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Nonlinear antidamping spin-orbit torque originating from intraband transport
on the warped surface of a topological insulator
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Motivated by recent experiments observing a large antidamping spin-orbit torque (SOT) on the surface of
a three-dimensional topological insulator, we investigate the origin of the current-induced SOT beyond linear
response theory. We find that a strong antidamping SOT arises from intraband transitions in the nonlinear
response and does not require interband transitions as is the case in linear transport mechanisms. The joint
effect of warping and an in-plane magnetization generates a nonlinear antidamping SOT which can exceed the
intrinsic one by several orders of magnitude, depending on the warping parameter and the position of the Fermi
energy, and exhibits a complex dependence on the azimuthal angle of the magnetization. This nonlinear SOT
provides an alternative explanation of the observed giant SOT in recent experiments.
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I. INTRODUCTION

Electrical control of magnetic systems has a strong poten-
tial for technological applications such as fast magnetic-based
storage and computational devices [1]. Recent works in this
fast-evolving field have demonstrated that large spin-orbit
coupling in ferromagnet/heavy-metal (FM/HM) bilayers can
produce strong enough spin-orbit torques (SOTs) to switch the
magnetization in the overlayer. Compared with conventional
spin transfer torques in ferromagnet/insulator/ferrometal bi-
heterostructures [2,3], this SOT has a lower current and energy
threshold required for magnetization switching [4,5]. In these
systems, the antidampinglike (ADL) torque has the same form
as the Gilbert damping term in the Landau-Lifshitz-Gilbert
equation [6] but has the opposite sign and competes against
Gilbert damping to switch the magnetization. Therefore a
large ADL torque is of particular importance for increas-
ing the efficiency of magnetization switching. Antidamping
torques in these structures arise from either the spin Hall
effect (SHE) within the bulk of heavy metals [2,7–11] or the
Rashba-Edelstein effect (or the inverse spin galvanic effect)
at inversion-symmetry-broken interfaces [12–15]. They may
also stem from the intrinsic Berry curvature [16], without
being related to a bulk SHE.

Besides heavy metals, topological insulators (TIs) [17,18],
in which the intrinsic strong spin-orbit coupling is large
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enough to invert the band structure, are the most promising
candidates towards efficient transfer of angular momentum
between the charge current and the local magnetization. Re-
cent experiments in a FM/TI layered structure reported a
giant SOT [19–25] even at room temperature. Compared with
FM/HM systems the current density required for magnetiza-
tion switching [23–26] in FM/TI bilayers is one to two orders
of magnitude smaller, and the corresponding effective spin
Hall angle [22,23] is several times larger. Most experiments
have confirmed that the giant SOT originates from the surface
states, e.g., the charge-to-spin current conversion efficiency
increases when the Fermi energy is within the TI bulk gap
rather than in the bulk states [27], excluding contributions
from the SHE and Rashba-Edelstein effect. In this context,
understanding the origin of the large ADL-SOT in FM/TI
bilayers becomes a crucial issue.

Theoretically, there have been many efforts to explain
the emergence of large SOTs, especially the antidamping
component, at the magnetic surfaces of topological insu-
lators using linear response theory. Garate and Franz [28]
(see also Ref. [29]) ascribed the SOTs in FM/TI bilay-
ers to a topological magnetoelectric effect with emphasis
on its dissipationless Hall current for Fermi energies in the
Dirac gap. Extending it to finite Fermi energies, this dissi-
pationless damping was also found to arise from intrinsic
interband transitions [30–33]. Mahfouzi et al. [34] obtained
an antidamping torque by considering spin-flip reflection
at an interface. Nevertheless, major questions remain unan-
swered. Theoretically [28–33,35,36], the ADL-SOT due to
the TI surface states has been expressed in the general form
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τD = τd mzm × eE, where m is a unit magnetization vector
and E is the electric field. This form does not explain experi-
mental observations because, firstly, the theoretical results of
ADL-SOT are quite weak and vanish if mz = 0 and, secondly,
the in-plane magnetization mx/y has no effect on the SOT
strength τd . Nevertheless, in the recent many experiments
on FM/TI bilayers [21,25], a strong angular dependence of
SOTs on the azimuthal angle of m was widely observed even
in the absence of mz. Doubt was even raised as to whether
the experimental measurement method relying on the second
harmonic Hall voltage could accurately determine the SOT
due to the disturbance from asymmetric magnon scattering
[37].

In this paper, we propose a mechanism for the generation
of the ADL-SOT in the nonlinear response regime, purely
based on the topological surface states with hexagonal warp-
ing, which is strong in realistic TIs [38,39]. Our work stands
in sharp contrast to existing theories, which are exclusively
based on linear response. Intriguingly, we find that the nonlin-
ear spin polarization can produce a large ADL-SOT, caused
by the interplay between the warping effect and the in-plane
magnetization, which is known to have strong observable fea-
tures in charge transport [40–42]. This nonlinear mechanism
is distinguished from previous ones, and it can qualitatively
reproduce the main features of the ADL-SOT (i.e., the giant
ADL-SOT and a strong angular dependence on the azimuthal
angle of the magnetization) observed in experiments.

