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Longitudinal magnetoresistance (LMR) refers to the change in resistance due to a magnetic field when the
current and the magnetic field are parallel to each other. For this to be nonzero in weak magnetic fields, kinetic
theory stipulates that the electronic dispersion must satisfy certain conditions: it should either be sufficiently
anisotropic or have topological features. The former results in a positive LMR, while the latter results in a
negative LMR. Here, I propose a different mechanism that leads to LMR in any dispersion without a need to
satisfy the above requirements. The mechanism is quantum in origin but is applicable in the said regime. It
arises due to the change in the density of states with the magnetic field and is not kinetic in origin. Remarkably,
LMR is found to be negative even if the dispersion is nontopological, provided it is nonparabolic. An analytical
expression is derived for this contribution to LMR. It is found to depend on the orbital magnetic susceptibility.
The analytical findings are confirmed by numerical calculations.
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I. INTRODUCTION

Magnetotransport—the motion of charge carriers in the
presence of both an electric and a magnetic field—is one
of the most commonly studied phenomena in solids. As a
charge accelerates under the electric field, it suffers repeated
collisions with scatterers, giving rise to resistance. With the
introduction of the magnetic field, the charge now experiences
an additional Lorentz force and bends away from its linear
path. It spends more time in traversing the direction of the
electric field and suffers more collisions, resulting in an in-
creased resistance. Thus, magnetoresistance is expected to be
positive and arise only when the current and the magnetic field
have components perpendicular to each other [1].

Based on the above kinetic picture which is essentially
classical, one does not expect longitudinal magnetoresistance
(LMR) to exist because it requires the current to be parallel
to the magnetic field; and even if it exists, it should not be
negative (N). Nevertheless, in solids where electrons do not
have a free-particle dispersion, LMR—and, in some cases,
NLMR—can arise within the same basic mechanism at weak
fields where kinetic theory is valid. It has been shown that
if the dispersion possesses a certain kind of anisotropy such
that the velocity of electrons parallel and perpendicular to the
magnetic field cannot be decoupled, LMR can be nonzero and
is necessarily positive [2–4]. On the other hand, if the disper-
sion features topological properties, along with the Lorentz
force the kinetics is influenced by an additional contribution
that arises from the Berry curvature. Then anisotropy is not a
necessity and a nonzero LMR can arise. In this case, however,
LMR is negative [5–9]. Apart from these two mechanisms,
others that lead to LMR—and, in some cases, NLMR—are
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known to exist. However, these are either extrinsic in origin,
such as scenarios that require specific models of scattering
[10,11] and inhomogeneities [12–14], or are beyond the semi-
classical regime, requiring, for example, a very high magnetic
field which forces electrons to occupy only the lowest Landau
level [15] or low enough temperatures such that quantum
interference effects lead to weak (anti)localization [16].

In this work, I show that there exists another mechanism,
intrinsic in origin and applicable in weak fields but not kinetic
in nature, that contributes to magnetotransport. This gives
rise to a nonzero value of LMR in cases where kinetic the-
ory predicts a zero value, which can even become negative.
The mechanism derives from the change of density of states
due to the magnetic field and is quantum in origin in spite
of appearing in a classical regime. A simple understanding
can be obtained by considering a familiar context in which
the same mechanism is at play: Landau diamagnetism. It is
well known that classically Landau diamagnetism cannot arise
since the magnetic field through its kinetic contribution cannot
affect the total energy of a system. Quantum mechanically,
however, it is allowed since the density of states becomes
a function of the magnetic field through the formation of
discrete Landau levels. Note that in spite of being quan-
tum in origin, the effect manifests at weak fields such that
ωc � EF , where ωc is the cyclotron frequency and EF is the
Fermi energy (h̄ = 1). Extending this mechanism to transport,
magnetoresistance should also inherit a similar contribution,
irrespective of the orientation of the current and the mag-
netic field. Importantly, the orbital magnetic susceptibility,
while being diamagnetic for a parabolic dispersion (Landau
diamagnetism), becomes paramagnetic when nonparabolic-
ity is introduced in the dispersion [17]. The same can arise
in the context of magnetotransport, with magnetoresistance
switching sign from positive to negative as the dispersion
acquires nonparabolicity. The different physical origins of the
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two contributions to magnetoresistance, kinetic and quantum,
are expected to show up in their functional dependence on
the magnetic field: the former is expected to be a function
of ωcτ , where τ is the relevant scattering time, whereas the
latter should be a function of ωc

EF
. Because ωcτ can reach

values much larger than one while satisfying ωc � EF , in
general the kinetic contribution will dominate over the quan-
tum contribution. However, if the former is identically zero,
the latter can become the leading contribution. As discussed
earlier, this could happen with LMR, making the new quantum
contribution relevant in this context.

