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Angle-resolved optically detected magnetic resonance as a tool for strain determination
in nanostructures

A. Bogucki ,1,* M. Goryca ,1 A. Łopion ,1 W. Pacuski ,1 K. E. Połczyńska ,1 J. Z. Domagała ,2 M. Tokarczyk ,1
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In this paper, we apply the angle-resolved optically detected magnetic resonance (ODMR) technique to study
a series of strained (Cd, Mn)Te/(Cd, Mg)Te quantum wells (QWs) produced by molecular beam epitaxy. By
analyzing characteristic features of ODMR angular scans, we determine the strain-induced axial-symmetry
spin Hamiltonian parameter D with neV precision. Furthermore, we use low-temperature optical reflectivity
measurements and x-ray diffraction scans to evaluate the local strain present in the QW material. In our analysis,
we take into account different thermal expansion coefficients of the GaAs substrate and CdTe buffer. The
additional deformation due to the thermal expansion effects has the same magnitude as the deformation that
originates from the different compositions of the samples. Based on the evaluated deformations and values
of the strain-induced axial-symmetry spin Hamiltonian parameter D, we find the strain spin-lattice coefficient
G11 = (72.2 ± 1.9) neV for Mn2+ in CdTe and shear deformation potential b = (−0.94 ± 0.11) eV for CdTe.
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I. INTRODUCTION

One of the critical factors influencing the electronic and op-
toelectronic devices’ performance is local strain distribution.
For example, the spin relaxation time—a crucial parameter
for potential spintronic devices—strongly depends on spin-
lattice coupling and local strain distribution. The latter is
particularly nontrivial in complex nanostructures composed
of many different materials, e.g., in quantum wells (QW).
Such structures can be produced with several different growth
techniques like metalorganic vapor-phase epitaxy (MOVPE)
or molecular beam epitaxy (MBE). Historically, the develop-
ment of semiconductors’ growth methods was accompanied
by independent improvement of materials characterization
techniques, which resulted in a comprehensive knowledge
foundation for future research and advanced applications.
Naturally, new characterization techniques combined with
new growth methods offer fresh insights into semiconduc-
tor physics and often shed new light on some previously
determined material parameters. For example, this was the
case of GaAs crystals widely used as substrates for complex
semiconductor structures. In 1959, Kolm et al. [1] used x-
ray diffraction to determine the lattice constant of the GaAs
crystals produced with the Bridgman-Stockbarger method.
However, crystals grown nowadays with the use of other tech-

*Aleksander.Bogucki@fuw.edu.pl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

niques like horizontal Bridgman (HB), liquid encapsulated
Czochralski (LEC), vertical gradient freeze (VGF), or epitax-
ial methods resulting in different concentrations of impurities
systematically exhibit different lattice constants [2,3].

Finding a particular material parameter for materials ob-
tained by a specific growth method is critical for real
multilayer devices. Determining some structural parameters
is particularly challenging in small-volume structures (e.g.,
single QWs). A small amount of material often excludes many
characterization techniques like x-ray diffraction, which is a
standard method of measuring the strain in semiconductor
nanostructures. A possible solution to this issue is an incorpo-
ration of a small amount (below 1%) of magnetic ions into the
structure and determination of local strain exploiting the cou-
pling between those ions and the strain of the crystal lattice.
In many cases (like multiple QWs structures), determining the
spin Hamiltonian parameters describing such coupling may be
done with electron paramagnetic resonance (EPR) techniques
[4]. However, in thin structures, the number of spins is insuffi-
cient to produce a detectable EPR signal. This problem can be
overcome by using the optically detected magnetic resonance
(ODMR) technique which exploits the strong exchange in-
teraction between magnetic ions and photogenerated carriers
and facilitates detection of the paramagnetic resonance of a
significantly smaller amount of magnetic ions.

In this paper, we present a comprehensive analysis of the
local strain present in a series of (Cd, Mn)Te/(Cd, Mg)Te
QWs. We combine data obtained from angle-resolved ODMR,
low-temperature reflectance measurements, and x-ray diffrac-
tion scans. The scheme presented in Fig. 1 shows how we
address the problems formulated in the previous paragraph.
We design a series of (Cd, Mn)Te/(Cd, Mg)Te quantum well
samples fabricated by the MBE method that have different
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FIG. 1. The schematic overview of this work. There are three
main branches related to the experimental techniques used in this
paper: angular-resolved ODMR measurements, reflectivity measure-
ments, and XRD measurements. By combining the results of these
methods, we determine the spin-lattice coupling parameter G11 and
deformation potential parameter b for the Mn2+ ion in CdTe.

