PHYSICAL REVIEW B 105, 075425 (2022)
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Motivated by the ever-improving performance of deep learning techniques, we design a mixed input con-
volutional neural network approach to predict transport properties in deformed nanoscale materials using a
height map of deformations, as can be obtained from scanning probe measurements, as input. We employ our
approach to study electrical transport in a graphene nanoribbon deformed by a number of randomly positioned
nanobubbles. Our network is able to make conductance predictions valid to an average error of 4.3%. We find
that such low average errors are achieved by a redundant input of energy values, yielding predictions that are
30%—-40% more accurate than conventional architectures. We demonstrate that the same method can learn to
predict the valley-resolved conductance, with success specifically in identifying the energy at which intervalley
scattering becomes prominent. We demonstrate the robustness of the approach by testing the pretrained network
on samples with deformations differing in number and shape from the training data. We furthermore employ
a graph theoretical analysis of the structure and outputs of the network and conclude that a tight-binding
Hamiltonian can be effectively encoded in the first layer of the network, which is supported by numerical
findings. Our approach contributes a theoretical understanding and a refined methodology to the application

of deep learning for the determination of transport properties based on real-space disorder information.
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I. INTRODUCTION

Massive progress in the accuracy and computational
efficiency of deep learning techniques, combined with
widespread application of these methods, has rendered deep
learning an increasingly viable tool for complex problems in
physics [1-4]. This can be seen in the numerous recent ap-
plications of deep learning; a prolific and successful example
has been in data analysis at the LHC [5,6], and applications
in condensed matter and adjacent fields have prospered, too
[7-12]. A particular topic of interest has been the prediction
and identification of phase transitions [13—18]. Among the
most common deep learning techniques, also employed in
this work, is the convolutional neural network (CNN), which
is also the standard class of neural networks used for image
recognition. CNNs are favored for their versatility, and the
implementation of 2D or 3D convolutions allows these net-
works to map multidimensional data to almost any correlated
quantity.

Here, we show that a fast, accurate prediction of the
transport properties of deformed graphene can be obtained
from only a height map by applying a mixed input neural
network that includes a CNN branch. An illustration of an
example deformed graphene system is included in Fig. 1. A
deformation height map can be obtained in an experimental
setting with standard imaging techniques, such as scanning
tunneling microscopy, making this methodology feasible
for an industrial application. Specifically, we will focus
our attention on nanoscopic deformations in 2D materials,
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referred to as nanobubbles. The impact of these nanobubbles
on electronic transport can be studied statistically [19] or
with standard numeric methods. However, exact analytic
treatment of deformations is difficult, spurring work in
applying approximations to describe electronic transport
in deformed materials such as graphene [20,21]. One
novel physical effect of nanodeformations in graphene is
the production of a strong effective magnetic field, up to
hundreds of teslas, which are sensitive to the graphene
valley degrees of freedom. Depending on their shapes, these
deformations can filter or split the two valleys selectively
[22], opening the door to the field of valleytronics [23].
Deformed graphene is also of particular interest because
it has shown promise for use in numerous applications,
such as the ultrasensitive detection of nucleic acids, or
as a valley and spin filter [22,24,25]. Applications such
as these, especially if developed at an industrial scale,
require reliable and efficient tools—tools faster and less
expensive than direct measurements or full calculations—
to characterize the physical properties of individual
devices.

In this work, we show that our approach is successful, with
a relative error of less than 5%. With minimal changes our
neural network structure is able to make predictions about
both the total and valley-resolved components of the con-
ductance, successfully predicting intervalley scattering. Our
neural network architecture was carefully optimized for this
class of problems, providing a useful methodology for sim-
ilar work going forward. We also show that the network is
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FIG. 1. Illustrated example of the type of deformed graphene
nanoribbon systems we consider in this work

robust against changes to the deformation shape and number
of deformations, which is important for nonidealized real
world applications.

We additionally analyze the inner workings of our network
to better understand why its predictions are highly accu-
rate. We numerically demonstrate that there exists a simple
linear mapping from the first layer of our network to the
tight-binding Hamiltonian matrix of the graphene system. The
connection between the neural network structure and a tight-
binding Hamiltonian is studied further on purely theoretical
grounds by applying a graph theory analysis. Specifically, we
prove the existence of graph morphisms between a convolu-
tional layer in a CNN and a tight-binding Hamiltonian. This
fundamental equivalence relation has to our knowledge not
been previously identified, and brings valuable insight to the
form and function of neural networks and strongly emphasizes
the general applicability of our approach.

Before we proceed to discussing the structure of this work
let us first take a step back and mention some recent closely
related work and how our work differs from it. Recently
there has been work by Peano ef al. [26] that explored via a
convolutional neural network approach how to design differ-
ent band structures and successfully predict their topological
properties purely based on the choice of unit-cell geometry.
Within this context their neural network—much like the one
we will discuss in this paper—constructed a tight-binding
Hamiltonian. We stress that their work differs significantly
from our work in that we put our focus explicitly on systems
without translational invariance and instead of topology focus
on conductivities. Our work also develops the mathematical
mappings between tight-binding models and convolutional
layers.