Below I substantiate the above claims with analytical and
numerical calculations. LMR is calculated for a dispersion
that is separable in directions parallel and perpendicular to the
magnetic field using the Kubo formula. The choice of such a
dispersion is not necessary, but is done for two reasons: first, it
greatly simplifies the calculation, and second, it is known that
the kinetic contribution to LMR for such a choice is identically
zero [2]; therefore, any LMR found is necessarily of quantum
origin. A general expression for the quantum contribution is
derived which is found to be intimately related to the orbital
magnetic susceptibility. It is explicitly shown that in contrast
to conventional wisdom, even a parabolic dispersion exhibits
LMR, which becomes negative as nonparabolicity is intro-
duced in the dispersion.

II. MODEL

Consider a metallic system with a dispersion

E (k) = εxy(kx, ky) + εz(kz ). (1)

Without any loss of generality, it is assumed that the minimum
value of each term is zero. A magnetic field B, described
by the vector potential A = (0, Bx, 0), is applied in the
z direction. The dispersion becomes (spin is ignored for
simplicity)

E (n, kz ) = εxy(n) + εz(kz ), (2)

where εxy(n) denotes the Landau levels in two dimensions.
The eigenfunctions are given by

ψkz,ky,n = eikzz+ikyyφn
(
x − kyl2

B

)
, (3)

where φn are the Landau level eigenfunctions corresponding
to εxy(n) and l2

B = 1
eB . The corresponding single-particle

Green’s function is

G(kz, ky, x, x′, ω) =
∑

n

φ∗
n

(
x − kyl2

B

)
φn

(
x′ − kyl2

B

)
ω − ξn(kz ) + i

2τ
sgn(ω)

, (4)

where ξn(kz ) = E (n, kz ) − EF . Here, I have included a
phenomenological scattering time τ without worrying about
its microscopic origin and assumed it to be field independent.
This will be revisited later. Throughout this work, it will be
assumed that scattering is weak so that 1/τ → 0.

III. LONGITUDINAL MAGNETOCONDUCTIVITY

In calculating the longitudinal magnetoconductivity σzz, I
closely follow Abrikosov [18], who first calculated the same
for a parabolic dispersion. Using the Kubo formula,

σzz(B) = Re
e2

(2π )3

∫
dω

nF (ω) − nF (ω + 
)




∫
dkzdkydx′vz(kz )GR(kz, ky, x, x′, ω)vz(kz )GA(kz, ky, x′, x, ω + 
). (5)

Here, nF is the Fermi function, vz = ∂E
∂kz

= ∂εz

∂kz
, GR(A) is the retarded (advanced) Green’s function corresponding to Eq. (4), and


 is the external frequency. At T = 0, 
 = 0, the frequency integral pins all energies on the Fermi surface. Using Eq. (4) in
Eq. (5), I have

σzz(B) = e2

(2π )3

∑
n,n′

∫
dkzdkydx′ v2

z (kz )

ξ 2
n (kz ) + 1

4τ 2

φ∗
n

(
x − kyl2

B

)
φn

(
x′ − kyl2

B

)
φ∗

n′
(
x′ − kyl2

B

)
φn′

(
x − kyl2

B

)
.

Using the fact that the Landau level eigenfunctions form an
orthonormal complete basis, the integral over x′ gives δn,n′ .
Using this, and completing the integral over ky, I have

σzz(B) = e2eB

(2π )3

∑
n

∫
dkz

v2
z (kz )

ξ 2
n (kz ) + 1

4τ 2

. (6)

Next, I make a change of variable:
∫

dkz → ∫
2

|vz |dξn, where
the factor 2 is included since E is an even function of kz (see
comment [19]). In the limit 1

τ
→ 0, 1

ξ 2
n (kz )+ 1

4τ2
→ 2τπδ(ξn).