II. THEORY FOR SOT

The SOT exerted on the FM layer has the form τ = 2J
h̄ m ×

S with the spin polarization S = ∑
χ

dd k
(2π )d sχ (k) f (εχ

k ), where
J is the s-d exchange energy, the superscript d repre-
sents the dimension, and sχ (k) = (h̄/2)〈�χ

k |σ|�χ

k 〉 is the
spin expectation in the χ th band with eigenvector �

χ

k and
eigenvalue ε

χ

k . In the absence of applied current, the distribu-
tion function f (εχ

k ) is the Fermi-Dirac distribution function
f (εχ

k ) = f (0)(εχ

k ) = [e(εχ

k −εF )/kBT + 1]−1 with Fermi energy
εF and temperature T , and thus S vanishes due to sχ (−k) =
−sχ (k) for spin-momentum-locked surface states of TIs.
When an in-plane current is applied, the spin polarization
S = Soc+Sin can arise from the two types of change. One orig-
inates from the change in the electron occupation δ f (εχ

k ) =
f (εχ

k ) − f (0)(εχ

k ) within the band due to acceleration by

an electric field, calculated by Soc= ∑
χ

dd k
(2π )d sχ (k)δ f (εχ

k ).
The other stems from the modification of the quasiparti-
cle wave functions [16,43,44], Sin = ∑

χ
dd k

(2π )d δsχ (k) f (εχ

k ),
where δsχ (k) = (h̄/2)Re〈�χ

k |σ|δ�χ

k 〉 can be traced to the
interband contributions in analogy to the intrinsic contribution
to the anomalous Hall effect.

We first discuss Soc by employing the single-band steady-
state Boltzmann equation [45],

− e

h̄
E · ∇k f

(
ε

χ

k

) = − f
(
ε

χ

k

) − f (0)
(
ε

χ

k

)
γ (k)

. (1)

Here, we use the relaxation time approximation γ (k) =
γ . Expanding f (εχ

k ) = f (0)(εχ

k ) + f (1)(εχ

k ) + f (2)(εχ

k ) + · · ·
with f (n)(εχ

k ) ∝ En and then substituting it into the above

FIG. 1. (a) The FM/TI layered structure, where the orange
arrow represents the local magnetic moment with magnetization
m in the FM layer and the driven electric field E = (Ex, Ey ) =
|E|[cos(θE ), sin(θE )] is applied in the TI layer. (b) Schematics of the
band structure for the warped surface states of TIs.

Boltzmann equation, one can find the recursive relations for
nth-order nonequilibrium distribution function,

f (n)
(
ε

χ

k

) = eγ

h̄
E · ∂ f (n−1)

(
ε

χ

k

)
∂k

. (2)

III. RESULTS AND DISCUSSION

A. Nonlinear SOT from intraband transitions

We take a FM/TI heterostructure, as shown in Fig. 1, as a
sample system exhibiting a spin polarization in response to an
applied electric field. On the surface of a three-dimensional
TI, the effective Hamiltonian [46,47] reads

HTI = h̄vF (σxky − σykx ) + λ

2
(k3

+ + k3
−)σz + Jm · σ, (3)

where vF is the Fermi velocity, σ = (σx, σy, σz ) is the
vector of Pauli matrices acting on the real spin, and
k± = kx ± iky with k being the wave vector. The first
term is the Rashba-type spin-orbit coupling, the cubic-in-
k term represents the hexagonal warping effect [38,39] of
TIs with the warping parameter λ, and the FM layer is
characterized by a local magnetization m = (mx, my, mz ) =
[sin(θm) cos(ϕm), sin(θm) sin(ϕm), cos(θm)]. The energy dis-
persion of the Hamiltonian in Eq. (3) reads

ε
χ

k = χ h̄vF

√
(kx − Jmy/h̄vF )2 + (ky + Jmx/h̄vF )2 + �2

k,

(4)

where �k = [λkx(k2
x − 3k2

y ) + Jmz]/(h̄vF ) and χ = ± are the
upper and lower bands. Notice that the in-plane magnetization
mx/y on the dispersion cannot be eliminated by performing a
gauge transformation due to the existence of the warping term.

In the linear response, we retain the nonequilibrium distri-
bution function up to the first order f (1)(εχ

k ) and calculate the

linear polarization Soc(1) = ∑
χ

dd k
(2π )d sχ (k) f (1)(εχ

k ). We find

that Soc(1) only contributes to the fieldlike SOT (FL-SOT) and
no antidamping SOT arises even for the case with strong warp-
ing (see Appendix A or our previous work [48]). Here, extend-
ing the theory to the nonlinear one, we calculate the nonlinear
spin polarization with Soc(2)= ∑

χ
dd k

(2π )d sχ (k) f (2)(εχ

k ). We as-
sume that the Fermi level εF > 0 lies in the upper surface band
χ = 1 and the band index is suppressed afterwards. Choosing
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the in-plane electric field E = (Ex, Ey), at low temperatures
we obtain the analytical expressions for the nonlinear spin
polarization