Another work closely related to ours by Yu et al. [27]
employs a convolutional neural network approach to make
predictions about localization in disordered lattice systems
and the inverse problem of predicting possible disorder con-
figurations from localization properties. The focus of their
work differs significantly from ours in that their predicted
quantities do not depend on additional input parameters, such
as energy, that complicate predictions and therefore neces-
sitate a different network structure—as we will see later.
Moreover, our work highlights the important insights that can
be gained from the inner workings of the neural network
structure. Li ef al. [28] use a neural network approach to study
the conductivity in a quasi-1D wire with a small scattering re-
gion with disordered on-site energies, but do not study energy
or valley-resolved conductivities, or realistic shape deforma-
tions. Finally, a work by Torres ez al. [29] used a feed-forward

neural network to study valley-resolved transport in quasi-1D
nanobubble superlattices. The focus of this work was limited
to these superlattices, which is outside the scope of our work.

The paper is structured as follows: In Sec. II, we detail
the tight-binding Hamiltonian and in Sec. III we discuss the
neural network architecture that was chosen and compare its
results quantitatively to other related architectures. In Sec. IV,
we analyze the performance of the network in predicting to-
tal and valley-resolved conductances. In Sec. V we discuss
a graph theoretical mapping between a convolutional neural
network layer and a tight-binding Hamiltonian, as well as a
complementary numerical result of the network. Lastly, in
Sec. VI we test the robustness of the trained neural network
by evaluating its performance on deformations deviating from
the Gaussian deformations that were used to train the network.

II. MODEL

While many of our methods are broadly applicable to ques-
tions in materials physics, we consider a specific and popular
model to demonstrate our methodology. We consider transport
properties of a deformed graphene flake that has dimensions
of 200 x 200 lattice sites and is connected to semi-infinite
leads. For simplicity units are chosen such that a =1 (if
a =2.46 A, a side length of the flake is about 50 nm). Given
the potential applications of nanoscale devices, we chose to
investigate a system of comparable size. With no deformation,
this system has a conductance quantized in units of % (e =
electron charge, i = Planck’s constant). The introduction of
random out-of-plane deformations changes this conductance
profile, with a more complex relationship emerging between
the deformations and the conductance as a function of energy.

Electronic transport in the graphene system is modeled
using a tight-binding Hamiltonian [30], written in second-
quantized form as

ﬂ = Z tij(azgl;jﬂ +I;;gai,(r)v (D
(

i,j),0

where we sum over all nearest-neighbor sites i and j and spin
projections o. The operators a; and &j are fermionic creation
and annihilation operators operating on site i in sublattice A,
while b ; and l;j equivalently operate on site j in sublattice
B. Lattice deformations locally alter the distance d;; between
sites i and j. This is modeled by a distance-dependent hopping
parameter [31,32],

-

We choose units such that the initial hopping parameter is
to = 1. This model of transport is implemented in KWANT,
a quantum transport package in Python [33]. In KWANT
the system is initialized as a graphene nanoribbon with a
200 x 200 unit scattering region and two semi-infinite leads.
We use KWANT to obtain the scattering matrix S. The sub-
matrix corresponding to transmission from the left lead to
the right is s = Sy, allowing computation of the total left-to-
right transmission probability by the Fisher-Lee formula [34],
T = Tr(s's). The transmission probability is related to the

dij _
a

tjj = —to €xXp (—337
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conductance by G = 2 T, where the factor of 2 emerges

from spin degeneracy. !

By identifying the momenta of the modes corresponding to
each element of s, it is possible to separate s into submatrices
corresponding to transmission and scattering between the K

and K’ valleys,
5= (SKK s’”“). 3)
SK'K  SK'K’

This allows separation of the left-to-right transmission into the
valley contributions,

Tup = Tr(slﬂsaﬁ). 4)

The number of conductance modes is given by 2n + 1, where
n is the number of occupied subbands at energy E [35], and
we observe a 2-fold valley degeneracy and a single edge mode
coming from the zigzag edges. The transmission probabil-
ities are normalized for each mode, so for an undeformed
system the conductance is quantized and given by G(E) =

@n+ 1%,

III. NEURAL NETWORK
A. Network architecture

The neural network developed for this investigation is a
mixed input neural network with a CNN branch and is im-
plemented in TensorFlow [36]. The network consists of a
convolutional branch and a sequential branch to process a
second round of inputs. The convolutional branch has a de-
sign that is loosely based on the AlexNet image recognition
network [37]. A unique aspect of our network design is the
redundant input of energy; energy is input to the sequential
branch, but also included in the convolutional input, which
consists of a (100,100) height-map array and an array of the
same size with every element equal to the energy. This input
array with dimensions (100,100,2,1) is fed into the convolu-
tional branch, and successive rounds of convolution, pooling,
and normalization are applied.