Thus,

σzz(B) = e2τeB

2π2

∑
n

|vzn|, (7)

where

vzn = ∂εz(kz )

∂kz

∣∣∣∣
kz=ε−1

z (EF −εxy (n))�0

. (8)

The summation over n runs from 0 to N , the maximum
value of n for which εxy(n) � EF . Equation (7) has a simple
interpretation. The magnetic field has reduced the three-
dimensional spectrum into a set of one-dimensional bands
dispersing along kz, each with a degeneracy proportional to
B. The total conductivity is the sum of the velocity in the z
direction at the Fermi energy contributed by all the partially
occupied bands. As shown in Fig. 1, the number of such bands
is given simply by the number of bands EF crosses—this cor-
responds to N . At very high magnetic fields, only the lowest
band is occupied (N = 1), which contributes to transport. This
is a purely quantum regime. As the magnetic field decreases,
more bands get populated by going below the Fermi level.
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FIG. 1. In a magnetic field, a three-dimensional spectrum is re-
duced to a set of one-dimensional bands dispersing in the direction
of the field. The sum in Eq. (7) is over those bands that intersect the
Fermi energy EF .

When the number of occupied levels is large (N � 1), one
enters the semiclassical regime. In this regime, with change
in B, the sum in Eq. (7) changes in two ways: a part that
evolves smoothly and another that changes abruptly due to a
sudden change from N to N + 1 each time an extra band gets
populated. Together, they give rise to LMR, the former ap-
pearing as a smooth background while the latter manifesting
as quantum oscillations. Quantum oscillations are vestigial
signatures of quantum effects in the semiclassical regime. The
fully quantum regime along with quantum oscillations in the
semiclassical regime have been extensively studied before by
Arbrikosov [18] and others [15,21] as manifestations of quan-
tum effects. However, the smooth background is considered
to be purely classical, described by the kinetic theory, devoid
of any quantum effects. Below, through explicit calculations, I
show that this is not correct: the smooth background contribu-
tion to LMR also inherits an intrinsic quantum contribution,
hitherto unexplored, with interesting consequences.

As a simple example, consider first a parabolic spectrum:

εxy(kx, ky) = k2
x +k2

y

2m , giving εxy(n) = (n + 1
2 )ωc, where ωc =

eB
m , and εz(kz ) = k2

z

2m . Then, vzn =
√

2
m

√
EF − (n + 1

2 )ωc. The
summation over n in Eq. (7) can be converted into an integral
by using the Euler-MacLaurin formula (see Supplemental
Material [22]). Ignoring the oscillating part and keeping only
the smooth part up to O(B2), I find

σzz(B) ≈ σzz(0)

[
1 − 1

32

ω2
c

E2
F

]
, (9)

where σzz(0) = n0e2τ
m , with n0 = (2mEF )3/2

6π2 being the zero-field
charge density. Thus, even for a parabolic spectrum, the longi-
tudinal conductivity is magnetic field dependent. This should
be contrasted with the kinetic theory result, which predicts
the absence of any field dependence. The field-dependent part
scales with ωc

EF
instead of ωcτ , confirming its quantum origin.

The negative sign implies that LMR, obtained by taking the
inverse, is positive.

I now generalize the above idea to a general spectrum. The
Landau levels εxy(n) no longer have a simple analytical form.

They are, instead, derived from the semiclassical quantization
condition,

Sl2
B = 2π (n + γ ), (10)

where S(ε) is the area of the surface enclosed by the isoenergy
contour εxy = ε in the two-dimensional k space and γ is the
semiclassical phase. It is easy to check that for a parabolic
dispersion, S(ε) = π (k2

x + k2
y )|εxy=ε = 2πmε and γ = 1

2 re-
produce the correct Landau level spectrum ε(n) = (n + 1

2 )ωc.
When the dispersion is nonparabolic, two changes arise: S(ε)
is no longer the area of a circle and, more importantly, γ is
no longer a constant but a function of ε itself. While S(ε) is a
simple geometrical quantity, calculation of γ (ε) requires more
care. In the simplest case where singularities in the isoenergy
contours and interband effects can be ignored, it was shown
by Roth that [20,21]

