film (L), the length of the FA (given
by 2k0) in the momentum space, and the chemical poten-
tial μ. In all these calculations we assumed the chemical
potential is below the n = 2 band so that there is a gap
in the particle-hole continuum for small q. With increas-
ing thickness L, if the chemical potential is still below the
n = 2 band, we observe that the dispersions of the plasmon
modes become steeper. This can be attributed to more local-
ized surface states with larger thickness. In the case of the
WSM, when L → ∞, one expects to recover the results for a

single FA where the plasmon mode is gapped, as predicted in
Eq. (14).

An increase in the distance between the Weyl nodes (given
by 2k0 = 2 cos−1 m) while keeping other parameters the same
increases the localization of the FA states on the surfaces, as
well as increases the surface density of states. This results
in steeper dispersions for the plasmon modes, which is also
evident from Eqs. (18) and (20).

On the other hand, increasing the chemical potential μ,
keeping other parameters the same, increases the size of the
Fermi-surface (see Fig. 1), as long as the chemical potential
remains smaller than the next band. This allows a longer FA.
As it is clear from Eq. (18), a longer FA is predicted to result
in a steepened plasmon dispersion (since their scale enters
through the parameter β), which is also numerically verified
as shown in Figs. 7(e) and 7(f).

When the chemical potential exceeds the bottom of the
n = 2 band, bulk states begin to screen the surface modes
more effectively, which weaken the dispersions of the surface
plasmon modes that are the focus of our study. With increas-
ing μ one expects the surface plasmons to ultimately merge
with bulk plasmons. A representative situation is depicted in
Figs. 7(g) and 7(h). We leave a full characterization of this
evolution from surface to bulk plasmons for future research.
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