The outputs of the two network branches are joined and
analyzed in a final series of dense layers to produce final
predictions for conductances. The parameters of the model
are optimized using the ADAM variant of gradient backprop-
agation [38]. Additional specifications of the neural network
architecture are found in Table 1.

B. Optimal design choices

It is also important to understand the choices that have led
to our specific type of network. The optimization of this neural
network required trial-and-error variations of the hyperpa-
rameters and architecture. Some such variations reinforced
standard choices; for example, the optimal progression and
geometry of convolutional layers is identical to that found in
an image recognition network such as AlexNet.

Other common neural network design principles suc-
ceeded, too. Dropout and batch normalization layers were
found to be essential to the success of this network. Batch
normalization is implemented after convolutional layers, nor-
malizing the output. The reason batch normalization works is
disputed, but current theories propose that these layers may

TABLEI. Neural network architecture and hyperparameters cho-
sen for the optimal model.

Additional Specifications

Architecture
Activation function Swish function
Kernel initializer He uniform
Convolutional kernel size 3,3,2)
Average pool size 2,2,1)
Dropout 0.5 after dense (2048, 256)
Padding Zero padding
Training data set 26 250
Test data set 8750

Training

Optimizer Adam
Learning rate 0.001
€ 1077
Training metric Mean squared error
Batch size 16
Epochs 100

smooth the landscape of the loss function [39] or reduce un-
desirable covariate shifting of neural network parameters [40].
Dropout layers, meanwhile, are applied after dense or fully
connected layers. Dropouts randomly set some proportion of
the data points to zero, effectively introducing noise. They
are effective in preventing overfitting [41], where a network
essentially memorizes training data and cannot successfully
generalize to unseen data.

The Adam optimizer [42] is chosen for its known strengths
compared to other optimization algorithms, notably in reach-
ing a compromise in speed and accuracy, and avoiding a
vanishing gradient. We observed optimal performance when
training with the default parameter values in TensorFlow. A
less standard feature we employ is the newly developed swish
function for nonlinear activation [43]. While ReL.U is the
more common alternative, we found swish to have better per-
formance. The swish function is smooth and nonmonotonic,
which is thought to give an advantage in avoiding vanishing
gradients [44]: when the gradient of the loss function goes to
zero it inhibits learning.

C. Redundant inputs

The impact of redundancy in neural networks has been
explored both in the context of the biological origins of
these networks in the brain [45], and in direct applications
in physics [46]. We report here a marked improvement of
network performance with the inclusion of redundant inputs.

The highly nonlinear behavior neural networks exhibit
make it challenging to understand success in network ar-
chitecture beyond empirical findings. The introduction of a
repeating energy array as a convolutional input does not en-
tirely follow the intuition behind these networks, as there is
no spatial variation in this constant input. The important dis-
tinction to be made is that the height map and energy array are
input together. Consider the introduction of deformations in a
lattice: This will result in local changes in potential, and the
energy will directly determine the impact of these changes on
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FIG. 2. Diagram showing the architecture of the neural network.
The convolutional kernel size was (3,3,2), while the pool size was
(2,2,1). Labels A and B correspond to each redundant energy input
(see Sec. III C), while C indicates the layer extracted for linear map-
ping (see Sec. V). In the text we detail results for different variations
of these inputs.

the electronic transport. The stacked energy and height arrays,
combined with a 3D convolutional kernel, can be imagined as
a local comparison of the potential landscape with our known
electronic energy. The inclusion of the small sequential branch
near the end of the network can be thought of as a “reminder”
of this energy input, as the exact numerical value of the energy
is encoded only implicitly within the convolutional output.
We now evaluate empirically the importance of redundant
inputs. We tested the network’s performance given the omis-
sion of each one of two redundant input paths. Details on
network training are discussed later in Sec. IV and omitted
here for brevity. Let us briefly summarize that the final version
of the network seen in Fig. 2 has a mean absolute error (MAE)
of 0.61% for predicted total conductance (see Sec. [V B for
more details), with predictions made on new, i.e., untrained
data. We found that omitting the energy array as a convolu-
tional input (marked A in Fig. 2) causes the MAE to increase
to 0.87%2, while omission of the small second branch input

(marked B in Fig. 2) results in a MAE of 0.982}%2. Comparison
to the performance of the complete network shows just how
important the network redundancy is; after all, the added re-
dundancy in network architecture leads to a decrease of more
than 30% for the MAE. We share this finding with the intent
of providing more design intuition for physics applications of
NNs.

IV. TRAINING AND RESULTS

For the training data of our neural network we consider ran-
dom deformations of the lattice, which are modeled using 2D
Gaussian bumps that are randomly placed. For concreteness
in our case the number of Gaussians N is chosen uniformly
from N € [1, 10]. For each Gaussian, Eq. (5), parameters
(A, oy, 0y, Xc, yc) are chosen uniformly from the ranges in
Table II below, including the approximate values in nanome-
ters (nm) for graphene, a = 2.46 A.