Soc(2)
x = C

[
a2mxE2

y + (a1mz − a2my)ExEy
]
,

Soc(2)
y = C

[(a1mz

2
+ a2my

)
E2

x − a1mz

2
E2

y − a2mxExEy

]
,

Soc(2)
z = C

[(
3

2
a1my − a0mz

)
E2

x −
(

a0mz + 3

2
a1my

)
E2

y

]
+ 3Ca1mxExEy, (5)

where we retain up to the second-order term of m and
λ and denote C = e2γ 2vF J/(8π ), a0 = 1/(h̄vF εF ), a1 =
3λεF /(h̄4v4

F ), and a2 = 3λ2ε3
F /(h̄7v7

F ).
Interestingly, unlike the even function of m appearing

in the linear response, the nonlinear spin polarizations in
Eq. (5) are odd functions of m while all the second-order
terms in m disappear. Thus the nonlinear spin polariza-
tion contributes an antidamping SOT τ oc

D = 2J
h̄ m × Soc(2) with

strength τ oc
d = 2J

eh̄|E|S
oc(2). The result here is significantly dif-

ferent from that in the linear response, where the change in
the electron occupation on the Fermi surface only contributes
to the FL-SOT [48]. In a FM/HM or FM/TI bilayer, the
existing mechanisms for the antidamping SOT include the
contribution from the Berry curvature [5,16] or the electric-
field-induced intrinsic interband transition [31–33,48,49] or
extrinsic disorder-induced interband-coherence effects [43].
There are also some emerging new mechanisms such as inter-
face spin currents [50], the spin anomalous Hall effect [51],
nonreciprocal generation of spin current [52], the planar Hall
current [53], and the magnon [54]. These mechanisms are
based on the linear response theory. Here, we propose an al-
ternative mechanism associated with the intraband transitions
beyond the linear response theory.

In order to illustrate the role of the warping effect, we
set λ = 0, and Eq. (5) reduces to Soc(2)

z = −e2γ 2vF J
8π

a0mz|E|2,
which is controlled only by mz and is proportional to 1/εF ,
and the other components vanish. This implies that the linear-
k Dirac dispersion also can give rise to a nonlinear spin
polarization, which is distinct from the electric-field-induced
nonlinear current [40,41] where the current j vanishes for λ =
0. For finite warping λ �= 0, not only mz but also the in-plane
magnetization mx/y play a role. Besides modifying the mag-
nitude of Soc(2)

z , mx/y also generate extra in-plane components
Soc(2)

x/y . Importantly, all of warping-related components are pro-
portional to εF and λ or their higher orders. We calculate the
numerical result of τ oc

d directly with Soc(2)= ∫
d2k

(2π )2 s(k) f (2)(k)
rather than with the analytical expressions (5) and present the
numerical result of τ oc

d as a function of λ in Fig. 2(a), where
all parameters are within the range of realistic TI materials.
Prominently, the resulting ADL-SOT τ oc

d strength increases
remarkably as λ or εF increases. Therefore, for large εF and
λ, τ oc

d can be enhanced significantly in comparison to the case
of Refs. [31–33,48] in the absence of warping. Our numerical
results show that the antidamping SOT calculated from Soc(2)

in Eq. (5) is of the same order of magnitude as the FL-SOT
calculated from Soc(1) in Eq. (A7) of Appendix A, thus quali-
tatively reproducing the experiment result of SOT. Notice that

FIG. 2. Dependence of the strength of SOT (a) τ oc
d and (c) τ in

d on
the warping parameter λ with constant azimuthal angle of m (ϕm =
π/4) for different Fermi energies. (b) and (d) The ϕm -dependent
strength of SOT with constant λ = 0.15 eV nm3. Other parameters
are set as follows: θm = π/2, θE = π/4, vF = 5 × 105 m/s, γ = 3
ps, and |E| = 0.2 mV/nm.

the antidamping SOT based on the linear response theory in
previous works is smaller than the FL-SOT by two to three
orders of magnitude. In addition, τ oc

d exhibits a complex de-
pendence on the azimuthal angle of m, as shown in Fig. 2(b).
A complex angular dependence of the SOT has been observed
in recent experimental measurements in TI bilayers [21,22,25]
but has not been explained theoretically to date.

B. Understanding of intraband nonlinear damping SOT

For the linear Dirac case (λ = 0), a current-spin correspon-
dence j = − 2e

h̄ vF ẑ × S can be established from the velocity
operator v̂ = vF ẑ × σ on the TI surface with spin-momentum
locking. Here, the longitudinal conductance contributes to the
FL-SOT, and the transversal conductance contributes to the
dampinglike SOT. This correspondence relation is satisfied
only for linear spin polarization without λ and is broken by
warping [48]. For λ �= 0, from the Hamiltonian equation (3),
we can obtain the velocity operator identity

v̂ = vF (ẑ × σ ) + 3λk2

h̄
σz[cos (2φk )x̂ − sin (2φk )ŷ], (6)

with φk = arctan(ky/kx ). After taking the average, in the non-
linear case, the first term in the above equation vanishes,
and only the second term plays a role. One cannot sim-
ply relate 〈σzk2 cos(2φk )〉 or 〈σzk2 sin(2φk )〉 to S(k) = h̄

2 〈σz〉.
Thus j ∼ S has no current-spin correspondence. Therefore we
cannot simply attribute the nonlinear spin polarization to the
nonlinear longitudinal or transverse conductance.

