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Spin-resolved thermal signatures of Majorana-Kondo interplay in double quantum dots
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We investigate theoretically the thermoelectric transport properties of a T-shaped double quantum dot side-
coupled to a topological superconducting nanowire hosting Majorana zero-energy modes. The calculations are
performed using the numerical renormalization group method focusing on the transport regime, where the system
exhibits the two-stage Kondo effect. It is shown that the leakage of Majorana quasiparticles into the double dot
system results in a half-suppression of the second stage of the Kondo effect, which is revealed through fractional
values of the charge and heat conductances and gives rise to new resonances in the Seebeck coefficient. The heat
conductance is found to satisfy a modified Wiedemann-Franz law. Finally, the interplay of Majorana-induced
interference with strong electron correlations is discussed in the behavior of the spin Seebeck effect, which is a
unique phenomenon of the considered setup.
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I. INTRODUCTION

At the time of its publication, Ettore Majorana’s rederiving
of the Dirac equation in terms of real wave functions [1],
the solution of which pointed at a particle that is its own
antiparticle, has not attracted much attention. The situation
has changed after the Kitaev’s proposal to realize Majorana
fermions as quasiparticles in quantum wires and to utilize
their non-Abelian statistics in quantum computation proto-
cols [2–6]. The enormous interest in this field stems from the
topological protection of Majorana quasiparticles, allowing
for fault-tolerant computation [3,4,7–10]. It exploded after the
first experimental observation of Majorana signatures [11],
which followed earlier theoretical proposals [12,13]. Since
then, fabrication of the so-called Majorana wires has been
reported by numerous groups, with still improving qual-
ity of the characteristic Majorana features in increasingly
sophisticated nanostructures [10,14,15]. Up to recently, the
Majorana signatures were in fact reduced to detection of
zero-bias peaks corresponding to single-electron conductance
through the superconducting wire, which is not possible in
a trivial Cooper-pair dominated medium. However, this laid
ground to a controversy, since such an anomaly can also be
a fingerprint of zero-energy Andreev states [16–18] or weak
antilocalization effects [19]. With the recent interferometric
experiments [20,21], unified theoretical picture [15,22], and
prediction of Majorana oscillations in the microwave spectra
as further candidates for signature of the presence of Majorana
bound states [23], the controversy may seem close to the
conclusion supporting the existence of localized Majorana
zero-energy modes (MZMs) at the ends of topological su-
perconductor wires, but the discussion among the community
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continues [24]. Meanwhile, the tremendous improvement of
experimental techniques may lead to realization of Majorana
modes also in strongly correlated systems involving quantum
dots (QDs) [25]. Here, we examine unconventional (magnetic
and thermoelectric) signatures of MZM presence in an exam-
ple of such a device.

Generally, strong electron correlations can lead to various
forms of the Kondo effect [26,27], different types of supercon-
ductivity and magnetism, or non-Fermi-liquid phases [27–30],
to name just a few. Only very recently have this field reached
into the realms of topological materials, such as topolog-
ical Kondo insulators [31], Weyl-Kondo semimetals [32],
and—most relevant for our study—Kondo-Majorana inter-
play [33,34]. In this paper, we thus seek for interesting
features at the crossroads between strong electron correlations
and topologically protected Majorana modes, exploiting a tun-
able playground of quantum dot systems [25]. It is important
to note that there exists a number of works concerning the
Majorana-Kondo physics. A study of a nanowire in-between
two leads revealed a fixed point distinct from the conven-
tional Kondo one [35]. In setups with multiple Majorana
wires, the topological Kondo effect may appear [36], and in
some cases, the mapping onto multichannel Kondo model is
possible [37]. Very recently, a novel correlation-fueled mech-
anism has been proposed to obtain mobile Majorana modes
in exotic two-channel Kondo insulators [38]. Moreover, in
various T-shaped configurations, very similar to existing ex-
perimental setups for MZM detection [15,25], perturbative
RG analysis indicates yet another distinct fixed point [33],
with robust strong-coupling nature and independence of the
Kondo temperature TK on the coupling to Majorana wire
VM [33,34]. Numerical studies confirm the former [39], and
even show that TK increases with enhancing the coupling to
the Majorana mode in the case of single quantum dots [40,41].
In addition to the modification of the relevant energy scales
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FIG. 1. The schematic of the considered system. The first quan-
tum dot (of on-site energy ε1 and Coulomb correlations U1) is
connected to metallic leads with the strength �r , with r = L(R), for
the left (right) contact. The second quantum dot (of on-site energy
ε2 and Coulomb correlations U2) is coupled to the topological super-
conducting nanowire, hosting Majorana quasiparticles denoted by γ1

and γ2, with coupling matrix elements VM . The hopping between the
dots is described by t . The nanowire temperature is assigned as T
and there is a temperature �T and chemical potential �μ gradient
applied between the leads.

[25,39,42–44], the side coupling to Majorana wire also gives
rise to new fractional values of the conductance. In particu-
lar, for single dots, a 25% reduction of the conductance to
3e2/2h has been found [39,41]. However, in this case, the
relative change is not large and may be difficult to be detected.
Much more interesting in this regard is a double quantum
dot (DQD) scenario, where the two-stage Kondo effect de-
velops [45–49], in which at low temperatures the conductance
becomes fully suppressed. The presence of Majorana mode
results then in an increase of the conductance to some new
fractional value [44]. Consequently, the relative change in-
duced by the Majorana mode is much more pronounced in
the case of double dots as compared to single quantum dot
setups. Besides, the considered system allows us to address
more fundamental questions regarding the Majorana-Kondo
interplay in the presence of more exotic Kondo states. While
such questions have already been partly addressed in the case
of electronic transport, their thermoelectric signatures remain
still rather unexplored. Therefore the main focus of this paper
is on the caloritronic transport properties of a T-shaped double
quantum dot side-attached to Majorana wire, as schematically
depicted in Fig. 1.

Studying the response of the system subject to thermal
gradient gives an important information about the interplay
between the Majorana and Kondo physics. Signatures of such
interplay have been identified for hybrid devices compris-
ing single quantum dot coupled to metallic leads and to

MZM [50,51]. In this regard, however, the thermoelectric way
of exploring Majorana modes seems particularly unexplored,
especially as far as more complex structures are considered.
This is despite the fact that thermopower can provide addi-
tional insight into the properties of the system, which has been
achieved for Kondo QDs both theoretically [52] and experi-
mentally [53,54], and even more could be taken out from the
spin-resolved caloritronics [51,55]. It has been also predicted
that half-fermionic nature of Majorana quasiparticles may
give rise to the violation of the Wiedemann-Franz law [56–58]
and it should leave various signatures in QDs weakly coupled
with Majorana modes [59–64]. Here, we especially show that
a generalized Wiedemann-Franz law holds for strongly cor-
related DQD-Majorana system, as in other Kondo scenarios
where topology does not play any role [52,65]. Furthermore,
the presence of the second Kondo scale (introduced by the
second QD) in our setup allows for tuning the system into
the regime where the Seebeck coefficient changes sign in the
presence of even very small coupling to the Majorana mode.