These values are chosen in accordance with previous
theoretical literature [22,47]. The random superposition of
these deformations produces a net deformation comparable

TABLE II. The numerical bounds for the amplitude, standard
deviation, and center of each Gaussian bubble. Values are provided
in both lattice units and nanometers.

Gaussian Parameter Bounds [a]/[nm]

A (0,10) / (0,2.5)
0y 0y (5.20) / (1.5,5)
Xe, e (=60, 60) / (—15, 15)

to small graphene nanobubbles observed experimentally, less
than 50 nm in radius [48-50].

More precisely, this means that we model the height of a
point (x, y) on the graphene sample by

N . ) . 2
2(x,y) = ZAn exp (_ (x — Xcn) _ (Y = Yen) ) )
n=1

2 2
20xn 2qvn

To generate the height maps that are used as inputs of the
neural network this expression is evaluated over a 100 x 100
grid spanning the scattering region. Equation (5) is also used
by KWANT in conjunction with Eq. (2) to construct the
Hamiltonian and obtain conductance values for each sample
at a random energy. We focus on energies in the first 50
subbands, corresponding to the first 99 conductance modes.
These conductance values are the target for the network,
which continually evaluates its performance and uses gradient
backpropagation to improve the model parameters. A data set
of 35 000 samples was generated in KWANT, with 75% used
for supervised learning and 25% used to validate the network
accuracy. Networks were trained to learn the total left-right
transmission 7 as well as the valley-resolved transmission
components Ti,g.

A. Details of network training

Plotting the “learning curve” of the networks, Fig. 3, we
see the error of the model on both the training data and
validation data evaluated over every epoch, or cycle, through
the data. For all of these plots, the validation error appears
to converge to a fixed value, a broad indicator of successful
training. Tall, narrow spikes in the error may be observed,
but this does not appear to cause any problems, as the error
quickly returns to the convergent value. There is an expected
trade-off with model stability and model generalization error
when modifying batch size: large batches result in a smooth,
stable curve and validation error that will tend to converge
higher, while small batch sizes give better generalization with
smaller validation errors, but are more volatile [51,52]. Train-
ing neural networks is a complex task, and as such this topic
is much broader than what we discuss here.

B. Total conductance

After 100 epochs of training, the validation error (the net-

work’s error on new data not encountered in training) reaches
2 . .

0.61% mean absolute error (MAE), in a data set with mean

conductance of roughly 41 x (%). This is a 4.3% average
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FIG. 3. Network error on training data and validation data for (a) the total transmission, (b) the off-diagonal components of transmission,

and (c) the diagonal components of transmission.

relative difference, based on the formula

|yp — el

x 100, (6)
[ypl

where y. is the calculated value and y, is the predicted value.
To further illustrate the network’s ability, the model is evalu-
ated on an individual sample at 1000 linearly spaced energy
values. Representative results are shown in Fig. 4 and demon-
strate the network’s success in learning the dependence of
conductance on both deformations and energy. An alternate
model which does not take mode numbers as inputs is seen
in the inset. The appearance of discrete steps in conductance
from the inclusion of mode numbers is a good illustration
of the fine-tuning of model function that is possible with
variation in network structure. These models have comparable
errors, so we choose the discrete model, taking mode numbers
as an input, as the primary model to perform further analysis.

[es]
o

o))
o

B
o

Conductance [275—2]

20 —— Calculated
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0.0 0.2 0.4 0.6

Energy [t].

FIG. 4. The calculated and predicted conductance of a single
deformed sample over a range of energies. The upper inset panel
shows the relative height of the deformed sample, and the panel
below provides a closer look at the predictions in the small boxed
region. The blue dotted line shows the solution the network provides
when trained with the nonquantized model.

C. Valley-resolved conductance

We next train a neural network on all components of 7;g.
The valley-resolved transmission brings additional challenges
to the model; computation of the off-diagonal components
Txx' and Txx frequently gives results with large fluctuations
(x2 or more) over very short energy ranges. This can be
attributed to the disorder introduced by the deformations and
is especially prominent at higher energies [47]. Additionally,
these components may be near-zero. Both are potential prob-
lems for the gradient backpropagation algorithm. To address
this, two separate models are trained, one for the valley trans-
missions Txx and Tk, and one for the intervalley scattering
components Tk x and Txg . To get precise predictions even for
the small off-diagonal scattering components Tx'x and Txg
we scale them by a factor of 10° before training (predictions
are divided by the same factor for comparison). The error
in this approach is found to reduce significantly from the
unscaled case, decreasing from 0.15 to 0.095 % This result
is a consequence of the canonical issue of the “vanishing
gradient,” which we otherwise largely avoided by use of the
swish activation function [44].