When applying an electric field on the TI surface, the
hexagonal warped Fermi surface shifts in k space and gener-
ates a net linear spin accumulation due to the spin-momentum
locking, as given by the m-independent term in Eq. (A7) of
Appendix A. However, this shift cannot generate a nonlinear
spin accumulation as given in Eq. (5), where all terms are
related to the magnetization m. In order to understand the gen-
eration of the nonlinear spin polarization, we need to analyze
the symmetry of the integrand in Soc(2) = ∫

d2k
(2π )2 s(k) f (2)(k).
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FIG. 3. Schematics of the variation of the second-order correc-
tion f (2)

i of the distribution function along the k axis parallel to
the applied electric field E. Blue solid arrows represent an excess
of electrons with spins along the arrow direction, and hollow ar-
rows represent depletion of the same. (a) describes the vanishing
contribution from the component s0(k) · f (2)

0 (k). (b) and (c) The
nonzero polarization stemming from the components s0(k) · f (2)

1 (k)
and s1(k) · f (2)

0 (k), respectively.

In the absence of the magnetization, the average spin s(k)
is odd in k, whereas the second-order distribution function
f (2)(k) is even in k. As a consequence, Soc(2) = 0. When m
is introduced, however, the warped Fermi surface is further
distorted except for the shift, which not only changes the
occupation of the electron states but also perturbs the spin
textures, giving an additional deviation to the spin direction
at each k point. In this case, both s(k) and f (2)(k) have
symmetric and asymmetric components with respect to m.
Up to second order in J or m (see Appendix C), we ex-
pand s(k) = ∑

i=0,1,2 si(k)Ji and f (2)(k) = ∑
i=0,1,2 f (2)

i Ji. It

is easy to check that si(k) is odd and f (2)
i is even in k for

i = 0, 2, while si(k) is even and f (2)
i is odd for i = 1. Thus

the nonzero integrand terms of k in Soc(2) are s0(k) · f (2)
1 (k)

and s1(k) · f (2)
0 (k). In Fig. 3, we plot the variation of the

second-order correction f (2)
i of the distribution function along

the k axis parallel to the applied electric field E. In the absence
of m as in Fig. 3(a), the occupations of the electron states at k
and −k are the same, but the corresponding spins are opposite,
which contributes no net spin polarization. Once a nonzero
m is introduced, the component f (2)

1 (k) of the occupation
or s1(k) change parity. In Fig. 3(b), where both f (2)

1 (k) and
s0(k) are odd, the down-spin electrons are depleted while the
up-spin ones are in excess, which means that the opposite
spins carried by the electrons in k and −k are unable to

cancel each other, and so a net nonlinear spin polarization
appears for s0(k) · f (2)

1 (k). Compared with Fig. 3(a), this is
a result of f (2)(k) changing from an even to an odd function,
namely, f (2)

0 (k) → f (2)
1 (k), by the interplay of the magneti-

zation and the nontrivial spin texture of the warping effect.
Figure 3(c) describes the case of s1(k) · f (2)

0 (k), where the
even f (2)(k) stays the same, compared with Fig. 3(a), but s(k)
is changed from an odd to an even function s0(k) → s1(k).
s1(−k) = s1(k) means that there are the same spin orienta-
tions at k and −k, which mainly originates from the deviation
of out-of-plane spin in the warping effect by the magnetization
or by out-of-plane mz. The latter contributes Soc(2)

z ∝ a0mz,
which will quickly shrink for the Fermi energy away from the
Dirac point due to a0 ∝ 1

εF
. Physically, the distortion of the

Fermi surface leads to a change in spin texture and an unequal
population of electrons with opposite momenta as well as
spins [55,56] and so generates the nonlinear spin polarization.
The increasing parameter λ will enhance the distortion effect
and then the nonlinear spin polarization.

C. Comparison of nonlinear SOT with intrinsic SOT

It is interesting to compare the nonlinear antidamping SOT
with that from the Berry curvature caused by intrinsic inter-
band transitions, Sin= ∑

χ
dd k

(2π )d δsχ (k) f (εχ

k ), where δsχ (k) =
(h̄/2)Re〈�χ

k σ|δ�χ

k 〉. By modifying the quasiparticle wave
functions |δ�χ

k 〉 with the perturbation method, the spin po-
larization is given by [16,43,44]

Sin = eh̄2

2V

∑
χ �=χ ′,k

[
f
(
ε

χ

k

) − f
(
ε

χ ′
k

)]

× Im
[〈
�

χ

k

∣∣σ ∣∣�χ ′
k

〉〈
�

χ ′
k

∣∣v̂ · E
∣∣�χ

k

〉]
(
ε

χ

k − ε
χ ′
k

)2 . (7)

This expression is analogous to the intrinsic Berry-curvature
mechanism originally introduced to explain the anomalous
Hall effect [57] and the SHE [58] due to the electric-field-
induced interband coherence. It is found that this antidamping
Berry-curvature SOT can contribute with a strength compa-
rable to that of the SHE-driven antidamping torque, and this
has given a good explanation for ADL-SOT experiments with
Rashba-model ferromagnets [16].