γ (ε) − 1

2
= eB

48π

∂

∂ε

∫
δ(εxy − ε)

[
m−1

xx m−1
yy − (

m−1
xy

)2]
d2k,

(11)
where m−1

αβ = ∂2εxy

∂kα∂kβ
. This can be written in terms of the two-

dimensional orbital magnetic susceptibility χ . According to
the Landau-Peierl’s formula [20],

χ (ε) = − e2

24π2

∫
δ(εxy − ε)

[
m−1

xx m−1
yy − (

m−1
xy

)2]
d2k. (12)

Combining the two,

γ (ε) − 1

2
= −πB

2e

∂χ

∂ε
. (13)

Going back to Eq. (7), the sum is once again computed using
the Euler-Maclaurin formula, but keeping in mind that now a
change in n is accompanied by changes in both S and γ [21].
Ignoring the oscillating part and keeping only the smooth part
up to O(B2) as before, I find

σzz(B) ≈ σzz(0) −
[
∂|vz|
∂ε

χ

∣∣∣∣
ε=0

+
∫ EF

0

∂|vz|
∂ε

∂χ

∂ε
dε

]
e2τ

4π
B2

= σzz(0) − αB2. (14)

Here, ∂|vz |
∂ε

≡ ∂|vz |
∂εxy

∣∣∣∣
εxy=ε

, where vz is evaluated from Eq. (2) and

expressed in terms of εxy [similar to Eq. (8) but now in (kx, ky )
space]. The expression for LMR is obtained by inverting
Eq. (14): ρzz(B) ≈ ρzz(0) + αB2, where ρzz = 1

σzz
. Equation

(14) clearly shows that the quantum contribution to LMR in
a three-dimensional system is intimately related to the orbital
magnetic susceptibility of the corresponding two-dimensional
spectrum, confirming their common origin.

A remarkable feature of Eq. (14) is that the two terms
constituting the coefficient α need not be of the same sign;
therefore, α can pick a sign depending on which term wins. In

the parabolic case, vz = kz

m =
√

2
m

√
EF − ε and χ = − e2

12πm

[from Eq. (12)]. The latter is independent of energy, so the
second term constituting α drops out and the expression in
Eq. (9) is recovered with α positive. However, once the disper-
sion becomes nonparabolic, the second term becomes nonzero
and opposite in sign to the first term. For a sufficiently non-
parabolic spectrum, α becomes negative, resulting in NLMR.
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FIG. 2. Dependence of α (in arbitrary units) on EF (in units of t)
in longitudinal conductivity, σzz(B) = σzz(0) − αB2, for the separa-
ble spectrum in Eq. (1) with εxy = 4t − 2t[cos(kxa) + cos(kya)] and

εz = k2
z

2m . The solid line is according to the analytical expression in
Eq. (14). The solid circles represent numerically calculated values
obtained by fitting the curves in Fig. 3 to the quadratic equation
above. At small EF , the spectrum is close to parabolic and α is
positive. However, as EF is increased, the spectrum becomes non-
parabolic and α becomes negative—in this regime, LMR is negative.

Note that for this to happen, it is sufficient to have only the
two-dimensional spectrum εxy nonparabolic; the dispersion
along the magnetic field, εz, can still be parabolic. To il-
lustrate this, consider the spectrum εxy = 4t − 2t[cos(kxa) +
cos(kya)] and εz = k2

z

2m , where t is the nearest-neighbor hop-
ping parameter on a square lattice of lattice constant a. Using
Eq. (12), one finds [17] χ (ε) = e2

12ta2π2 Q1/2[1 − (ε−4)2

8 ], where
Qn[x] is the Legendre function of the second kind and ε is in
units of t . Using this in Eq. (14), the integral is calculated to
compute α. In Fig. 2, the dependence of α on EF is plotted.
At small EF , the spectrum is close to parabolic, and α is
positive. With increase in EF , nonparabolicity becomes more
pronounced and, at some value, α switches sign and becomes
negative, resulting in NLMR. Equation (14) along with its
consequences form the main result of this paper.