Finally, it should be noted that there exist other considera-
tions on DQD Majorana systems [56,66,67], however, these
works do not capture the Kondo regime. We believe that
with rapid improvements in fabrication techniques [68–71],
in particular reducing the necessary magnetic fields [72,73],
construction of such devices would be possible soon, and
we hope that our study will stimulate further efforts in this
direction.

The paper is organized as follows. In Sec. II, we present
the model of the studied system, define the thermoelectric
coefficients and describe the method used in calculations. To
gain an intuitive understanding of the transport behavior, in
the next section we discuss the noninteracting case. The fully
interacting case is analyzed in great detail in Sec. IV. Finally,
the paper is summarized in Sec. V.

II. THEORETICAL FRAMEWORK

A. Model

The schematic of the considered DQD-Majorana setup is
presented in Fig. 1. It consists of two single-level quantum
dots coupled to each other through the hopping t , with one
of the dots attached to the external leads. The second dot is
directly interacting with superconducting nanowire hosting
Majorana zero-energy modes described by the operators γ1

and γ2. The system can be modeled by the following Hamil-
tonian H = Hleads + Htun + HDD−Maj. The first term stands for
the left and right metallic leads, denoted respectively by r = L
and r = R, for the left and right leads, which are modeled as
reservoirs of noninteracting quasiparticles

Hleads =
∑

r=L,R

∑
kσ

εrkc†
rkσ crkσ . (1)

Here, c†
rkσ is the creation operator for an electron with spin σ ,

momentum k and the energy εrk in the lead r. The second term
describes the tunneling processes between the first quantum
dot and the leads. It is given by

Htun =
∑

r=L,R

∑
kσ

vr (d†
1σ crkσ + c†

rkσ d1σ ), (2)

075418-2



SPIN-RESOLVED THERMAL SIGNATURES OF … PHYSICAL REVIEW B 105, 075418 (2022)

with vr denoting momentum-independent tunnel matrix ele-
ments. The operator d†

1σ creates an electron with spin σ in the
first quantum dot. The tunnel coupling results in the broad-
ening of the first dot level, which is given by � = �L + �R,
where �r = πρrv

2
r , with ρr being the density of states of lead

r. In the following, we assume �L = �R ≡ �/2.
The last term of the total Hamiltonian models the subsys-

tem consisting of a double quantum dot and a Majorana wire,
which can be described by the following effective Hamilto-
nian:

HDD−Maj =
∑
j=1,2

∑
σ

ε jd
†
jσ d jσ +

∑
j=1,2

Ujd
†
j↑d j↑d†

j↓d j↓

+
∑

σ

t (d†
1σ d2σ + d†

2σ d1σ )

+
√

2VM (d†
2↓γ1 + γ1d2↓), (3)

where the first three parts model the double quantum dot. d†
jσ

stands for the creation operator for an electron with spin σ

on the jth dot with the energy ε j , Uj is the corresponding
Coulomb correlation energy and the dots are coupled by the
hopping matrix element t . The second quantum dot is cou-
pled to Majorana wire with tunnel matrix elements given by
VM [39,41,42,74]. Note that since the bare double dot Hamil-
tonian (VM = 0) has a full spin symmetry, one can choose the
quantization axis in such a way that it coincides with the Ma-
jorana mode. Because of that, the Majorana wire couples only
to the spin-down electrons on the double dot [39,42,74]. The
Majorana operators, γ1 and γ2, describe Majorana zero-energy
modes at the ends of topological superconducting wire. These
operators can be expressed in terms of an auxiliary fermion
operator f as γ1 = ( f † + f )/

√
2 and γ2 = i( f † − f )/

√
2. In

our considerations, we assume that the wire is much longer
than the superconducting coherence length, such that the Ma-
jorana modes do not overlap [75], unless stated otherwise.

B. Transport coefficients

In this paper, we are interested in the linear-response
thermoelectric transport properties of the setup presented in
Fig. 1. The temperature and voltage gradients, �T and �V ,
respectively, are symmetrically applied to the left and right
contacts, while the topological superconductor is assumed to
be grounded and kept at temperature T . Under such assump-
tions, in the linear response regime, the average electric and
heat currents flowing between the normal contacts and the
wire vanish, provided the system is left-right symmetric [76].
On the other hand, the electric I and heat Ih currents flowing
between the left and right leads in the linear response regime
can be expressed as [77](

I
Ih

)
=

∑
σ

(
e2L0σ − e

T L1σ

−eL1σ
1
T L2σ

)(
�V
�T

)
, (4)

where the functions introduced above, Lnσ , are given by

Lnσ = −1

h

∫
ωn ∂ f (ω)

∂ω
Tσ (ω)dω. (5)

Here, f (ω) denotes the Fermi-Dirac distribution function
for �μ = �T = 0 and Tσ (ω) is the transmission coefficient

through the double-dot-Majorana setup for spin σ . For the
considered system’s geometry, it can be related to the spectral
function of the first quantum dot, Tσ (ω) = π�Aσ (ω), with
Aσ (ω) = − 1

π
Im GR

σ (ω), where GR
σ (ω) is the Fourier transform

of the retarded Green’s function of the first dot, GR
σ (t ) =

−i�(t )〈{d1σ (t ), d†
1σ (0)}〉.

Because in our considerations it is assumed that the Ma-
jorana mode is coupled to the spin-down electrons, it is
interesting to investigate the behavior of spin-resolved trans-
port coefficients [48,78,79]. The linear conductance, Seebeck
coefficient and heat conductance in the spin channel σ can be
expressed as

Gσ =
(

∂Iσ
∂�V

)
�T =0

= e2L0σ , (6)

Sσ = 1

Gσ

(
∂Iσ

∂�T

)
�V =0

= − 1

eT

L1σ

L0σ

, (7)

κσ =
(

∂Ihσ

∂�T

)
Iσ =0

= 1

T

(
L2σ − L2

1σ

L0σ

)
, (8)

where Iσ and Ihσ denote the spin-resolved electric and heat
currents. Considering both spin channels, the total conduc-
tance can be simply calculated with the formula, G = G↑ +
G↓, whereas the total thermopower is defined as [77], S =
−(1/eT )(L1/L0), where Ln = ∑

σ Lnσ . On the other hand,
for the heat conductance one finds, κ = T −1(L2 − L2

1/L0).
We note that in this analysis we only consider the electronic
contribution to the heat conductance, with the contribution
due to phonons is assumed to be negligible. This is justified
in the low-temperature regime considered here.