Here, we apply this intrinsic Berry-curvature mechanism
to the FM/TI bilayer. For λ = 0, we obtain Sin

z = 0 and

Sin
x/y = eh̄J

8π
a0mzEx/y. (8)

Obviously, only mz contributes to the spin polarization and,
in turn, the intrinsic damping SOT, which recalls the results
of Refs. [28,30–33,35] based on the Green’s function Kubo
formula. For λ �= 0, mx/y also play a role for the intrinsic
damping. In view of the complex analytical expressions we
only present the numerical results τ in

d = 2J
eh̄|E| |Sin| in Figs. 2(c)

and 2(d). Notice that in numerical calculations, we only adopt
the linear part of Sin in E. This is because the nonlinear com-
ponent of Sin is an even function of m, which only contributes
the FL-SOT (see Appendix D). Physically, Eq. (7) arises from
the electric-field-induced interband-virtual-transition correc-
tion. If δsχ (k) is kept up to order E2, we have to take
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FIG. 4. The ratio τ oc
d /τ in

d vs the warping parameter λ. The turning
points λc = λ1–3 are determined by τ oc

d /τ in
d = 1 for different εF . We

chose |E| = 0.004 mV/nm, and the other parameters are the same as
those in Fig. 2.

δsχ (k) = (h̄/2)Re〈δ�χ

k |σ|δ�χ

k 〉, which is formed from the
two-order interband-virtual-transition correction and usually
is much smaller than the first-order one [44], and so here we
will ignore this high-order term. We compare the nonlinear
SOT strength τ oc

d in Figs. 2(a) and 2(b) to the Berry-curvature
SOT strength τ in

d in Figs. 2(c) and 2(d). One can find that
(i) while τ in

d slightly increases with the warping parameter λ,
τ oc

d increases quickly; and (ii) as εF increases, τ oc
d increases

while τ in
d decreases. Thus Fig. 2 shows that τ oc

d is larger
than τ in

d by two to three orders of magnitude for the chosen
parameters, which are in the range of realistic materials. In
practice, the applied electric field strength in FM/TI SOT
experiments [23–25] is estimated as |E| = 0.1–0.3 mV/nm,
the relaxation time in the TI Bi2Se3 is typically [59] γ = 3 ps,
and the warping parameter [41,60] is λ = 0.056–0.18 eV nm3.
In addition, compared with τ in

d , τ oc
d shows a more complicated

angular dependence on m [compare Fig. 2(b) with Fig. 2(d)].
For the case of a weak warping effect (small λ), the in-

terband terms will become dominant. There exists a turning
point λc determined by τ oc

d /τ in
d = 1. Below λc the linear SOT

dominates, but the nonlinear SOT dominates above the turning
point. The threshold λc of the turning point is sensitive to the
Fermi energy εF , as depicted in Fig. 4, where different thresh-
olds λ1–3 are given for different Fermi energies. Obviously,
with the increase in εF , the role of the warping structure in the
energy band becomes more important, and the threshold of λc

required for the nonlinear SOT τ oc
d to dominate over the linear

SOT τ in
d becomes smaller.

Owing to the warping effect, the current-induced SOT
depends on the current direction. In order to clarify the
current-induced anisotropy of the SOT, we plot τ oc

d and τ in
d as

a function of the direction of the electric field θE in Figs. 5(a)
and 5(b), respectively. Obviously, the ADL-SOTs are isotropic
for λ = 0 and anisotropic for λ �= 0; the larger the warping
parameter (or Fermi energy), the more obvious the anisotropy
is. More importantly, the periods of these two kinds of SOTs

FIG. 5. The strength of SOT (a) τ oc
d and (b) τ in

d with respect to the
current direction θE for different warping parameters. Parameters are
set as εF = 0.2 eV, θm = 19π/40, and ϕm = π/4. Other parameters
are the same as in Fig. 2.

are significantly different, which could lead to an enhanced
ratio τ oc

d /τ in
d for a certain current direction θE .

IV. CONCLUSIONS

We have studied the current-induced nonlinear spin po-
larization and SOT in a FM/TI bilayer with hexagonal
warping. We focus on the single-band case by employing the
Boltzmann equation and find that the nonlinear spin polariza-
tion associated with intraband transitions generates a strong
ADL-SOT, unlike the spin polarization linear in the electric
field, which only contributes to the FL-SOT. The nonlinear
antidamping SOT stems not only from the out-of-plane mag-
netization mz, but also from the joint effect of warping and
in-plane magnetizations mx and my. The present mechanism
is associated with intraband transitions, distinguished from
the existing linear response theory [5,16,31–33,43,48,49],
where interband transitions are necessary. More importantly,
the nonlinear ADL-SOT is enhanced with increasing Fermi
energy and warping parameter and can be several orders of
magnitude larger than that of the intrinsic Berry-curvature
contributions. It exhibits a complex dependence on the az-
imuthal angle of the magnetization, which is consistent with
experiment. This nonlinear SOT provides a mechanism with
which to explain the giant SOT in recent experiments.
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APPENDIX A: DERIVATION OF THE LINEAR SPIN POLARIZATION

The nth-order nonequilibrium distribution function derived from Eq. (2) of the main text can be rewritten as

f (1)
(
ε

χ

k

) = eγ E · v
∂ f (0)

(
ε

χ

k

)
∂ε

χ

k

, (A1)
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f (2)(εχ

k

) = e2γ 2

h̄

[
E · ∂ (E · v)