deformation in the QW layer by design. The QW material is
doped with a small amount of manganese (<1%) which ex-
hibits paramagnetic resonance. Using angle-resolved ODMR,
we determine the strain-induced axial-symmetry spin Hamil-
tonian parameter (D) with high accuracy. Independently, we
perform XRD measurements on the least and the most strained
samples—as only for these samples the XRD method yields a
reliable deformation value. After considering the additional
deformation that originates from the different thermal ex-
pansion coefficients of the substrate and QW material, we
deduce the deformation values for all samples. To check if
other samples also follow the design scheme, we perform
low-temperature reflectivity measurements. We determine the
energy splitting between light-hole (LH) exciton transition
and heavy-hole (HH) exciton transition from reflectivity spec-
tra. We find that the HH-LH splitting for the whole series
of samples exhibits monotonic behavior—thus validating the
designed distribution of deformation. As the ODMR measure-
ments are taken at cryogenic temperatures, we evaluate the
CdTe elastic stiffness constants C11 and C12 at 1.6 K from
available literature data. Then, from the obtained deformation
values and the corresponding strain-induced axial-symmetry
spin Hamiltonian parameter D combined with the elastic con-
stants, we calculate the spin-lattice coupling coefficient G11

for manganese in cadmium telluride. The spin-lattice coupling
coefficient G11 value obtained in this work diverges from
previously reported in Ref. [5]. Furthermore, we use HH-LH
splittings and deformation data to find the deformation poten-
tial b. The obtained value of b is similar to Ref. [6] one but
different from the values reported in Refs. [7–9]. Our findings
could be especially useful in all studies involving spin-related
phenomena in CdTe-based MBE-grown nanostructures and
devices including multiple-QWs and quantum dots [10–28].

(a) (b)

FIG. 2. (a) A schematic of a representative sample structure used
in the whole sample series used in this article. The buffer layer was
made of (Cd, Mg)Te where magnesium content was varying from
0% up to approx. 30%. Barriers were made of (Cd, Mg)Te while
the quantum well (QW) was made of (Cd, Mn)Te with manganese
concentration below 0.5%. (b) Reflectivity spectra of two example
samples. Sample UW1030 has a higher concentration of magnesium
in the buffer layer than UW1031 and thus exhibits larger strain,
which results in larger energy splitting between heavy-hole exciton
(HH) and light-hole exciton (LH).

II. EXPERIMENT AND RESULTS

A. Samples

The samples containing QWs used in this work were pro-
duced by the molecular beam epitaxy (MBE) technique. An
illustration of the samples is presented in Fig. 2(a). In order to
obtain structures with a different strain, we have changed the
content of magnesium in the buffer layer and the barrier layer
(see Table I). The magnesium content was deduced based on
magnesium fluxes and calibration obtained by the reflectance
measurements [29,30]. The nominal width of (Cd, Mn)Te
QW was 10 nm. The value of the QW width was chosen to
ensure sufficient confinement together with narrow excitonic
features in the reflectivity spectra, as well as being well below
the critical thickness of the CdTe lattice relaxation [31,32].
The manganese content was determined by magnetooptical
measurements of the giant Zeeman splitting and fitting the
modified Brillouin function [33]. The thickness of the (Cd,

TABLE I. The composition of samples used in this article, the
deformation present in the QW calculated for 300 K without correc-
tion for different thermal expansion coefficients of CdTe and GaAs,
and the deformation present in the QW calculated for 1.6 K with
thermal-expansion-coefficient-difference correction.

Buffer Barrier QW εT =300 K
‖ w/o corr. εT =1.6 K

‖ corr.

Sample no. Mg (%) Mg (%) Mn (%) (‰) (‰)

UW1029 30.7 30.7 0.30 −2.870 −3.512
UW1030 21.2 21.2 0.31 −1.959 −2.601
UW1028 16.4 16.4 0.14 −1.538 −2.180
UW0677 15.2 15.2 0.26 −1.396 −2.038
UW1050 8.5 16.4 0.15 −0.780 −1.422
UW1031 0 21.2 0.26 0.058 −0.584
UW0676 0 17.3 0.27 0.060 −0.582
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FIG. 3. The energy difference between the lowest light-hole ex-
citonic state and the lowest heavy-hole excitonic state (�LHHH
splitting) plotted vs magnesium content in the buffer layer for all
samples from Table I confirms that the growth process was fully
controlled.