As can be seen from the above formulas, the main task
is to find the transmission coefficient through the device
and determine the integrals Lnσ in the most accurate way.
We achieve this goal by using the numerical renormalization
group (NRG) procedure [80–82], which allows for construc-
tion of full density matrix [83] and calculation of the relevant
Green functions directly from their Lehmann representation.

To perform the calculations, it is convenient to re-express
the last term of the double dot-Majorana wire Hamiltonian in
terms of an auxiliary fermionic operator f . One then finds,√

2VM (d†
2↓γ1 + γ1d2↓) = VM (d†

2↓ − d2↓)( f † + f ).

III. NONINTERACTING CASE

To make our theoretical discourse complete, we would like
to begin with the description of the noninteracting case. This
allows us to obtain analytical formulas and generate exact
results that will serve as a starting point for the further analysis
when correlations are relevant. In the absence of electron
correlations, it is possible to get an exact solution for the
transmission coefficient by the equation of motion for the
retarded Green’s function. Moreover, the two spin channels
become in practice independent and one can analyze them
separately. Even though in realistic case relaxation processes
would come into play and blur the picture, we nevertheless
find it instructive to perform such an idealized analysis, which
serves as a starting point for the discussion of numerical
results presented in the next section.
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FIG. 2. (Left column) (a) T = 0 transmission coefficient T↑(ω) for ε = ε1 = ε2 indicated in the legend and t = 3�, (b) the conductance G↑
as a function of temperature T (lines) and the shifted thermal conductance κ̃↑ (points, see text for details), and (c) spin-up thermopower S↑. The
right column shows the corresponding plots for the spin-down component. The interaction with Majorana wire is assumed to be VM = �/2.
The inset in (d) zooms the ω ≈ 0 region.

The spin-up transmission T↑(ω) is the same as in the model
without the Majorana wire and equals

T↑(ω) = �2

�2 + (
ω − ε1 + t2

ω−ε2

)2 . (9)

We see that it exhibits two peaks reaching T↑(ω) = 1 at zeros
of the term in the bracket, and T↑(ω) = 0 at ω = ε2. The width
of the peaks is of the order of �. A representative illustration
of these features for ε1 = ε2 = ε is shown in Fig. 2(a). The
maxima of T (ω) correspond to single-particle excitations, in
this case associated with additional spin-up electron occupy-
ing or missing in the double quantum dot.

Whenever the peak of T↑(ω) occurs close to ω = 0, this
mean there are low-energy charge fluctuations, which give
rise to good conductance, as illustrated in Fig. 2(b). This also
applies to normalized thermal conductance κ/T . Actually,
for a Fermi liquid at low T , such that the Sommerfeld ex-
pansion is valid, the Wiedemann-Franz (WF) law is fulfilled,
i.e., L−1

0 κ (T )/T = G(T ), with L0 ≡ π2/3. More generally,
it has been observed that some interacting systems exhibit a
modified WF law [65], where the shifted and rescaled heat
conductance

κ̃ (T ) ≡ κ (αT )/(αT ) (10)

fulfills κ̃/L0 = G for α ≈ 2.
In general, narrow peaks in transmission coefficient close

to the Fermi level can also lead to large thermopower [84].
Its sign depends on the slope of transmission coefficient
and reveals the type of majority charge carriers (electrons
or holes). Moreover, the Seebeck coefficient vanishes at the

particle-hole symmetry point. For low temperatures, via the
Sommerfeld expansion, one finds S↑ ∼ T . On the other hand,
at high T from Eq. (7) follows S↑ ∼ T −1. Such a behavior can
be seen in Fig. 2(c).

Furthermore, the thermopower may also change sign be-
tween different transport regimes. This behavior is visualized,
e.g., by a short-dashed curve in Fig. 2(c) and the correspond-
ing curve in Fig. 2(a). For T � 2t (peaks separation), most of
the relevant spectral weight is above ω = 0 due to the peak
asymmetry, such that electrons overtake holes in transport
and, consequently, S↑ > 0. On the contrary, at high T , the
peak deep below the Fermi energy becomes relevant (i.e.,
holes can be excited there by thermal fluctuations), which
facilitates the hole transport and the sign of S↑ is flipped at
T ∼ 2t .

The results concerning T↑(ω) would be also valid in the
second spin channel, if not for the coupling to the Majorana
mode. From the equation of motion technique, the Green’s
function in the spin-down channel is conveniently found as a
continued fraction,

G↓(ω) = [ω − ε1 + i� − t2/A1(ω)]−1,

A1(ω) = ω − ε2 − 2V 2
M/A2(ω),

A2(ω) = ω − ε2
M/ω − 2V 2

M/A3(ω),

A3(ω) = ω + ε2 − t2/[ω + ε1 + i�], (11)

in agreement with Ref. [56]. Note that the above formula is
quite general and it also takes into account a finite overlap
between Majorana modes [75], which can be included in the
effective Hamiltonian via the term iεMγ1γ2. This overlap is
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determined by the ratio of the superconducting coherence
length to the length of the wire: if the coherence length is
much shorter than the wire, the Majorana modes do not over-
lap and, consequently, εM = 0. Although the expression for
the transmission coefficient is quite cumbersome, it follows
from Eq. (11) via simple algebra and one can give the exact
formulas for T↓(ω) and its derivative at ω = 0,

T↓(0) =
{[

1 + (ε1 − t2/ε2)2/�2
↓
]−1

for εM 
= 0
1
2 for εM = 0

, (12)

T ′
↓(0) =

⎧⎪⎨⎪⎩
(ε1−t2/ε2 )

[
V 2

Mt2+2ε2
M

(
t2+ε2

2

)]
�2

↓ε2
2ε2

M[1+(ε1−t2/ε2 )2/�2
↓]2 for εM 
= 0

ε2

4V 2
M

− ε1ε
2
2

4V 2
Mt2 − ε1

t2 for εM = 0
. (13)

Quite strikingly, for εM = 0 the transmission becomes com-
pletely universal at low energies, T↓(0) = 1/2 [44,56], which
is a clear manifestation of half-fermionic nature of Majorana
quasiparticles. Moreover, T ′

↓(0) becomes independent of �,
as the width of the spectral features close to ω = 0 is set
by the strength of the coupling to the Majorana mode, VM .
It seems noteworthy that T↓(εM ) = 1/2 + O(εM ), so even
though T↓(0) is not universal for finite εM , at nonzero tem-
peratures T ∼ εM one should expect results obtained for T =
εM = 0 to be relevant. From now on, let us focus on the
εM = 0 case, i.e., long Majorana wire case.