∂k

∂ f (0)
(
ε

χ

k

)
∂ε

χ

k

+ h̄(E · v)2 ∂2 f (0)
(
ε

χ

k

)
∂
(
ε

χ

k

)2

]
, (A2)

where v = 1
h̄∂kε

χ

k is the group velocity of electrons and an in-plane electric field E = (Ex, Ey) is applied. For convenience, we
choose a positive Fermi energy (i.e., εF > 0 lies in the upper band χ = 1). According to the eigenvalues ε

χ

k shown in Eq. (4) of
the main text, the group velocity v = (vx, vy) can be easily solved as

vx = 1

h̄ε+
k

[
h̄vF (h̄vF kx − Jmy) + 3λ

(
k2

x − k2
y

)
�k

]
,

vy = 1

h̄ε+
k

[h̄vF (h̄vF ky + Jmx ) − 6λkxky�k]. (A3)

One can calculate the spin polarization using the following formula:

Soc=
∑
χ

dd k
(2π )d

sχ (k)δ f
(
ε

χ

k

)
, (A4)

where δ f (εχ

k ) = f (εχ

k ) − f (0)(εχ

k ) and sχ (k) = (h̄/2)〈�χ

k |σ|�χ

k 〉 is the spin expectation. Diagonalizing the Hamiltonian of
Eq. (3) of the main text, the corresponding eigenstates can be solved as

|�+
k 〉 = [cos(ξ/2), eiη sin(ξ/2)]T ,

|�−
k 〉 = [− sin(ξ/2), eiη cos(ξ/2)]T , (A5)

with cos(ξ ) = �k/ε
+
k and tan(η) = (Jmy − h̄vF kx )/(Jmx + h̄vF ky). Using the above eigenstates, one can calculate the spin

expectation s+(k) = (sx, sy, sz ) as

s+(k) =
(

Jh̄mx + h̄2vF ky

2ε+
k

,
Jh̄my − h̄2vF kx

2ε+
k

,
h̄λk3

x − 3h̄λkxk2
y + h̄Jmz

2ε+
k

)
. (A6)

Substituting Eqs. (A1) and (A6) into the spin polarization Soc of Eq. (A4) and expanding the integrand of Eq. (A4) to the
second-order term of m and λ, one can obtain the results for the linear spin polarization Soc(1), which read

Soc(1)
x = eγ

8π

[
εF

h̄vF
− 1

6
a2ε

2
F − a0J2m2

z − 3

2
a2J2

(
m2

x + m2
y − m2

z

)]
Ey,

Soc(1)
y = eγ

8π

[
− εF

h̄vF
+ 1

6
a2ε

2
F + a0J2m2

z + 3

2
a2J2

(
m2

x + m2
y − m2

z

)]
Ex,

Soc(1)
z = eγ J2

8π

{[
a1

( − m2
x + m2

y

) − 3a2mymz
]
Ex + (2a1mxmy + 3a2mxmz )Ey

}
, (A7)

where a0 = 1/(h̄vF εF ), a1 = 3λεF /(h̄4v4
F ), and a2 = 3λ2ε3

F /(h̄7v7
F ). As shown above, all components of the linear spin

polarization are even functions of m. Thus the linear spin polarization Soc(1) only contributes to the fieldlike SOT.

APPENDIX B: DERIVATION OF THE NONLINEAR CURRENT

For a positive Fermi energy, the charge current density can be calculated by

j = −e
∫

dd k
(2π )d

vk f (ε+
k ). (B1)

Considering the linear response theory, i.e., substituting Eqs. (A1) and (A3) into the above equation, the linear current density
j(1) in FM/TI can be easily solved after some algebraic calculations. The resulting j(1) reads as

j(1) = σDE = e2γ εF

4π h̄2 E. (B2)

For the nonlinear response, one can substitute the nonequilibrium distribution function f (2)
k,χ

of Eq. (A2) into Eq. (B1). Following
similar algebraic calculations, the nonlinear current density j(2) = ( j (2)

x , j (2)
y ) can be obtained:

j (2)
x = c1

(
2mxExEy − 3myE2

x − myE2
y

) − c2mz
(
E2

x − E2
y

)
,

j (2)
y = c1

(
mxE2

x − 2myExEy + 3mxE2
y

) + 2c2mzExEy, (B3)

where c1 = 3e3γ 2λ2Jε3
F /(4π h̄8v5

F ) and c2 = 3e3γ 2λJεF /(8π h̄5v2
F ). As shown above, j(2) = 0 when λ → 0.
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APPENDIX C: DERIVATION OF THE NONLINEAR SPIN POLARIZATION