Mg)Te barriers was 50 nm, the (Cd, Mg)Te buffer layer was
2000 nm (far above the critical thicknesses of the (Cd, Mg)Te
[34]), and the additional CdTe layer below the buffer was
4000 nm thick. This additional layer ensured the isolation
from the GaAs substrate. To confirm that we obtained the
designed strain in the produced samples, we have performed
reflectivity measurements [see Fig. 2(b)]. The identification of
the spectrum features was based on standard magneto-optical
measurements (not shown) [35–37]. The energy splitting be-
tween light-hole exciton and heavy-hole exciton visible in
spectroscopic measurements is a linear function of the strain
present in the QW layer [6,38–40]. Therefore, as the sam-
ples are similarly designed, the light-hole heavy-hole splitting
gives a hint about the existing strain.

Figure 3 shows heavy-hole exciton light-hole exciton split-
ting obtained as a function of magnesium content in the buffer
layer for all samples. The monotonic behavior of extracted
data confirms that the samples follow the design—the higher
the magnesium content, the larger the light-hole heavy-hole
splitting.

B. XRD measurements

In order to independently calibrate deformation, we have
performed room-temperature x-ray diffraction (XRD) mea-
surements of the two extreme samples: UW1029 (highest
strain) and UW1031 (lowest strain)—see Fig. 4. By analyz-
ing the 004 and the 335 reflections, we extract the lattice
constants of CdTe separation layer (about a = 6.481 Å) and
the strained layers. Throughout this work, for the calculations
we use the following lattice constants of pure materials at
room temperature: aCdTe = 6.481 Å [41], aMnTe = 6.337 Å
[42], aMgTe = 6.419 Å [29], and aGaAs = 5.6535 Å [43]. The
obtained results agree with the sample design.
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FIG. 4. The top panel shows XRD reciprocal space maps of 004
(left) and 335 (right) reflections obtained for a high-strain sample
(UW1029). There are two strong peaks attributed to CdTe and to (Cd,
Mg)Te buffer layer. Analysis of 335 map confirms that the strain in
the QW is induced by the buffer layer, as weak satellite peaks are
present along the vertical line meaning pseudomorphic growth with
a buffer lattice constant (dotted rectangle). The bottom panel presents
maps from the same region of reciprocal space (left: the 004 reflec-
tion, right: the 335 reflection) for the low-strain sample (UW1031).
All peaks present in the 335 map appear along the horizontal line
above the CdTe peak, confirming the pseudomorphic character of
growth with the CdTe lattice constant.

In XRD maps of the high-strain sample (UW1029), there
are two strong reflections—one corresponding to the 4 μm
CdTe layer, and the second one to 2 μm (Cd, Mg)Te
buffer layer. Positions of the reflections give the lattice con-
stants of CdTe and buffer at room temperature (where ‖
and ⊥ denote directions parallel and perpendicular to the
samples surface, respectively): aCdTe

‖ = (6.4807 ± 0.0006) Å,
aCdTe

⊥ = (6.4862 ± 0.0001) Å, abuff
‖ = (6.4616 ± 0.0003) Å,

and abuff
⊥ = (6.4595 ± 0.0001) Å. From these values and us-

ing the formula

arelax = (C11a⊥ + 2C12a‖)/(C11 + 2C12),
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FIG. 5. The 2θ/� XRD scan of the 004 reflection for low-strain
(UW1031, black line) and high-strain (UW1029, blue line) samples.
Lattice constants calculated from this measurement combined with
values obtained from asymmetric reflection 335 confirm that the
obtained strain agrees with the designed one.

we can calculate the lattice constant of the relaxed material
and finally obtain the deformation of the buffer layer ε‖ =
−0.3565‰. The fact that the nominally relaxed material has
nonzero deformation is explained in the following sections.
The coefficients C12 and C11 are the elastic stiffness constants
of CdTe. More details about the evaluation of elastic stiffness
constants at different temperatures are provided in Appendix.
The analysis of the 335 reflection shows that the buffer layer
is not fully relaxed. The relaxation degree of the buffer layer
in the UW1029 sample is 95.6%.

The situation is easier to interpret in the case of the low-
strain sample (UW1031), where on top of the separation
layer made of CdTe there is a buffer layer also made from
CdTe. In principle, the lattice constant of the thin, strained
barrier (thickness well below critical thickness) should be
matched to the lattice constant of the thick CdTe buffer.
Therefore the lattice constant of the QW should be close to
the parallel lattice constant of CdTe. The obtained values of
lattice constants for the UW1031 sample from XRD measure-
ments are aCdTe+buffer

‖ = (6.4807 ± 0.0006) Å, aCdTe+buffer
⊥ =

(6.4867 ± 0.0001) Å, a2nd
‖ = (6.4797 ± 0.0008) Å, a2nd

⊥ =
(6.4549 ± 0.0001) Å, where the superscript 2nd denotes the
second strongest peak and is related to the signal close to the
≈57◦ in the 2θ/� XRD scan (see Fig. 5). From this, we can
calculate ε‖ = −0.389‰, which in the case of the UW1031
sample is also the deformation present in the QW at room
temperature.