Our method allows for the successful prediction of all four
components of the transmission. The average value of each
component and the mean absolute error in the prediction for
each component are

19.79
ap) = (0.28

expressed in units of 22 /h, where (T, ) is the average trans-
mission matrix over all samples and energies, and MAE(7,p)
is the average prediction error over all samples and energies.
This metric of error is just one measure of model success,
but in combination with plotted predictions it may provide
some intuition as to the performance of the model. The mean
error corresponding to intervalley scattering is quite small
numerically, which can be attributed to the often near-zero
value of these components.

To better understand model performance, another predic-
tion for a single sample is included in Fig. 5. The KK and
K'K’ components of transmission were predicted successfully
comparing the magnitude of the error with the total conduc-
tance model. For the off-diagonal components representing

20.66 0.095

0.28 037  0.094
)’ MAE:( 0.36>’
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FIG. 5. The calculated (red) and predicted (black) valley-
resolved conductance of a single deformed sample over a range of
energies. The inset shows the height map of the sample in question.

intervalley scattering, the model’s approximation succeeded
with an average error of 0.09527‘“2, and this success can be
seen qualitatively in Fig. 5. This example demonstrates that
this model can not only predict the magnitude and trend of
intervalley scattering, but can also predict whether it occurs at
all, and at what energy these effects become significant.

V. GRAPH THEORETICAL INTERPRETATION

In this section we use a graph theoretical perspective to il-
luminate an interesting mathematical connection between the
tight-binding Hamiltonian and a layer of a CNN, finding that
the honeycomb lattice graph is isomorphic to a subgraph of
the convolutional layer graph. Following this, we provide nu-
merical evidence that is complementary to this finding; in the
Appendix we demonstrate that the graph structure and numer-
ical outputs together can be used to reconstruct a tight-binding
Hamiltonian. This is a valuable theoretical contribution to the
existing design principles of neural networks for applications
in physics. For a detailed definition of graph terminology and
notation, see the Appendix.

A. Honeycomb lattice as a subgraph of the convolutional layer

Consider a single convolutional layer in a neural network.
In a 2D convolution, a kernel is passed over the values of an
array, transforming some N x N input X to an N x N output
Y. We consider here a 3 x 3 kernel, as implemented in our
neural network. The relationship between the input array X
and the output array Y is as follows. At the index (m, n), the
output value Y,, , is given by

1
Yo = o( > wiXoging + ﬁ,-,-). )

i j=—1

We can see that, in the language of tight binding, the output
Y,,, is dependent on X,,, and its first and second nearest
neighbors on the square input grid. This extends naturally to a
formulation in graph theory.

FIG. 6. Honeycomb lattice (black edges) as a subgraph of the
convolutional layer graph (all edges).

Define a graph G with the adjacency matrix A(G), given

1, J € e(i),
Aij(G) = {0’ ] ¢ e(i), (8)
where e(i) is the set of nodes with which node i shares an
edge. Based on Eq. (7), in the formalism introduced by You
etal. [53], the sets e(i) defining the convolutional graph G¢ are
given by the set of points enclosed by a 3 x 3 kernel centered
at a node (m, n):

kyxs(m,n)={fue(m—-—1,m+1),vem—1,n+1)}. (9)

Meanwhile, the sets e(7) defining the graph of a honeycomb
lattice G, are given by the sets of first nearest neighbors,

Ni(m,n) ={(m—1,n),(m+ 1,n),(m,n+£1}.  (10)
By the definitions of these edge sets, we see that
Ni(m, n) C k3x3(m, n). (11

And thus, when both graphs are defined on an N x N grid
of points, the honeycomb graph G, is a subgraph of the
convolutional layer graph G¢. This is depicted in Fig. 6. This
demonstrates simply that the graph structure of a first-nearest-
neighbor tight-binding Hamiltonian on a honeycomb lattice is
included within the graph structure representing the action of
our first convolutional layer.

B. Linear map

Given this graph structural parallel, it is instructive to ask
whether the numerical inner workings of the neural network
also show some parallel to our tight-binding model.

An interesting work by Sun et al. [8] found that in a
CNN trained to predict Chern numbers from Hamiltonians,
the Berry curvature in momentum space was approximately
recreated, as an intermediate step. This was taken to indicate
the success of the CNN in recreating the mathematical steps
between input and output.

We similarly studied the intermediate outputs of each con-
volutional layer—after activation and batch normalization.
We find that for any deformed sample, the set of feature maps
F output from the first CNN layer approximately satisfies a
linear map f : F — h to the calculated hopping amplitudes in
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FIG. 7. The exact nearest-neighbor hoppings as used in KWANT
[for the various directions a = (\/§/2, —0.5), b= (—\/§/2, —0.5),
¢ = (0, 1)], and the result extracted via the linear mapping linear
mapping from the network intermediate output in Fig. 2 (d', ¥/, ¢’).

each direction h, such that
h = AF, (12)

where F is a 16-component vector of outputs at some array
index, A is a 3 x 16 transformation matrix, and h are the 3
hopping amplitudes in the nearest-neighbor directions, calcu-
lated with Eq. (2). This is illustrated in Fig. 7. We focus on
only one of the two arrays output by this network layer. The
inclusion of the other 100 x 100 component of this output,
corresponding to the energy array input, does not change
appreciably the result of this linear map, so we omit it for
simplicity.