In this Appendix, we discuss in detail the generation of the nonlinear spin polarization. To facilitate the analysis, we need
to expand s(k) and f (2)(ε+

k ) to the second-order term of m (or the equivalent J), i.e., s(k) = ∑
i=0,1,2 si(k)Ji and f (2)(εχ

k ) =∑
i=0,1,2 f (2)

i (k)Ji.
For convenience of discussion, we here simply set the electric field as E = (Ex, 0). For arbitrary direction of the electric field,

the case is similar. In the weak-warping limit, si(k) and f (2)
i (k) can be expanded to the second-order term of λ, which is enough

to capture the warping effect. In this way, one can obtain the analytical expressions of si and f (2)
i . s(k) reads as

s0(k) =
(

h̄2vF ky

2ε0
, − h̄2vF kx

2ε0
,

h̄λk3
x − 3h̄λkxk2

y

2ε0

)
,

s1(k) =
(

h̄ε0mx − h̄2vF kyκ3

2ε2
0

,
h̄ε0my + h̄2vF kxκ3

2ε2
0

,
h̄ε0mz − h̄λk3

x κ3 + 3h̄λkxk2
y κ3

2ε2
0

)
,

s2(k) =
[

h̄2vF ky
(
3κ2

3 − m2
) − 2h̄ε0mxκ3

2ε3
0

,
−h̄2vF kx

(
3κ2

3 − m2
) + 2h̄ε0myκ3

2ε3
0

,
h̄λ

(
k3

x − 3kxk2
y

)(
3κ2

3 − m2
) − 2h̄ε0mzκ3

2ε3
0

]
,

where ε0 =
√

λ2(k3
x − 3kxk2

y )2 + (h̄vF k)2 and κ3 = [(k3
x − 3kxk2

y )λmz + h̄vF (kymx − kxmy)]/ε0. It is found that s0,2(k) is odd in

k while s1(k) is even.
f (2)
i reads as

f (2)
0 = e2γ 2E2

x

h̄

[
κ4 − h̄2κ2

5

h̄ε0

−beb(ε0−εF )

(1 + eb(ε0−εF ) )2
+ h̄κ2

5
b2eb(ε0−εF )[eb(ε0−εF ) − 1]

[1 + eb(ε0−εF )]3

]
,

f (2)
1 = e2γ 2E2

x

h̄

{
3h̄κ3κ

2
5 − h̄κ3κ4 − 2h̄κ5

(
3λ

(
k2

x − k2
y

)
mz − h̄vF my

) + 6λkxε0mz

h̄ε2
0

× −beb(ε0−εF )

(1 + eb(ε0−εF ) )2

+ κ4 − h̄2κ2
5

h̄ε0
× b2eb(ε0−εF )[−1 + eb(ε0−εF )]κ3

[1 + eb(ε0−εF )]3

+ 2κ5
[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

] − 2h̄κ3κ
2
5

ε0
× b2eb(ε0−εF )[eb(ε0−εF ) − 1]

[1 + eb(ε0−εF )]3

− h̄κ2
5 × b3eb(ε0−εF )[1 − 4eb(ε0−εF ) + e2b(ε0−εF )]κ3

[1 + eb(ε0−εF )]4

}
,

f (2)
2 = e2γ 2E2

x

h̄

{
3h̄2

(
5κ2

3 + m2
)
κ2

5 + 12h̄2κ3κ5
[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

] − 2
[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

]2 + 3κ2
3 κ4ε0

h̄ε3
0

× −beb(ε0−εF )

(1 + eb(ε0−εF ) )2
+ 2

3h̄κ3κ
2
5 − h̄κ3κ4 − 2h̄κ5

[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

] + 6λkxε0mz

h̄ε2
0

× κ3b2eb(ε0−εF )[−1 + eb(ε0−εF )]

[1 + eb(ε0−εF )]3

+ κ4 − h̄2κ2
5

h̄ε0
[
b2eb(ε0−εF )[1 − eb(ε0−εF )]

(
κ2

3 − m2
)

[1 + eb(ε0−εF )]3ε0
− κ2

3 b3eb(ε0−εF )[1 − 4eb(ε0−εF ) + e2b(ε0−εF )]

[1 + eb(ε0−εF )]4
]

+ h̄

[
2
(
4κ2

3 − m2
)
κ2

5

ε2
0

− 8κ3κ5
[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

]
h̄ε2

0

+ 2
[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

]2

h̄2ε2
0

]
b2eb(ε0−εF )[eb(ε0−εF ) − 1]

[1 + eb(ε0−εF )]3

+ 2
2κ5

[
3λ

(
k2

x − k2
y

)
mz − h̄vF my

] − 2h̄κ3κ
2
5

ε0
× κ3b3eb(ε0−εF )[1 − 4eb(ε0−εF ) + e2b(ε0−εF )]

[1 + eb(ε0−εF )]4

+ h̄κ2
5

[
κ2

3 b4eb(ε0−εF )[−1 + 11eb(ε0−εF ) − 11e2b(ε0−εF ) + e3b(ε0−εF )]

[1 + eb(ε0−εF )]5

+b3eb(ε0−εF )[1 − 4eb(ε0−εF ) + e2b(ε0−εF )]
(
κ2

3 − m2
)

[1 + eb(ε0−εF )]4ε0

]}
,

where κ4 = (15k4
x − 36k2

x k2
y + 9k4

y )λ2 + (h̄vF )2 is even in k and κ5 = [(3k5
x − 12k3

x k2
y + 9kxk4

y )λ2 + (h̄vF )2kx]/(h̄ε0) is odd in

k, and b = 1/(kBT ). It is found that f (2)
0,2 (k) is even in k while f (2)

1 (k) is odd in k.