The influence of temperature is critical in the correct de-
termination of deformation in heterogenic structures [44–47],
which is the case of our sample, as the used materials ex-
hibit different temperature expansion coefficients. There are
three distinctive temperature points that should be considered
in the context of this work. (i) The growth temperature at
which CdTe layers were deposited in MBE. We have es-
timated this temperature to be 552 K—see Appendix. (ii)
The room temperature (300 K) at which XRD measurements

FIG. 6. The energy difference between the lowest light-hole ex-
citonic state and the lowest heavy-hole excitonic state (�LHHH
splitting) plotted as a function of deformation ε‖ at 1.6 K for analyzed
quantum well samples. The empty circles represent measured data
and the black crosses are the results of numerical simulations de-
scribed in Appendix II B. The black line is a result of a linear fit to the
data points. The shear deformation potential b = (−0.94 ± 0.11) eV
is calculated from the slope of an obtained line [Eq. (1)].

were taken. During the cooling after the growth process,
an additional compressive deformation builds up in the QW
layer, as the GaAs substrate shrinks more than CdTe during
the cooling. So at room temperature there is an additional
deformation originating from the different shrinking of the
QW layer and the substrate layer that is visible in XRD mea-
surements: ε552 K→300 K

‖ = −0.389‰. (iii) The pumped liquid
helium temperature (≈1.6 K) at which reflectivity and ODMR
measurements were performed. The GaAs temperature expan-
sion coefficient differs from that of the CdTe (see Fig. 13
in Appendix). Moreover, the magnitude of that difference
changes as the temperature decreases, finally resulting in an
additional compression which gives contribution to the de-
formation ε300 K→1.6 K

‖ = −0.253‰. Taking into account all of
those contributions up together with starting value εT =300 K

‖w/o corr. =
0.058‰, we finally obtain the deformation in the CdTe QW
layer at 1.6 K for the UW1031 sample, ε‖ = −0.584‰.

Now, using the above calibration and taking into account an
additional temperature-originating deformation, it is possible
to present the light-hole-heavy-hole splitting as a function of
deformation (Fig. 6). We obtain the band shear deformation
potential b = (−0.94 ± 0.11) eV using the formula [48]

�LHHH = 2b

(
1 + 2C12

C11

)
ε‖ + const. (1)

The shear deformation potential obtained in this work is
close to the value (−1.05 ± 0.01) eV obtained by Merle
d‘Aubigné et al. [6]. The other experimentally determined
value is b = 1.24 eV by Thomas and coworkers [7]. Other
values available are given by Peyla et al. [9], and by Mathieu
et al. −1.4 eV [8]. However, the two latter ones are based on
Refs. [7] and [6]. Namely, the value given by Peyla et al. [9] is
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(a) (b)

FIG. 7. (a) Photoluminescence (PL) spectra of (Cd, Mn)Te/(Cd,
Mg)Te quantum well (QW) collected at 1.6 K at a magnetic field of
0.545 T with microwave radiation (15.3 GHz) turned on (red curve)
and off (black curve). (b) Map of the normalized photoluminescence
spectra of the same QW measured for various magnetic fields with
microwave radiation present. The energetic position of the PL spec-
trum follows the modified Brillouin function, except the points at
0.545 T, where the paramagnetic resonance of Mn2+ ions placed
in the QW occurs. As a result of the resonance, the giant Zeeman
splitting rapidly decreases in those points.

the mean of values given by Thomas and Merle. The results of
calculated light-hole-heavy-hole splitting obtained by numer-
ically solving the finite QW model are marked in Fig. 6 with
black crosses. More details about the QWs simulations are in
Appendix.