We find this linear map can recreate the calculated hop-
pings at an average of 1% error. This mapping is the simplest
way for 16 output values to encode 3 nearest-neighbor hop-
pings. While any arbitrarily complex function could extract
hopping values from these outputs, their appearance as a
simple linear combination shows that this information is
encoded in this output, implying the network truly learns
how to construct hopping parameters from a deformation
image.

We have shown that the honeycomb lattice graph G, is a
subgraph of the convolutional graph G¢. Consider now the
linear map f we have introduced here. In the Appendix, we
show it is possible to use this linear map, in conjunction
with the graph relation discussed above, to form a com-
plete representation of the tight-binding model, from the

structure and output of the first convolutional layer of our
neural network. When we use this linear map to assign
weights to the appropriate entries in the adjacency matrix, it
is possible to fully construct the matrix of the tight-binding
Hamiltonian.

C. Discussion of extensions and limitations

In the general consideration of physical problems with an
inherent graph structure using neural network methods, the
question remains, does the graph of a convolutional layer
and the local “interactions” it depicts sufficiently represent
the important characteristics of, in our example, electronic
transport on an arbitrary 2D lattice? Or, does the problem
necessitate an exactly or nearly isomorphic graph structure,
as is possible in the more recently developed techniques of
graph neural networks [54]?

Our network succeeded in predicting conductance values
without this completely isomorphic graph structure. In fact,
our tight-binding model was defined on a far greater number
of atomic sites than there were input data points to the con-
volutional layer: the success of this coarse-grained approach
suggests that is is not necessary for a neural network to have a
graph structure exactly isomorphic to the objective problem.

It is valuable to consider more complex tight-binding mod-
els. While we leave the further application of these neural
network methods to future work, let us discuss the impli-
cations of our graph theoretical insights when applied to
different tight-binding models.

In theory, if the convolutional kernel is allowed to be of
arbitrary size, there will be a subgraph isomorphic to any
tight-binding model; this is apparent in the limit in which each
node is connected to all others. In the Appendix, we show
that the first-nearest-neighbor kagome lattice is isomorphic
to a subgraph of the convolutional graph. We additionally
investigate in the Appendix the extension of the graph-based
interpretive scheme to second- and third-nearest-neighbor
graphs on a honeycomb lattice, and we come across a com-
plication; in Fig. 6 we can see that comparing different sites,
a nearest-neighbor vector alternates between the site directly
above and below. The site in the other direction represents a
third nearest neighbor. This introduces an ambiguity which
may be difficult for a neural network to properly resolve.

Convolutional neural networks are versatile enough that
they could succeed to some degree even with these more com-
plex cases. However, in searching for an optimally designed
network, it is worth further investigating techniques catering
to the exact graph structure of the problem at hand, such as
graph neural networks.

While we have probed the graph structure and numerical
output of the first layer of our neural network, this makes up
a small portion of the network’s total numerical operations.
The successive pooling and convolution operations present
an interesting and complex mathematical structure, but this
complexity renders the network as a whole difficult to in-
terpret rigorously. Within the framework we have developed,
if the first convolutional layer represents hoppings between
adjacent lattice sites, an average pooling operation and second
convolutional layer then represent hoppings between 2 x 2
subblocks of lattice sites.
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FIG. 8. (a)—(c) Examples of different samples given to the net-
work. (d), (e) Total conductance error increases with the number
of Gaussians, and the size of the deformation parameter g. Samples
were sorted into 20 bins, each spanning a range of 0.01 in the average
deformation parameter g. Each bin contains >6000 samples. The
percent error for each bin is calculated according to Eq. (15).

Further development of this structure-based understanding
of neural network design may provide interesting insights into
this otherwise opaque topic. This is especially true in the
application of neural networks within the field of condensed
matter, given the ubiquitous appearance of graph structure in
the study of physics on a crystal lattice.

VI. ROBUSTNESS OF THE TRAINED NETWORK

Next, we want to determine the quality of predictions
for samples that are fundamentally different from those on
which the network was trained. First, we use the same for-
mula and parameters as the training data to generate Gaussian
deformations, but we add more deformations to increase the
complexity of the overall sample. The error in the network’s
predictions—calculated according to Eq. (6)—increases as
more Gaussians are added, as shown in Fig. 8. For example,
in samples with 15 Gaussians the average error in the total
conductance increases to 9%, compared to 6.5% for samples
with 11 Gaussians. This indicates that the network becomes
less accurate when faced with data that differ too drastically
from training data.