The features discussed above for the spin-down component
are visible in Fig. 2(d), and especially in the inset there. How-
ever, as is clear from the main plot, far from the Fermi level,
the behavior of T↓(ω) very much resembles that of T↑(ω),
compare Fig. 2(a) with Fig. 2(d). Whenever T↓(ω) has no peak
close to ω = 0, just an additional (in general asymmetric)
peak appears, such that T↓(0) = 1/2. Yet the peak of T↑(ω)
at ω = 0 visible in Fig. 2(a) for a short-dashed curve splits
into three peaks visible in T↓(ω), separated approximately by
VM . The peaks at ω ≈ ±VM somewhat resemble the case one
would get if Majorana wire was replaced by usual resonant
level, while the third peak remains a unique Majorana signa-
ture.

The properties of T↓(ω) reveal in the corresponding
transport characteristics of the system. G↓(T → 0) = e2/2h,
irrespective of ε, as can be seen in Fig. 2(e), where the low
temperature limit is reached at T ∼ �M ≈ V 2

M/t . The modified
WF law is still well satisfied at low temperatures, compare
the curves and points in Fig. 2(e). On the other hand, the
Seebeck coefficient S↓(T ) exhibits an additional sign change
for ε away from the resonance, what cannot be seen for the
spin-up component of the thermopower, cf. Figs. 2(c) and 2(f).
This sign change occurs for T/� ≈ 0.1, and can be related to
the corresponding change of slope of the linear conductance,
as described by the Mott’s formula

S↓ ≈ −π2

3

k2
B

e

T

T↓(0)

∂T↓(ω)

∂ω
. (14)

IV. NUMERICAL RESULTS AND DISCUSSION

The considered system reveals interesting effects associ-
ated with the interplay between the Kondo and Majorana

physics, as compared to bare double quantum dot. In the fol-
lowing sections we present and discuss the numerical results
obtained with the aid of the numerical renormalization group
method for the fully interacting case. At the beginning, we
analyze the spin-resolved charge and thermal conductance in
the context of the Wiedemann-Franz law and its persistence in
the presence of topological superconductor. We also exam-
ine the Majorana-induced current spin polarization. Then,
we study the thermopower S, where Majorana-induced sign
change is observed. In the discussion we focus on the two
regimes of hopping between quantum dots: the weak and
strong ones. The weak interdot hopping regime is characteris-
tic of the two-stage Kondo effect, whereas when the hopping
is strong, a molecular singlet state forms between the dots and
the Kondo correlations are less important.

In NRG computations we take the discretization parameter
� = 2–2.5 and keep at least 3000 states during the proce-
dure of iterative diagonalization. All energies are expressed in
terms of band half-width D, which is used as energy unit D ≡
1. We set the Coulomb interaction U1 = U2 ≡ U = 0.2, while
the first quantum dot is coupled to metallic leads with strength
�L = �R ≡ � = U/10. Unless otherwise stated, the energy
levels of quantum dots are set as ε1 = ε2 ≡ ε = −U/3. We
note that although we focus on the case of symmetric dots,
the results presented here are also valid for slightly asym-
metric systems, i.e., dots having different charging energies,
couplings to the contacts and detuned levels, as long as the
system is in the Kondo regime.

A. Persistence of the modified Wiedemann-Franz law

To begin with, in Figs. 3 and 4, we present the spin-
resolved and total linear conductance as a function of
temperature, calculated for different values of the coupling
to the Majorana zero mode in the case of weak (Fig. 3) and
strong (Fig. 4) hopping t between the quantum dots. For the
weak value of hopping, lack of the coupling to superconduct-
ing nanowire results in the typical two-stage Kondo behavior,
where besides the Kondo temperature TK , defined as [85]

TK =
√

�U

2
exp

[
π

2

ε1(ε1 + U )

�U

]
, (15)

one can define another energy scale T ∗, the so-called second-
stage Kondo temperature, at which the total conductance
drops to zero [46]

T ∗ ≈ αTK exp (−βTK/Jeff ), (16)

with Jeff = 4t2/U and α, β dimensionless constants of the
order of unity. This drop is the result of spin screening of the
second quantum dot [46,65]. As can be seen in the figures, for
t = 0.02U , T ∗ ≈ 10−6U , whereas for t = 0.1U , there is only
a small resonance due to the Kondo effect at the first quantum
dot, which becomes quickly suppressed as T is lowered. One
can then estimate T ∗ ≈ TK . Consequently, T ∗ is a few orders
of magnitude larger in the case of t = 0.1U compared to the
case of t = 0.02U . When the coupling to the Majorana wire
is turned on, it starts to play a main role in the electronic
transport through the system. In the low-temperature regime,
one observes competitive interplay between the Kondo and
Majorana physics, causing the reduction of the second dot
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FIG. 3. (a) The spin-up G↑, (b) spin-down G↓, and (c) total
conductance G plotted as a function of temperature. The points in
(c) present the rescaled heat conductance κ̃ ≡ κ (αT )/(αT ) with
α = 2. The parameters are U = 0.2, � = 0.1U , t = 0.02U , and
ε1 = ε2 = −U/3. Please note that the curves for G↑ overlap when
VM/U � 10−4, since the energy scale associated with the coupling
to Majorana wire is smaller than the Kondo energy scale. This is
contrary to G↓, where due to direct coupling to Majorana wire quan-
tum interference results in suppression of the second stage of the
Kondo screening, lifting the conductance, already for small coupling
VM/U ≈ 10−6.

screening, lifting conductance to the value of e2/2h, which
comes mainly from the spin-down contribution. Higher values
of VM affect also the spin-up electrons, rising the conductance
over e2/2h to reach its maximum value for weak hopping
between the dots, see Fig. 3(a). Consequently, the existence
of Majorana mode in the system has a great impact on the
spin-resolved transport channels, utterly destroying the sec-
ond stage of the Kondo effect, which can be seen as the rise of

FIG. 4. The same as in Fig. 3 calculated for t = 0.1U .

the total conductance from e2/2h to 3e2/2h in the low temper-
ature regime, which happens for VM/U � 10−3, see Fig. 3(c).
The maximum of the conductance develops for T ∗ � T � TK ,
and is being reduced due to spin-down electrons contribution,
which are more affected within the whole energy spectrum.

Enhancing the inter-dot interaction (see Fig. 4), one can
observe that the competition between the coupling to the
Majorana wire and the hopping becomes more fierce, which
is especially visible in the spin-down component of G and the
total conductance of the system. In this regime G↓ and, thus,
G are being raised to e2/2h at the characteristic energy scale
ω ∼ �M [44]. For larger values of VM , contrary to the case of
t = 0.02U , the Kondo effect does not develop fully even when
VM is on the order of U , which is due to the formation of a
molecular singlet state between the dots with binding energy
of the order of the Kondo temperature, see Fig. 4.

Let us now focus on Figs. 3(c) and 4(c) where the
rescaled thermal conductance in the units of temperature,
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κ̃ ≡ κ (αT )/(αT ), is plotted (dotted lines) with colors corre-
sponding to the values of VM/U of the charge conductance.
Comparing the rescaled thermal conductance and the charge
conductance allows us to analyze the Wiedemann-Franz
law [86], which states that κ/T = GL0, with L0 = π2/3.