C. Optically detected magnetic resonance measurements

Optically detected magnetic resonance is a technique that
exploits the fact that the optical properties of the studied
material change when paramagnetic resonance occurs. The
microwave absorption at electron paramagnetic resonance
(EPR) frequency leads to an increase of the Mn-system tem-
perature, which results in a decrease of the optically detected
magnetization [49–59]. The change in the optical properties
of the sample can be detected with various experimental
techniques. For example, previous ODMR studies of diluted
magnetic semiconductors were based on changes in Faraday
rotation [60], in the amplitude of photoluminescence, or in
the spectral shift of the photoluminescence line [61–67]. In
this work, we use the energy position of the neutral exciton
emission line (X) from the photoexcited QW to detect the
local magnetization in the QW layer (Fig. 7). For optical
excitation, we use a λ = 647 nm laser (with a spot diameter
of ≈100 μm) in a standard photoluminescence experimental
setup. The sample is placed in the optical cryostat equipped
with two perpendicular pairs of split superconducting coils.
Thus, it is possible to obtain up to 3 T of a magnetic field
in any direction in a given plane. In particular, it is possible
to continuously change the magnetic field from the Faraday
to Voigt configuration (scan over the out-of-plane angle θ in

FIG. 8. Angles definition of the magnetic field directions. The
sample edge is along 〈110〉 direction. The out-of-plane angle θ is
the angle between the samples’ growth axis and samples’ surface.
For example, θ = 0◦ means magnetic field along the growth axis
in Faraday configuration, whereas θ = 90◦ means in-plane magnetic
field. The in-plane angle ϕ is the angle between 〈100〉 direction and
the direction of the magnetic field. The angle ϕ = 45◦ means that the
in-plane magnetic field was along 〈110〉 direction.

Fig. 8) or to rotate the magnetic field within the sample plane
(scan over the in-plane angle ϕ in Fig. 8).

The representative photoluminescence spectrum (PL) for
samples used in this work is presented in Fig. 7(a). The PL
spectrum consists of two emission lines—at lower energies
there is a line related to the charged exciton (CX) and at higher
energies to the neutral exciton (X) [37]. During the scan in
the magnetic field in Faraday configuration (magnetic field
perpendicular to the surface of the sample and parallel to the
optical axis) energetic position of X line can be described with
the modified Brillouin function [33] (giant Zeeman effect).
However, in the presence of microwave radiation, a param-
agnetic resonance of manganese ions occurs at the resonant
magnetic field, which results in a rapid decrease of giant Zee-
man splitting [see Fig. 7(b) with its caption]. Comparison of
PL spectra measured for a resonance magnetic field with and
without microwave radiation are presented in Fig. 7(a). The
difference in the energy position of X line for these two cases
is called further in the text “the ODMR amplitude/signal.”
It is important to note that too strong laser excitation can
alter the optical properties of QW resulting in a change of the
position of the X line. To avoid this effect and ensure that the
laser excitation does not influence the amplitude of the giant
Zeeman splitting [68–71], we use the following procedure to
determine an optimal laser excitation power. The magnetic
field is set to the value of the paramagnetic resonance with
microwave radiation turned off. The series of PL spectra
are measured for decreasing laser power. The optimal laser
power is a power that does not cause an energy shift of the
neutral exciton emission line. In this work, the optimal laser
power corresponds to the excitation density power ρ < 0.005
W/cm2, which is even smaller than the low-power regime
value presented in Ref. [68].

An example of representative ODMR signal as a function
of magnetic field for fixed microwave frequency is presented
in Fig. 9. The detailed features (multiple lines) visible in the
ODMR spectrum originate from interactions of manganese
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FIG. 9. Optically detected magnetic resonance (ODMR) signal
of (Cd, Mn)Te/(Zn, Mg)Te quantum well obtained as a difference
between the energetic position of the quantum well excitonic line
with and without microwave radiation. The position with microwave
radiation was directly extracted from measured spectra. The position
without microwave radiation was established from the fitted modified
Brillouin function. On the horizontal axis, we used the relative mag-
netic field—a magnetic field with a subtracted value of the resonance
magnetic field for a given frequency of microwave radiation. The
multiple features visible on the spectrum are originating from differ-
ent terms of manganese Hamiltonian hyperfine structure interaction.

ion Mn2+ and CdTe material in QW and can be described with
a spin Hamiltonian [4,72]:

Ĥ = gMnμBB̂Ŝ + AÎŜ + D

[
Ŝ2

z − S(S + 1)

3

]
+E Rz(α)

(
Ŝ2

x − Ŝ2
y

)
R−1

z (α)

+a

6

[
Ŝ4

x + Ŝ4
y + Ŝ4

z − S(S + 1)(3S2 + 3S − 1)

5

]
. (2)