IV. NUMERICAL CALCULATION

As further proof, I now present an exact numerical
evaluation of Eq. (7), which is then compared with the ana-
lytical result in Eq. (14). The Landau level spectrum εxy(n)
corresponding to εxy(kx, ky) = 4t − 2t[cos(kxa) + cos(kya)]
is calculated numerically on a lattice model (see Supple-
mental Material [22] for details). Using Eq. (8), vzn =√

2
m

√
EF − εxy(n) is computed. This is inserted in Eq. (7)

and the sum is evaluated numerically as a function of the
field. This yields the total σzz(B), which includes both the
smooth as well as the oscillating parts. To remove the oscil-
lating part, a small temperature is introduced. Temperature
influences the two contributions differently: it introduces a
negligible correction ∼(

T
EF

)2
(Sommerfeld correction) in the

smooth part, but reduces the oscillating part exponentially
as ∼e−T/ωc for T � ωc. This is exploited to suppress the
oscillating part and reveal the smooth part of σzz(B). Note that
this is not just a theoretical trick, but also has experimental
relevance: to observe the predicted behavior in the smooth

FIG. 3. Dependence of δσzz = σzz(B) − σzz(0) (in arbitrary units)
on B (expressed in terms of flux over flux quantum) at different val-
ues of EF (in units of t) obtained by evaluating Eq. (7) exactly—see
text. The spectrum is the same as in Fig. 2: εxy = 4t − 2t[cos(kxa) +
cos(kya)] and εz = k2

z
2m . A nonzero temperature T = 0.1t has been

used to suppress the quantum oscillations. At small values of EF , σzz

decreases with B, whereas at larger values of EF , it increases—in this
regime, LMR is negative.

part of LMR, one needs to be in the regime ωc � T � EF .
The effect of temperature is included by using the formula
σzz(EF , T ) = ∫

(− ∂nF (E−EF )
∂E )σzz(E , 0)dE . The results are pre-

sented in Fig. 3. As expected, σzz(B) varies quadratically
with the field. At small values of EF , it decreases with the
field, leading to positive LMR, while at larger values of EF ,
it becomes an increasing function of the field, leading to
NLMR. The curves are fitted and the coefficient α is extracted.
The extracted values of α are plotted in Fig. 2 alongside
the analytical curve. It is seen that they are in excellent
agreement.

V. EFFECT OF FIELD ON SCATTERING TIME

In arriving at Eq. (7), the scattering time τ was assumed
to be a phenomenological constant. In a microscopic theory,
τ depends on the density of states and, therefore, should
change with the field. More importantly, since τ is inversely
proportional to the density of states, one can wonder whether
it will kill all the field dependence in σzz found so far. It turns
out that this is not the case. This can be shown explicitly
by considering a simple model where δ-function impurities
are scattered randomly in a system with a parabolic spec-
trum. Assuming weak and dilute impurities, within the first
Born approximation one finds (see Supplemental Material
[22]) τ−1 = niU 2

0
eB
π

∑N
n=0

1
|vzn| , where U0 is the Born scatter-

ing amplitude and ni is the density of impurities. Inserting
this in Eq. (7), it is clear that a cancellation does not oc-
cur. Carrying out the summation over the Landau levels as
before (see Supplemental Material [22]), I find τ ≈ τ0

[
1 −

1
96

ω2
c

E2
F

]
, where τ0 is the scattering time in the absence of

the field. Using this in Eq. (9), I get σzz(B) ≈ σzz(0)
[
1 −

1
24

ω2
c

E2
F

]
. The field dependence in τ , instead of destroying LMR,

accentuates it.
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VI. CONCLUDING REMARKS

To summarize, I have shown that a nonzero LMR can
arise in any dispersion in weak magnetic fields, in contrast
to the prediction of kinetic theory which states that LMR
is nonzero only for dispersions of certain kinds. This arises
because a magnetic field affects electronic transport not only
kinetically, but also by modifying the density of states. The
mechanism is inherently quantum in spite of manifesting in
the classically weak-field regime. Importantly, the quantum
contribution to LMR can become negative if the dispersion is
sufficiently nonparabolic, even if the latter has no topological
features. It is found that it is related to the orbital magnetic
susceptibility. While the theory presented here considered the

simplest case of a single isolated band, it can be extended to
include coupled bands. Such extensions are important in the
context of topological systems and will be investigated in the
future.
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