All the above results indicate that the nonzero integrand terms of k in Soc(2) are s0(k) · f (2)
1 (k) and s1(k) · f (2)

0 (k).

075415-7



YONG-LONG ZHOU et al. PHYSICAL REVIEW B 105, 075415 (2022)

APPENDIX D: DERIVATION OF THE NONLINEAR INTRINSIC SPIN POLARIZATION

Sin(2) only contributes the fieldlike SOT (FL-SOT), and no antidamping SOT arises. To prove this, we show the detailed
derivation as follows. For simplicity, we set E = (Ex, 0), εF > 0. Then, Eq. (6) of the main text can be rewritten as

Sin = eh̄2Ex

V

∑
k

[ f (ε+
k ) − f (ε−

k )]
Im[〈�+

k |σ |�−
k 〉〈�−

k |v̂x|Ψ +
k 〉]

(2ε+
k )2 , (D1)

where Im[〈�+
k |σ |�−

k 〉〈�−
k |v̂x|Ψ +

k 〉] = −Im[〈�−
k |σ |�+

k 〉〈�+
k |v̂x|Ψ −

k 〉] with v̂x = ∂H/(h̄∂kx ). According to Eq. (A1), one can
obtain the first-order distribution function f (1)(εχ

k ) = eγ Exvx∂ f (0)(εχ

k )/∂ε
χ

k . Substituting f (εχ

k ) with f (1)(εχ

k ) in the above
equation, one can obtain the nonlinear intrinsic spin polarization Sin(2) as

Sin(2) = e2 h̄2γ E2
x

V

∫ ∞

−∞
dkx

∫ ∞

−∞
dkyvx

[
∂ f (0)(ε+

k )

∂ε+
k

− ∂ f (0)(ε−
k )

∂ε−
k

]
Im[〈�+

k |σ |�−
k 〉〈�−

k |v̂x|Ψ +
k 〉]

(2ε+
k )2 , (D2)

where ε±
k = ±

√
(h̄vF kx − Jmy)2 + (h̄vF ky + Jmx )2 + [λkx(k2

x − 3k2
y ) + Jmz]2. According to the Hamiltonian of Eq. (3) in the

main text and to Eqs. (A3) and (A5), the component Sin(2)
x can be expressed as

Sin(2)
x = e2h̄2γ E2

x

V

∫ ∞

−∞
dkx

∫ ∞

−∞
dkyvx

[
∂ f (0)(ε+

k )

∂ε+
k

− ∂ f (0)(ε−
k )

∂ε−
k

]
Im[〈�+

k |σx|�−
k 〉〈�−

k |v̂x|Ψ +
k 〉]

(2ε+
k )2

= e2h̄2γ E2
x

V

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

h̄vF (h̄vF kx − Jmy) + 3λ
(
k2

x − k2
y

)[
λ
(
k3

x − 3kxk2
y

) + Jmz
]

h̄ε+
k

×
[
∂ f (0)(ε+

k )

∂ε+
k

− ∂ f (0)(ε−
k )

∂ε−
k

]
1

(2ε+
k )2

[
h̄vF Jmz + 2h̄vF λk3

x − 3Jλ
(
k2

x − k2
y

)
my

]
h̄ε+

k

=
∫ ∞

−∞
dkx

∫ ∞

−∞
dkyFx(k, m). (D3)

Similarly, one can obtain

Sin(2)
y = e2h̄2γ E2

x

V

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

h̄vF (h̄vF kx − Jmy) + 3λ
(
k2

x − k2
y

)[
λ
(
k3

x − 3kxk2
y

) + Jmz
]

h̄εk

×
[
∂ f (0)(ε+

k )

∂ε+
k

− ∂ f (0)(ε−
k )

∂ε−
k

]
1

(2ε+
k )2

3λ
(
k2

x − k2
y

)
(h̄vF ky + Jmx )

h̄ε+
k

=
∫ ∞

−∞
dkx

∫ ∞

−∞
dkyFy(k, m),

Sin(2)
z = e2h̄2γ E2

x

V

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

h̄vF (h̄vF kx − Jmy) + 3λ
(
k2

x − k2
y

)[
λ
(
k3

x − 3kxk2
y

) + Jmz
]

h̄εk

×
[
∂ f (0)(ε+

k )

∂ε+
k

− ∂ f (0)(ε−
k )

∂ε−
k

]
1

(2ε+
k )2

vF (h̄vF ky + Jmx )

ε+
k

=
∫ ∞

−∞
dkx

∫ ∞

−∞
dkyFz(k, m). (D4)

According to the above equations, we replace k with −k, and then
∫ ∞
−∞ dkFi=x,y,z(k, m) = ∫ ∞

−∞ dkFi=x,y,z(−k, m). At
the same time, all the integrands Fi(k, m) in Sin(2) satisfy Fi=x,y,z(−k,−m) = Fi=x,y,z(k, m). Thus one can find that∫ ∞
−∞ dkFi=x,y,z(k,−m) = ∫ ∞

−∞ dkFi=x,y,z(−k,−m) = ∫ ∞
−∞ dkFi=x,y,z(k, m). This means that the results of Sin(2) are even func-

tions of m, which only contributes FL-SOT. Thus we do not need to consider E2 corrections to Sin.
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