The first term of the Hamiltonian is responsible for the
Zeeman splitting (where gMn is the g factor of the manganese
ion). The second one is a hyperfine coupling between the
electronic spin and nuclear spin and it results in splitting
the ODMR spectrum into six lines as the manganese 2+ ion
has electronic spin S = 5/2 and nuclear spin I = 5/2. The
third and fourth terms come from the electronic quadrupole
fine structure present in less than cubic symmetry (strained
QW) and can be written in a general form as ŜD̂Ŝ, where D̂ is
a tensor. However, it can be reduced to only two parameters,
D and E—the axial and rhombic zero-field splitting (ZFS) pa-
rameters (D is also called the strain-induced axial-symmetry
parameter) [72]. The Rz(α) allows for the rotation of the
reference frame around the growth axis of the QW. The last
term describes the crystal-field splitting where a is the zero-
field fine structure splitting parameter for the unstrained CdTe.
As a consequence of the above Hamiltonian, the microwave
absorption spectrum of Mn2+ ion consists of 30 transitions
(five electronic spin transitions, each split into the sextet due
to hyperfine interaction).

D. Angular-resolved ODMR

Angular-resolved ODMR measurements can give precise
information about the spin Hamiltonian parameters D and E .
While a single ODMR measurement in Faraday configuration
should in principle give information about the D parameter,
the angular ODMR can provide much more detailed informa-
tion and increase experimental accuracy. The left panels of

Figs. 10 and 11 show the angular ODMR measurements of
example high-strain and low-strain samples, respectively.

In the lower part of the plot, the angular scan from the
Faraday configuration (magnetic field direction θ = 0◦) to the
Voigt configuration (magnetic field direction θ = 90◦) is pre-
sented. The upper part of the plot shows an in-plane ODMR
angular scan starting from 〈110〉 direction (parallel to the
samples’ edge) for ϕ = 45◦. The whole ODMR angular map
presents a set of characteristic features in which the location
on the map allows for the determination of spin Hamiltonian
parameters by comparison with similar numerically simulated
maps (see the right panels).

The first characteristic feature is the width of the ODMR
spectrum in Faraday configuration. In this configuration, a
transition that is visible at the lowest magnetic field corre-
sponds to the change of the electron spin projection from
Sz = +3/2 to Sz = +5/2 with nuclear spin projection Iz =
+5/2. Similarly, the transition at the highest magnetic field
corresponds to the change of the electron spin projection
from Sz = −5/2 to Sz = −3/2 with nuclear spin projection
Iz = −5/2. The measure of splitting between the outermost
lines in units of the magnetic field directly corresponds to the
value of the D parameter in the spin Hamiltonian. At high
magnetic field approximation—assuming that eigenstates are
the same as the eigenstates of the z components of the spin
operators, the spin Hamiltonian can be analytically solved. In
such a case, the D parameter can be calculated as

D = (gMnμB�Bz − 5A − 4a)/8, (3)

where �Bz is the distance in magnetic field units between the
lowest and the highest transition lines in the ODMR signal.

The above expression enables the determination of the
D parameter for D � 75 neV. Below 75 neV, the transi-
tions between other states are overlapping, and resolving the
lines becomes cumbersome. The difference between D value
calculated from Eq. (3) for 75 neV < D < 1000 neV and
obtained by numerically solving the spin Hamiltonian for
f = 15.6 GHz is below 0.05%. For higher values of D, the
difference between the numerical solution and analytical ap-
proximation slowly increases but is still below 0.1% for D as
high as 3000 neV.

Moreover, the positions of the ODMR signal line cross-
ings in ODMR angular maps (like those present between
B ≈ +20 mT to B ≈ +30 mT at θ ≈ 30◦ and θ ≈ 50◦ in
Fig. 10 or in Fig. 11, marked with white arrows) enable for
reducing fitting uncertainties down to a few neV. Similarly, by
analyzing analogous features of an in-plane angular scan, we
can fit the spin Hamiltonian E parameter, which in the case
of QWs should be zero. Indeed, within fitting accuracy, the E
parameter for our samples is negligible.

Figure 12 presents the obtained D parameter as a function
of deformation. As it is known [4], the spin Hamiltonian D
parameter is related to deformation ε‖ by formula

D = −3

2
G11

(
1 + 2C12

C11

)
ε‖, (4)

where G11 is the strain spin-lattice coefficient and C11, C12 are
elastic stiffness constants. The value of G11 strain spin-lattice
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FIG. 10. The left panel shows the measured angular maps of
the ODMR signal for the exemplary high-strain sample (UW0677).
The intensity of the ODMR signal is coded in the brightness of
the map. The upper left part (in-plane scan) was obtained for the
fixed out-of-plane angle θ = 90◦. A lower left part (out-of-plane)
scan was obtained for fixed in-plane angle ϕ = 45◦. The right part
presents results of simulations obtained by numerical solving of the
spin Hamiltonian presented in Eq. (2) calculated for infinite tempera-
ture. Fitted spin Hamiltonian parameters are D = (497 ± 3) neV and
E = (−8 ± 13) neV.

coefficient obtained from our data is G11 = (72.2 ± 1.9) neV.
This is a significantly larger value than the only previously
reported value [5] of GCausa

11 = (57 ± 1.3) neV.