Next, we want to see how robust the network is against
changes to the shape of the deformations. Therefore, we test
the network on deformed Gaussian bubbles of the form

—GxePetrxe)t |~y ~dt-ye *

z(x,y)=e 2? 20 ) (13)

To obtain better quantitative insights we introduced defor-
mation parameters ¢ and d that are randomly selected from
the range [0,0.2]. To obtain a single metric for the overall
deformation of the sample, the deformation parameters are
averaged according to Eq. (14),

N
1
g=ﬁ;cn+dn. (14)

Here, instead of a percent error we compute the relative
difference according to Eq. (15),

lyp — el
max(|ypl, [ycl)

This is done to avoid misleading results: very small calculated
or predicted values that appear in a tiny fraction of samples
can result in excessively large percent errors despite both
results being sufficiently close to zero. See Fig. 8.

Finally, we test the network on bubbles that are not Gaus-
sians but Lorentzian bubbles of the form

1 Tl
T =X+ 6=y T+

x 100. (15)

2(x,y) = (16)

where I' is the half-width at half-maximum of the distribu-
tion. I' is randomly chosen from the range [4,16] so that the
Lorentzian bubbles are roughly the same size as the Gaus-
sian bubbles. When tested on approximately 8800 samples
the network performed very well, returning an average error
[calculated according to Eq. (6)] of only 2% in the total
conductance, despite the fact that the network was trained on
Gaussian deformations, not Lorentzian ones.

We can conclude from this section that the network is
sufficiently robust against changes that it can be used in ap-
plications to real world data, such as one could obtain from a
scanning tunneling microscope where deformations might not
be perfectly Gaussian. The robustness of the trained network
can be explained to some extent by the previous section,
in which we showed that the network forms a tight-binding
Hamiltonian as an intermediate step in its predictions. These
results indicate that the network has actually learned about the
underlying physics, rather than just learning the geometry of
Gaussian deformations.

VII. CONCLUSION

This work provides a proof-of-concept that neural
networks—convolutional neural networks in particular—can
serve as a tool to expedite determination of the physical
properties of a material. We developed a neural network ca-
pable of identifying the conductance of deformed graphene
nanoribbons to within 5% when given the height map, energy,
and number of conductance modes at that energy. We further
find that despite the fact that the network was trained with a
fixed range of Gaussian deformations, predictions still remain
accurate when the quantity and type of deformation are var-
ied, indicating a robust model. We found that once trained,
our model can predict conductance with the computational
time reduced by a factor of O(10*) compared to an exact
calculation, and it requires O(N ) parameters in the description
of a tight-binding system with N sites, as compared to the
N? parameters required to construct the dense Hamiltonian
matrix. The desired behavior of the model can be additionally
tuned with the choice of training inputs, where inclusion of the
mode numbers give a semiquantized prediction, and omission
gives a smooth prediction. We also demonstrated the model’s
ability to learn and predict the valley-resolved components of
conductance with little modification to methodology.

Additionally, we gained insight into the model’s design and
function by studying the internal outputs and graph structure
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of the neural network. It was found that the graph of the
tight-binding model determined from the CNN is a subgraph
of the relational graph describing a convolutional layer. We
conclude that this sort of fundamental structural equivalence is
an important factor in the success and efficiency of this model.
This should be considered in the application and design of
convolutional and other deep learning networks to further
research in physics.

It should be noted that different problems often require
differently structured networks to obtain the best solution,
but the model we developed is optimal for the problem
of deformation-dependent conductance. We have shown that
many of the techniques originally developed for image recog-
nition networks can be readily adapted for this class of
problems. The method described here could be tested by
changing the desired output observable, or by applying this
technique to different materials, such as 3D lattices or nanos-
tructured materials.

There are also some limitations of this method that are
worth noting. We find that including the number of conduc-
tance modes as an input results in a semiquantized output.
This is preferable when considering minimal deformations,
wherein the conductance retains some quantization as in the
zero-deformation limit. More severely deformed samples do
not exhibit these steps in conductance, and as such the model
trained without conductance modes as an input, which outputs
a smooth conductance prediction, is superior. An improved
model would successfully differentiate between the behavior
of these cases. This may be possible by training separate
networks for the small versus large deformation cases, or
otherwise augmenting the training data to emphasize this
difference.

Our work has demonstrated that neural network meth-
ods can be applied as an accurate approximation method
to expedite the calculation of physical properties of mate-
rials. Furthermore, we have illustrated methods in neural
network construction that may be especially beneficial for
applications in physics, such as redundant input data. We also
provide insight into the mathematical relevance of convolu-
tional networks to graph-based problems like the tight-binding
Hamiltonian.