It has been shown that in transport through the Majo-
rana wire in different configurations the Wiedemann-Franz
law is violated [57]. Also, in a more general case of a
multi-terminal superconducting island, the violation of the
Wiedemann-Franz law has been proposed as a means to de-
tect topological character of the superconductor [58]. On the
contrary, it has been demonstrated that for single [52] and
double quantum dot setup without Majoranas [65], a modified
Wiedemann-Franz law can be introduced, L−1

0 κ (αT )/(αT ) =
G, which is satisfied with good accuracy up to temperatures
T ∼ U . The key result we show here is that such modified
law, quite surprisingly, also persists in the presence of cou-
pling to topological superconducting wire. As can be seen
in Figs. 3(c) and 4(c), with α ≈ 2, the rescaled thermal con-
ductance κ̃ retraces the charge conductance even for higher
values of VM . In particular, the rescaled heat conductance
in the second-stage Kondo regime rises to the quarter of its
maximal value. This proves that whatever fractionalization
of the effective particles takes place in the DQD structure, it
is the same for charge and heat carriers, i.e., no separation
of charge and heat transport takes place. This is in contrast
to results obtained in Refs. [58,87], where excitations of the
superconducting island in the topologically nontrivial phase
are composed partially of electrons and partially of Andreev-
reflected holes, such that the heat and charge currents are
no longer simply proportional. This apparent difference is
a consequence of the heat and charge current not flowing
through the topological superconductor in the setup proposed
here. Instead, heat and charge carriers in DQD structure have
a Fermi-liquid character, and behave qualitatively similar to
the noninteracting case discussed in Sec. III. The coupling
to the Majorana mode leads to interferometeric effects, in
particular, universal fractional values of both conductances,
yet the local spectrum structure of DQD remains qualitatively
different than inside the topological superconductor, in partic-
ular, the mutual coupling of heat and charge transfers is not
altered. With the Wiedeman-Franz law qualitatively correct
in the proposed setup, in the following sections we proceed
to pinpoint the signatures of the Majorana modes presence
in other spin-resolved transport characteristics of the device,
such as the current spin polarization and the (spin) Seebeck
effect.

B. Majorana-induced current polarization

Maintaining our focus on the conductance, before the be-
havior of the Seebeck coefficient is discussed, let us take a
gander on Fig. 5, where the current spin polarization is plotted
as a function of VM for multiple values of the DQD level
positions for weak and strong hopping between quantum dots
in the low-temperature regime with T = 10−10U . The spin
polarization of the current can be defined as

P = G↑ − G↓
G↑ + G↓

. (17)

FIG. 5. The current spin polarization P as a function of VM (note
the logarithmic scale) for multiple values of DQD level positions
ε1 = ε2 ≡ ε out of the particle-hole symmetry point, calculated for
(a) t = 0.02U and (b) 0.1U . The other parameters are the same as
in Fig. 3 with T = 10−10U . Note that due to very low values of
integrals Lnσ there are oscillations in P for VM � 10−3U that should
be considered as numerical error, which does not affect qualitative
behavior of presented results.

Usually, in systems such as quantum dots, finite spin polar-
ization of the current is accompanied with suppression of the
Kondo effect [88]. External magnetic field [89] or ferromag-
netic leads [90], which usually introduce the spin imbalance
of current carriers, split the Kondo peak and eventually cause
it to disappear. In the case of the system studied here, the
spin polarization is associated with the coupling to topological
superconductor and it is not necessarily accompanied with
suppression of the Kondo state.

In Fig. 5(a), the current spin polarization for weak hopping
t/U = 0.02 is shown. First, we note that P = −1 when the
system is at the particle-hole symmetry point, ε = −U/2,
within the whole range of VM . This is due to the fact that
G↑ is then suppressed due to the two-stage Kondo effect,
while G↓ = e2/2h, due to the quantum interference with the
Majorana wire. Let us now analyze what happens when de-
tuning from ε = −U/2 is turned on. Starting with the case
of ε = −0.49U , for low values of VM , G↑ is suppressed due
to the second-stage Kondo effect (note that T = 10−10U ),
but finite value of VM affects the Kondo state giving rise
to small but finite G↓. It results in a perfect negative spin
polarization P ≈ −1, quite a remarkable feature in the fully
screened Kondo regime, stressing its unusual character. This
result holds up to VM ≈ 10−2U , when further increase of
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VM eventually affects the spin-up conductance restoring the
first-stage Kondo effect when VM � 10−2U . This leads to an
increase of spin polarization to a moderate positive value for
VM ≈ U .

Shifting the DQD levels further from the particle-hole sym-
metry point, the effect of perfect spin polarization with P ≈
−1 becomes distorted, which is due to Majorana-induced
splitting, which grows with detuning the levels [39,41], as
well as the fact that the low-temperature second-stage Kondo
conductance attains a finite value. As a consequence, the spin-
up conductance is being lifted, while the spin-down channel
remains approximately intact. Moreover, smaller values of VM

are now needed to increase G↑. This manifests itself as a shift
in sign change of P toward lower values of the Majorana
interaction. Such behavior is maintained until ε crosses the
point where T ∗ ≈ �M , which appears at ε ≈ −0.25U . For ε

above this value, the spin polarization becomes suppressed,
P ≈ 0, for low coupling to the superconducting nanowire.
Increasing VM leads to the spin polarization sign change,
setting it positive at P ≈ 0.25. This abrupt change is due to
entering the regime, at which both spin-up and spin-down
channels take part in transport, with G↓ = e2/2h for a sig-
nificant range of VM . Finally, reaching the resonance point
ε ≈ 0, low Majorana coupling limit exhibits a rather strong
positive spin polarization, while for larger values of VM , P
becomes almost suppressed due to comparable contribution
of both spin channels.

Considering the case of strong hopping between quantum
dots shown in Fig. 5(b), one can see that the spin polarization
takes values similar to the ones already discussed, however,
the range of VM where, e.g., P < 0 develops is now extended.
Strong enough t blocks the conductance in both spin channels,
nevertheless, the interplay of Kondo and Majorana physics
can result in an increase of conductance and the corresponding
behavior of P . While G↑ is damped for almost whole energy
level spectrum, G↓ behaves similarly as in the Kondo regime,
being half-suppressed for VM � 10−5U . It leads to almost
full negative spin polarization for dot level position between
ε ≈ −0.66U and ε ≈ −0.33U (±U/6 around the particle-
symmetry point). Above (below) the aforementioned range,
G↑ starts to increase, lifting P towards zero, finally changing
the sign of spin polarization at resonance.