FIG. 11. The left panel shows the measured angular maps of
the ODMR signal for the exemplary low-strain sample (UW0676).
The intensity of the ODMR signal is coded in the brightness of
the map. The upper left part (in-plane scan) was obtained for fixed
out-of-plane angle θ = 90◦. A lower left part (out-of-plane) scan was
obtained for fixed in-plane angle ϕ = 45◦. The right part presents
results of simulations obtained by numerical solving of the spin
Hamiltonian presented in Eq. (2) calculated for infinite temperature.
Fitted spin Hamiltonian parameters are D = (155 ± 3) neV and E =
(0 ± 25) neV.

FIG. 12. The spin Hamiltonian D parameter obtained from angu-
lar ODMR measurements as a function of deformation for analyzed
quantum well samples (circles). The dashed curve represents the
value of G11 for bulk CdMnTe reported in Ref. [5]. The solid black
curve represents the linear fit to data points measured in this work
for Mn2+ in CdTe and corresponds to G11 = (72.2 ± 1.9) neV. The
dotted lines represent one standard error deviation.

III. SUMMARY AND CONCLUSIONS

We have presented a precise method of determination
of spin Hamiltonian parameters by angular-resolved ODMR
measurements. Due to the high sensitivity of ODMR mea-
surements (we were probing ≈3.8 × 109 manganese spins,
which are almost 3 orders of magnitude less than the limit
for standard EPR setup) we obtained strain-induced axial-
symmetry spin Hamiltonian parameter D for single-layered
quantum wells of 10-nm thickness with neV accuracy. By
determination of D values for a series of samples differing
by magnesium content, we were able to determine the strain
spin-lattice coefficient G11 = (72.2 ± 1.9) neV for Mn2+ ion
in CdTe.
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FIG. 13. The upper panel presents linear thermal expansion co-
efficients of CdTe and GaAs as a function of temperature. Data for
CdTe and GaAs were taken from Bagot et al. [77] and Novikova et al.
[76], respectively. Curves are best-fit results of fitting Eq. (A2) to
the data. The lower panel shows calculation results of the additional
deformation �ε

temp.
‖ present in the QW samples due to the difference

in thermal expansion coefficients of CdTe material and GaAs sub-
strate material. The T0 is the temperature related to the MBE growth
process.

APPENDIX A: TEMPERATURE DEPENDENCE OF THE
THERMAL EXPANSION COEFFICIENTS OF CdTe

AND GaAs

The substrate material of analyzed samples is made of
GaAs on top of which a thick CdTe layer is deposited. As the
CdTe is deposited at a temperature of around 560 K, the XRD
measurements are performed at 300 K and optical measure-
ments at 1.6 K it is crucial to take into account the mechanical
properties of the samples. In fact, the presented design is
an example of composite-material behaving similarly to the
bimetallic strip, as the thermal expansion coefficients α of
GaAs and CdTe are different. Moreover, the changes of ther-
mal expansion coefficient of both materials—α(T ), as the
temperature changes, are different. As a result, accumulated
deformation, due to the cooling, must be evaluated based on
full α(T ) curves. The values of α are available in the literature

TABLE II. Numerical values of si and gi coefficients used for
reproduction of the linear thermal expansion coefficients α(T ) of
CdTe and GaAs with Eq. (A2).

Material i si (K) gi (K−1)

CdTe 1 222.02098 883.96417
2 −40.90023 −384.86715
3 −13241.61 1403.50696

GaAs 1 3562.24838 640.97475
2 −99.54697 −44.50516
3 371.47981 709.90672

for both CdTe [73–77] and GaAs [76,78–81]. The additional
deformation present in CdTe layer can be then calculated as

�ε
temp.
‖ =

∫ Ti

T0

[αGaAs(T ) − αCdTe(T )]dT . (A1)

For convenient integration, we interpolated literature data us-
ing an empirical formula:

α(T ) ≈
i=3∑
i=1

Gi(gi, si, T ), (A2)

where

Gi(gi, si, T ) = gi

( si

T

)2 e
si
T(

e
si
T − 1

)2 . (A3)

Full theory and formulas are presented elsewhere [77]. How-
ever, only the combination of α curves from Ref. [77] for
CdTe with Ref. [76] GaAs gives deformation value that agrees
with values obtained from XRD measurements (see Table II
and Fig. 13). As the temperature of the substrate during the
MBE growth of the sample was known within 10 K accu-
racy we evaluate actual growth temperature T0 as a value
that results in the ε‖ = −0.389‰ measured with XRD. This
procedure gives T0 = 552 K. (See bottom panel of Fig. 13.)