The data and code supporting the results of this paper are
available from the corresponding author, J.N., upon reason-
able request.
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APPENDIX: DETAILS OF GRAPH THEORETICAL
ANALYSIS

1. Notation and terminology

Here we briefly define the important concepts and notation
we use in our analysis. A graph is a finite set of nodes con-
nected by a finite set of edges, where each edge connects a
pair of nodes [55]. In this analysis, we work with nondirected
graphs, so each edge is defined simply by an unordered pair of
nodes. In a tight-binding framework, nodes are equivalent to
atomic sites, and edges to corresponding hopping parameters.
The primary tools we will use to represent these graphs are
the unweighted and weighted adjacency matrices A, A”. In
A, A;; =1 if and only if nodes i and j share an edge. In A",
Aj; = awhennodes i and j share an edge with weight a. These
definitions are illustrated in Fig. 9.

In each matrix, the element ij is valued at zero when no
edge exists between nodes i and j. If two graphs G, G’ have
the same adjacency matrix A, but not necessarily the same
edge weights, we call the graphs G and G’ structurally isomor-
phic, because we know the nodes and edges are identical. If
we additionally know that G and G’ have the same weighted
adjacency matrix A", we will call these graphs completely
isomorphic, because we know the nodes, edges, and weights
are identical.

2. Convolutional layer representation of tight-binding
Hamiltonian

The tight-binding matrix is, as a symmetric matrix, always
equivalent to the weighted adjacency matrix A" of some
undirected graph with edge weights, G};. To prove a graph
isomorphism extending to a honeycomb lattice graph G,, we
introduce edge weights to the convolutional graph, Gc — G¢.
For each node i in G¢, there are k corresponding outputs in the
set of feature maps F. Similarly, at node i in Gy, there are up to
N nth-nearest-neighbor hoppings in the set h, described equiv-
alently by the nonzero values in row i of the tight-binding
matrix H. When N < £, there are neural network outputs such
that

f:F—h (A1)

is a linear mapping from R¥ — RV, which we choose to assign
the edge weights of G¢.

Beyond the theoretical existence of this linear map, we
discussed in Sec. V that there is indeed such a mapping,
accurate to about 1% error, which produces the calculated

Aj=1

i

AY =a

FIG. 9. Adjacency matrix definition.
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FIG. 10. Kagome lattice shown as a subgraph of the convolu-
tional graph (not shown).

nearest-neighbor hoppings from the feature map outputs with
a linear map h = AF. We allow the assignment of 0 to edges,
and take this to delete the edge. This enables a reduction to
any subgraph of G, so we turn our attention the the graphene
tight-binding Hamiltonian, represented by the weighted graph
Gy, where G;' is constructed with the tight-binding matrix
as a weighted adjacency matrix A”(Gy'), such that the edge
between nodes i and j has a weight equal to element ij of the
tight-binding matrix:
AY (G’gf’) A= Hy;. (A2)
When the conditions are met for the linear map, such that
the convolutional layer’s output maps linearly to the set of
nearest-neighbor hoppings at each point, we assign the con-
volutional graph edge weights accordingly,
w w) . AW __ f(Fi)n’ .] € Ng(l)’
A" (GE) Al = { ; TNy

where f(F;), is the nth of N possible second-nearest-neighbor
hoppings. By the nature of the map, these are only nonzero
when the nth node j is included within the set of brick-wall
first nearest neighbors at node i, denoted Ng(i). For any G’
there exists a convolutional layer output F and a linear map-
ping f such that the assignment of edge weights of G¢% by f
makes G¢ completely isomorphic to G} .

We have demonstrated that the graph structure and nu-
merical outputs of this neural network layer can be used
to construct a complete representation of the tight-binding
matrix.

FIG. 11. First (top), second (middle), and third (bottom) nearest
neighbors of two points on the honeycomb lattice.

3. More complicated lattices

Consider a first-nearest-neighbor tight-binding Hamilto-
nian on a kagome lattice. Mapping this to a square lattice is
more challenging, but there are multiple periodic subgraphs
of G¢ that are isomorphic to our kagome lattice. One such
subgraph is depicted in Fig. 10.

In fact, it is always possible to map a first-nearest-neighbor
tight-binding Hamiltonian on an arbitrary 2D lattice onto a
subgraph of a convolutional graph with an appropriately sized
kernel. This is evident in the fully connected limit; for a
(2N +1) x 2N + 1) kernel on an N x N grid of points, the
convolutional graph is complete, with every pair of vertices
connected by an edge.

Typically, however, this upper limit is not necessary: For
both a honeycomb and kagome lattice, we find isomorphic
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subgraphs of the convolutional graph created by a 3 x 3
kernel.

We also consider the graph mappings of second- and third-
order nearest neighbors on the honeycomb lattice, Fig. 11.
Some nearest-neighbor points in the square lattice (7, j) and
(i+1,j) alternate between first and third nearest neigh-
bors in the honeycomb lattice mapping, while second-order

neighbors are symmetric between sites. The lack of transla-
tional invariance in these hoppings between the sites of the
square lattice represents a breakdown of the exactness of
the mapping we consider; to represent exactly these graph
structures would require graph neural network techniques.
However, our results suggest that this exact representation
may not be necessary.
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