To sum this section up, we have shown that the finite
coupling to the Majorana wire results in nonzero spin po-
larization. Furthermore, this spin polarization can have large
negative values and it changes sign depending on the strength
of coupling to topological superconductor and the position of
the double dot levels.

C. Majorana-induced thermopower sign change

The following section will expand the discussion to an-
other important thermoelectric effect—the thermopower (or
the Seebeck coefficient). In general, for a Fermi liquid (FL) at
sufficiently low temperature T , S follows the Mott formula
based on the Sommerfeld expansion, with its characteristic
S ∼ T dependence [77], cf. Eq. (14). This is valid when T
is smaller than all energy scales characterizing given FL.
Typically, Fermi liquid features a peak in T (ω) at ω = ω0

FIG. 6. The Seebeck coefficient S as a function of temperature
for (left column) t = 0.02U , (right column) t = 0.1U , and multiple
values of VM as indicated in the legend. The other parameters are the
same as in Fig. 3.

corresponding to quasiparticle energy level, of width �eff in-
versely proportional to the quasiparticle life time. For T �
ω0, �eff , the linear dependence of thermopower follows from
the Mott formula (14). On the other hand, for T � ω0, �eff ,
the integrals in Eq. (5) in fact average all the ω dependence
out and the T −1 term from Eq. (7) remains [91]. This leaves
S(T ) no choice, but to exhibit a peak at T ∼ ω0, �eff , with a
sign depending on which slope of T (ω) is present at ω = 0.

This picture repeats itself in a series of peaks of alternating
sings in T-shaped double quantum dots, where the two-stage
Kondo effect is present [65]. Three FLs are involved there:
at elevated T ∼ U , even QD levels deep below Fermi level
contribute to the transport. Transport is suppressed in the
Coulomb blockade regime TK � T � U , where relevant ex-
citations do not form a FL, only to rise again at T below TK ,
when FL character of relevant degrees of freedom is restored
and another peak appears in S(T ). Similar scenario happens
for T < T ∗, then only the spectral function of the second dot
exhibits a peak, while T (ω) shows the corresponding dip,
leading to a peak in S(T ) of opposite sign.

1. Temperature dependence

The situation becomes even more interesting in the
presence of topological superconductor. In Fig. 6, the spin-
resolved Seebeck coefficient for multiple values of VM and
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two selected values of t is presented. For relatively weak
hopping t = 0.02U (see the left column of Fig. 6), coupling
the system with Majorana mode causes the low-temperature
sign change of the spin-down and total thermopower, see
Figs. 6(c) and 6(e). This picture directly reflects the behavior
of the conductance presented in Fig. 3, where an increase of G
with lowering T is observed. For 10−6U � VM � 10−4U , i.e.,
when �M is smaller than Kondo-related energy scales, there is
the corresponding minimum in S↓ and (thus in) S occurring at
T ∼ �M . At this temperature, the resurgence of conductance
G is observed, and according to the Mott formula, a sudden
change of the thermopower can be expected. Stronger cou-
pling with the superconducting nanowire results in shallowing
of the minimum, which one can relate to stronger Majorana-
Kondo competition in the system. For values of VM up to about
10−4U , the low-temperature transport is dependent only on
the spin-down electron channel. However, increasing the in-
teraction between the Majorana mode and the second quantum
dot, additional contribution from spin-up electrons emerges,
see Fig. 6(a). The minimum of thermopower is then being
reduced and only positive peaks of the Seebeck coefficient,
combined from the spin-up and spin-down electron channels,
remain. Moreover, stronger coupling to the Majorana wire in-
creases the second-stage Kondo temperature T ∗, which results
in shifting of thermopower peak toward higher temperatures.
We also note that the behavior of the Seebeck coefficient
at higher temperatures, i.e., T � TK , is consistent with that
predicted for single quantum dots [52,92].

The quantum interference with Majorana zero-energy
mode is much better visible in the case of strong hopping
between the dots, which is presented in the right column of
Fig. 6. In this regime, one can notice a series of minima of the
Seebeck coefficient corresponding to T ∼ �M . As long as VM

is not strong enough to dominate the transport in the system,
the prevailing spin-down electron contribution is observed,
where the coupling to the superconducting nanowire results in
increased conductance to the total value of G = e2/2h. Such
destructive behavior relative to the second-stage Kondo effect
plays a main role in the sign changes of the thermopower.
Similar to the previous case, when the coupling to the Ma-
jorana wire is of the order of or above the Kondo energy
scales, it also affects the spin-up electrons, resulting in a large
maximum, which is visible both in S↑ and S↓. Consequently,
the total thermopower features a maximum around T ∼ TK ,
see Fig. 6(f).

2. Gate voltage dependence

Figure 7 presents the Seebeck coefficient as a function of
temperature T and double dot energy levels, with ε1 = ε2 = ε.
Left column of Fig. 7 shows the results corresponding to
the weak interdot hopping, while the right column is for the
case of strong t . The first (second) row depicts the spin-
up (spin-down) thermopower, while the bottom row presents
the total Seebeck coefficient. First of all, one can note that
thermopower changes sign when crossing the particle-hole
symmetry point, which is a natural consequence of the fact
that the type of majority charge carriers changes from elec-
trons to holes as ε crosses −U/2. Moreover, in the behavior
of thermopower one can generally distinguish four regimes

FIG. 7. [(a) and (b)] Spin-up, [(c) and (d)] spin-down, and [(e)
and (f)] total Seebeck coefficient for t = 0.02U and VM/U = 10−5

(left column) and t = 0.1U and VM/U = 10−3 (right column) as a
function of temperature T and position of the quantum dot levels
ε1 = ε2 = ε. Note different temperature scale for each column. The
other parameters are the same as in Fig. 3.

determined by the relevant energy scales: �, TK , T ∗ and
�M . Within −0.75U � ε � −0.25U , they outline an interest-
ing behavior in total thermopower of the system. Note that
because T ∗ strongly depends on t , the corresponding low
temperature behavior in the case of weak hopping is much
more extended in the case when the hopping is strong, cf. the
left and right column of Fig. 7. Let us start the discussion with
the former case. One can see that in the Coulomb blockade
regime there is a characteristic peak at T ≈ �, which does not
depend on VM (cf. Fig. 6) but changes sign near the resonance.
Then, with lowering the temperature, the first stage of the
Kondo effect occurs, where the first Fermi liquid forms and
the charge transport through the first quantum dot is relatively
strong. For this energy range, the thermopower exhibits a
small sign change with the minimum around T ≈ TK . Shifting
to the lower temperature regime, where T ∗ � T � TK , the
total thermopower gets suppressed, while the total conduc-
tance reaches a maximum signaling the full development of
the first-stage Kondo regime.