APPENDIX B: TEMPERATURE DEPENDENCE OF THE
CdTe ELASTIC STIFFNESS CONSTANTS

R. D. Greenough and S. B. Palmer in Ref. [82] presented
experimentally determined linear combinations of the CdTe
elastic parameters values from 300 to 4.2 K. From their data,
one can calculate 2C12/C11 ratio. In this paper, we evaluate
2C12/C11 ratio using two components of Eq. (A2) and added
constant C0. We obtain the best reproduction of data from
Ref. [82] for g1 = −0.0092 K−1, g2 = −0.015 K−1, s1 =
−516 K, s2 = 1415 K, and C0 = 1.39886. For temperatures
below 50 K, as the temperature decreases, the value of C0

approaches the 2C12/C11 ratio. For 300 and 1.6 K, we find
2C12/C11|300 K = 1.38859 and 2C12/C11|1.6 K = 1.39886.

APPENDIX C: NUMERICAL SIMULATION OF QW
LEVELS

Theoretical calculations of energy levels in QWs were
performed by solving a 1D Schrodinger equation of carrier
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confined in the square quantum well. The effective masses
in perpendicular direction are assumed 0.1m0, 0.63m0, and
0.13m0 for electron, heavy and light hole, respectively where
m0 is the free electron mass. The potential was obtained
from composition profiles. The QW layer was composed of
Cd1−yMnyTe, sandwiched between the Cd1−xMgxTe barriers,
the chemical potential AC and AV for the conduction and
valence bands is defined by the energy gap difference with
a relative valence band offset QV = 0.4 [83].

We used a band gap versus composition relation [84]:

ECd1−xMgxTe
g (x) = Bx + ECdTe

g = (1.850x + 1.606) eV, (C1)

for the barrier material and for the QW:

E
Cd1−yMnyTe
g (y) = By + ECdTe

g = (1.563y + 1.606) eV. (C2)

The difference of lattice constants of buffer and barrier
layers [85] leads to the presence of additional deformation
potential Adeform

i = αiε‖, where i = E, HH, LH denotes elec-
trons, heavy and light holes, respectively. The αi parameters
are corresponding to the a′ (hydrostatic deformation potential)
and b (shear deformation potential) material constants and
elastic constants ratio. For zinc-blend crystals, as CdTe, the
modified potential depths for the electrons, heavy and light
holes are [48]

AE = AC + Adeform
E = AC + 2a′

3

(
2 − 2C12

C11

)
ε‖, (C3)

AHH,LH = AV + Adeform
HH,LH

= AV +
[
−a′

3

(
2 − 2C12

C11

)
± b

(
1 + 2C12

C11

)]
ε‖.

(C4)

The elastic constants C12 and C11 are taken from literature
[82], for this calculation we have used 2C12/C11 = 1.39886,
while the parameter a′ = −3.85 eV [9]. The light-heavy hole
potential difference corresponds only to the difference in the
deformation potential [see Eq. (1)].

The shear deformation potential b = (−0.94 ± 0.11) eV
was obtained from the linear fit to the measured light-heavy
hole splitting versus calculated ε‖ as it was mentioned before.
The exciton binding energy for heavy hole exciton was set
as 18 meV, while for light hole exciton 21 meV, evaluated
from the literature [33,86,87]. The QW width was equal to
10.45 nm, the same for each studied sample. With these as-
sumptions, we have calculated heavy and light hole exciton
energy levels and their energy difference presented in Fig. 6.
Finally, the deformation ε‖ splits heavy and light hole exciton
energy levels.

Here we assume that the other parameters as the QW
width and exciton binding energy are not vulnerable to the
deformation. Moreover, the QW width, deformation potential
corresponding to the a′ parameter, and the exciton binding
energy affect the exciton energy in a similar way—increasing
or decreasing the state energy. Nonetheless, this additional
energy offset does not affect the heavy-light hole splitting
strain dependence which we are interested in here.
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