An interesting behavior is revealed when the temperature
drops below T ∗. In that case, one can distinguish the regime
limited by T ∗ and �M (for assumed parameters �M ≈ 10−9U ),
where a sign change, not visible for VM = 0 [cf. Fig. 6(e)], is
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observed. In this parameter space one can observe consecutive
thermopower minima and maxima. It can be related to charge
conductance which is affected by the coupling to the Majorana
mode, and considering the low-temperature limit, one can
understand that with the Mott formula. Therefore these peaks
are related to �M and T ∗, at which the change in transmis-
sion coefficient T (ω) is observed, and the sign change of
total thermopower stems from the derivative of T (ω). When
the temperature drops below �M , one can see the result of
Majorana-induced half-destruction of the second-stage of the
Kondo effect, hence the thermopower becomes suppressed.

When the hopping between the dots is stronger [see
Figs. 7(b), 7(d) and 7(f) for S↑, S↓ and S, respectively], the
Kondo effect hardly develops when the system is not cou-
pled with the Majorana zero mode. However, strong enough
coupling to the superconducting nanowire induces additional
minimum in thermopower for ε < −U/2 (maximum for ε >

−U/2), which forms at T ≈ �M . The energy at which a sign
change occurs with further lowering the temperature is equal
in almost the entire range of DQD level position, see Fig. 7(f).
The parameter space at which the sign change is observed is
related to the minimum of conductance and Majorana-induced
increase of G↓ at low temperatures, cf. Fig. 4.

We also note that the color maps shown in Fig. 7 allow
one to easily identify the new behavior associated with the
presence of Majorana modes, which is mostly revealed in
the low-temperature behavior of S↓ and then, consequently,
in the corresponding dependence of S.

The sign change of the thermopower is undoubtedly a
notable result of this paper, showing unconventional effect
arising from the coupling of the double quantum dot to topo-
logical superconductor.

D. Spin Seebeck effect due to Majorana proximity

Since it is assumed that the Majorana mode couples to only
one of the spin components in the second quantum dot, it
breaks the spin symmetry of the system and may thus give
rise to interesting spin-resolved thermoelectric phenomena,
such as nonzero spin thermopower (or spin Seebeck effect). If
the electrodes are characterized by long spin relaxation time,
spin accumulation may build up in the contacts, such that the
voltage generated by the temperature gradient could become
spin dependent �Vσ . In this case, the linear response current
in the spin channel σ is given by [93]

Iσ = e2L0σ�V + ηe2L0σ �VS − e

T
L1σ �T, (18)

where �VS = (�V↑ − �V↓)/2 and η = +1 for σ =↑ and
η = −1 for σ =↓. There exist two definitions of the spin ther-
mopower in the literature [93], depending on the experimental
implementation. Defining the spin thermopower SS assuming
open circuit conditions (vanishing of both charge and spin
currents), one gets [92,93] SS = (S↑ − S↓)/2, while for S one
finds S = (S↑ + S↓)/2. On the other hand, if one requires
that only the spin current vanishes on the condition that the
voltage gradient is zero �V = 0, the spin thermopower is
given by [94]

SS = − 1

eT

L1↑ − L1↓
L0

. (19)

FIG. 8. The spin Seebeck coefficient SS plotted as a function of
T for different values of VM as indicated and for (a) t = 0.02U and
(b) t = 0.1U . The other parameters are the same as in Fig. 3.

In the following, we study the behavior of the spin ther-
mopower defined in the latter formula. We also note that since
we have already discussed in detail the spin-resolved com-
ponents of thermopower Sσ in previous sections, the behavior
of thermopower determined assuming open circuit conditions,
which is given either by a sum or difference of these compo-
nents, can be anticipated from previous results.

1. Temperature dependence

Figure 8 presents the spin thermopower SS plotted as a
function of temperature T for multiple values of VM , for both
weak and strong value of hopping t between the quantum
dots. Consider first the case where t = 0.02U [see Fig. 8(a)].
Starting with VM = 0, the spin Seebeck effect does not de-
velop. Increasing the coupling to Majorana zero mode, a
single positive peak appears at T ≈ �M , and remains when
increasing VM until �M ≈ T ∗. Moreover, while the height
of this maximum is qualitatively similar for different values
of VM , its width becomes sharper (on logarithmic scale) as
�M becomes of the order of T ∗. We can associate this phe-
nomenon with the interplay of the Majorana physics and the
two-stage Kondo effect, where �M and T ∗ energy scales are
relevant. They limit the conductance gap due to the second
quantum dot screening, what quantitatively affects the width
of the peak. Increasing VM , the gap becomes narrower as the
difference between T ∗ and �M decreases. As a result, one
observes the maximum of spin thermopower shifting toward
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FIG. 9. The spin Seebeck effect as a function of T and ε for
(a,c) t = 0.02U and (b,d) t = 0.1U . The first row (a,b) is calcu-
lated for VM = 10−2U , while the second row (c,d) presents SS for
VM = 10−4U . The other parameters are the same as in Fig. 3.

higher temperatures. When VM is so large that �M reaches
and exceeds T ∗, see the curves for VM � 10−2U in Fig. 8,
one observes a sudden sign change in SS . In this regime, the
spin-up contribution becomes stronger, which is also visible
in the spin polarization of the current, which changes sign
to positive values as VM grows, cf. Fig. 5(a). The height of
minima (maxima) in SS strongly depends on the spin-down
carriers of which the Majorana-Kondo interplay is visible with
its characteristic half-suppression of G↓.

The case of strong interdot hopping, where t = 0.1U , is
shown in Fig. 8(b). Now, the situation is rather different. In
this case, when the double quantum dot is decoupled from the
topological nanowire, the Kondo effect hardly develops due to
strong singlet state, which forms between the dots. Nonethe-
less, as in the situation of weak hopping discussed above,
turning on the coupling to Majorana zero mode changes this
behavior significantly. Finite VM gives rise to quantum inter-
ference in the spin-down channel, resulting in G↓ = e2/2h.
This leads to a peak visible in spin thermopower. The position
of this peak follows the increase of VM , with approximately
equal height and width (on the logarithmic scale) until �M ≈
10−2U , where both the width and height become changed, see
Fig. 8(b).

2. Gate voltage dependence

Figure 9 presents the behavior of the spin Seebeck effect
as a function of the double dot levels ε = ε1 = ε2 and tem-
perature T . The left (right) column is calculated in the case of
weak (strong) hopping between the dots, while the first (sec-
ond) row presents the data for VM = 10−2U (VM = 10−4U ).

Let us start the discussion with the case of weak interdot hop-
ping. When VM = 10−2U , the spin-resolved conductance (cf.
Fig. 3) exhibits changes for T � 10−5U , while at lower tem-
peratures it takes constant value, with G↓ ≈ e2/2h and G↑ ≈
e2/h. Revoking the Mott formula, this helps to understand
the temperature range where nonzero spin Seebeck effect can
emerge. As one can see in the figure, around the particle-hole
symmetry point SS is either positive or negative depending
on the sign of detuning from ε = −U/2. In the case of ε >

−U/2, SS exhibits a maximum which moves to higher tem-
peratures as the detuning grows. Moreover, for ε � −0.4U ,
a sign change in the T dependence of the spin Seebeck ef-
fect develops, cf. also Fig. 8(a). When the detuning from the
particle-hole symmetry point grows, the contributions from
the spin-up and spin-down channels become comparable,
which results in suppression and the corresponding rever-
sal of the spin thermopower. Such a reversal is visible in a
narrow range of DQD level position, −0.4U � ε � −0.2U
and −0.8U � ε � −0.6U , see Fig. 9(a). Otherwise SS as a
function of T exhibits a large negative (positive) peak for
ε � −0.2U (ε � −0.8U ), whose position strongly depends
on ε. When the coupling to Majorana wire is weaker, see the
case of VM = 10−4U presented in Fig. 9(c), the behavior of
SS becomes greatly modified. First of all, the characteristic
temperature range where spin thermopower emerges is shifted
to lower T , which is due to the fact that the characteristic
energy scale associated with the presence of Majorana mode
is now reduced. Moreover, the behavior around the particle-
hole symmetry point is extended over a wider range of ε.
This results from the fact that the Majorana energy scale is
smaller and the relevant interplay between Majorana-induced
interference and the Kondo correlations now takes place in
larger parameter space of the system.

The situation when the interdot hopping is strong is shown
in the right column of Fig. 9. First of all, one can see that the
relevant behavior of SS is shifted to larger temperatures, since
now the second-stage Kondo temperature is of the order of the
Kondo temperature. Furthermore, contrary to the weak hop-
ping limit, there is no effect where SS changes sign within the
Coulomb valley. Instead, one can observe a single positive (or
negative for ε < −U/2) peak of width depending on ε, whose
extremum shifts toward higher temperatures with detuning
from the particle-hole symmetry point. Such behavior results
from the corresponding dependence of the spin-resolved con-
ductance (cf. Fig. 4), which changes on the scale of T ∼ T ∗
and reaches a constant value for lower temperatures. This
peak for chosen parameter space reaches its maximum (min-
imum) for ε ≈ −0.15U (ε ≈ −0.85U ). Shifting away from
this point toward the symmetry point, SS diminishes and the
peak widens. A similar behavior can be observed when the
Majorana coupling is smaller, see the case of VM = 10−4U
in Fig. 9(d), but now the temperature range where the spin
thermopower can be observed is shifted to lower temperatures.
Otherwise, the qualitative behavior is similar.

To conclude, the generation of the spin thermopower is
another important result of this paper. Together with the
spin polarization, these effects provide insight into the spin-
dependent properties, characteristic of the model presented
in this paper and stemming from the coupling to topological
superconductor.
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FIG. 10. The conductance and thermopower as a function of
ε = ε1 = ε2 for different values of T and hopping between the dots
t/U = 0.033 in the case when the system is not coupled to the
superconducting nanowire, VM = 0.

V. SUMMARY

We have studied the spin-resolved electrical and thermal
signatures of the interplay between the Majorana and Kondo
physics in the case of T-shaped double quantum dots attached
to normal contacts and to topological superconductor hosting
Majorana zero energy modes. To accurately resolve the trans-
port behavior in the full parameter space we have used the
density-matrix numerical renormalization group method. We
have determined the behavior of the conductance, current spin
polarization, heat conductance as well as the Seebeck and spin
Seebeck coefficients, focusing on the parameter space where
the system exhibits the Kondo correlations. In our analysis,
we have considered two specific cases of interdot hopping:
the weak hopping regime, where the two-stage Kondo effect
develops, and the strong hopping regime, where a molecular
singlet state forms between the dots allowing for only an onset
of Kondo state in the system.

Analyzing the temperature dependence of the linear con-
ductance, we have shown that quantum interference with
Majorana wire breaks the second-stage of Kondo screening
raising the conductance to a fractional value of G = e2/2h.
We have also shown that the presence of Majorana mode gives
rise to finite spin polarization of the current, which strongly
depends on the magnitude of coupling to Majorana wire and
the position of the double dot energy levels.

FIG. 11. The conductance, thermopower and spin thermopower
with the same parameters as in Fig. 10, but with VM/U = 10−4. The
inset shows the thermopower as a function of temperature, calculated
for VM/U = 0 and VM/U = 10−4. The dots’ colors correspond to the
temperatures shown in the legend of both figures. As can be seen,
for T/U � 10−5, S hardly depends on VM , and these values of T/U
are not shown. (c) displays the spin thermopower, which is induced
by the coupling to Majorana mode, thus this panel is not shown for
VM = 0 in Fig. 10.

As far as thermoelectric properties are concerned, we have
demonstrated that the system exhibits a modified Wiedemann-
Franz law, which is satisfied by the heat conductance at a
rescaled temperature, also in the presence of coupling to
topological superconductor. Furthermore, we have analyzed
the temperature dependence of the spin-resolved Seebeck ef-
fect and shown that the thermopower exhibits additional sign
change associated with the presence of Majorana zero energy
mode in the system. Finally, assuming long spin relaxation
time in the contacts, we have examined the behavior of the
spin Seebeck coefficient, which emerges due to the presence
of coupling to topological superconductor and is a unique
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property of the considered Majorana-double quantum dot
setup. We have demonstrated that the spin thermopower nicely
reveals the features resulting from the interplay of strong
electron correlations and Majorana-induced interference.

We would like to note that although the spin-resolved
results presented in this paper are challenging from experi-
mental point of view, they have a clear fundamental relevance
and are crucial to fully understand the system’s behavior,
especially how the coupling to Majorana wire affects the
different spin components. However, as far as experimental
aspects are concerned, we believe that the spin-resolved mea-
surements could be performed by using e.g. spin-polarized
STM [95] or by attaching spin filters made by, e.g., fer-
romagnetic electrodes [96]. We hope that our work will
foster further efforts in spin-resolved transport spectroscopy
of hybrid nanostructures. Finally, to emphasize the effects
stemming from the presence of Majorana quasiparticles and
allow for their clear identification, in Figs. 10 and 11, we

present the dependence of the conductance and the (spin)
Seebeck coefficient on the position of dots levels for different
values of temperatures. Figure 10 presents the data in the
absence of coupling to Majorana wire, while Fig. 11 shows
the results in the presence of coupling to topological super-
conductor. Indeed, the sign change of the thermopower due
to finite VM is now clearly visible. Moreover, nonzero spin
Seebeck coefficient emerges only when the Majorana mode is
present in the system.
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[92] I. Weymann and J. Barnaś, Spin thermoelectric effects in Kondo
quantum dots coupled to ferromagnetic leads, Phys. Rev. B 88,
085313 (2013).
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