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Chiral Majorana modes (CMMs) have attracted considerable interest due to non-Abelian statistics and poten-
tial applications in topological quantum computations, but still lack conclusive experimental evidence. Here, we
propose that the nonlocal nature of CMMs leads to another transport signature, an anomalous Josephson effect
with a tunable ground-state phase difference modulated by a transverse electric field. The CMMs can mediate
nonlocal Andreev reflections from the top edge state to the bottom edge state in the quantum anomalous Hall
insulator and vice versa. This nonlocal Andreev reflection leads to the spatial separation of electrons and holes.
We refer to such Andreev bound states (ABSs) as nonlocal ABSs. It is shown that such nonlocal ABSs and the
corresponding Josephson current can be shifted in the dependence on the superconducting phase difference by a
transverse electric field. As a result, an electrically modulated anomalous Josephson effect should be observable
in experiments. Moreover, when the Josephson junction is sandwiched between two quantum anomalous Hall
insulator leads, the electrically tunable phase shift in ABSs results in a conductance oscillation which is
applicable in transistors. These findings provide different proposals to experimentally verify the existence of
CMMs, and as well as promise potential applications in phase-controllable Josephson devices and topological
transistors.
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I. INTRODUCTION

Majorana zero modes in condensed matter systems have
attracted considerable interest due to non-Abelian statistics
and potential applications in topological quantum compu-
tations [1–10]. The one-dimensional chiral Majorana mode
(CMM) is predicted to exist on the edge of two-dimensional
topological superconductors (TSCs) [11–13] which have been
proposed in several systems [14–18]. The most intuitive form
of TSCs is the interplay between superconductivity and topo-
logical materials [15,19–32]. The quantum anomalous Hall
insulator (QAHI) in proximity to an s-wave superconductor
has been predicted to be a TSC [19]. The QAHI with Chern
number C = 1 is topologically equivalent to a chiral topo-
logical superconductor (CTSC) with Chern number N = 2
when the chemical potential lies in the edge states. By tuning
the chemical potential into the bulk states, an N = 1 CTSC
phase with a single CMM emerges [33]. This system can
display novel transport phenomena such as a half-quantized
longitudinal conductance plateau [33], perfect crossed An-
dreev reflection [34], and coherent Majorana transport [35].
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However, in the aspect of experimental testing, the impor-
tant observation of a half-quantized conductance plateau is
still under debate regarding the origin of the conductance
plateau [36–40].

On the other hand, the anomalous Josephson junc-
tion [41–44], namely, the so-called ϕ0 junction with an un-
conventional current-phase relation (CPR) I (ϕ) = Ic sin(ϕ −
ϕ0), has important applications in superconducting computer
memory components [45], superconducting phase batteries
and rectifiers [46], as well as flux- or phase-based quantum
bits [47]. An anomalous Josephson junction can be real-
ized via the coexistence of spin-orbit coupling and Zeeman
field [42,48–51], noncoplanar ferromagnets [52–56], uncon-
ventional superconductors [57–61], and the manipulation of
topological edge or surface states [62–75]. To our knowledge,
an anomalous Josephson junction via CMMs has not been
discussed.

A recent work proposed a nonlocal conductance as a
fingerprint of CMMs due to the CMM-mediated nonlocal
Andreev reflection [76]. The nonlocal Andreev reflection
can form nonlocal Andreev bound states (ABSs) in a N =
1 TSC/QAHI/N = 1 TSC junction. The nonlocal ABSs carry
a considerable nonlocal Josephson current which is unique
to the N = 1 TSC phase with a single CMM [77]. while
for the N = 0 or N = 2 TSC phase, the Josephson current
vanishes for a junction with moderate width. This nonlocality
in Andreev reflection, ABSs, and Josephson current reveal the
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FIG. 1. (a) Schematic diagram of the Josephson junction com-
posed of a QAHI ribbon sandwiched between two N = 1 TSC leads.
(b) The Josephson junction is sandwiched between two QAHI leads
and forms a MJI. The phase difference between two TSCs is ϕ =
ϕ1 − ϕ2 with ϕ1,2 the superconducting phase in the left and right
TSCs. Chiral Majorana edge modes are depicted along the edges
and interfaces. Nonlocal ABSs emerge in the central QAHI region.
A transverse electric field Ey is applied in this region to induce an
anomalous phase shift in ABSs.

chiral nature of Majorana edge modes, and deserves further
exploration.

In this paper, we theoretically show that the nonlocal
Josephson current and nonlocal ABSs can be shifted in phase
by a transverse electric field due to the spatial separation of
the electron and hole. Considering the Josephson junction
composed of a QAHI ribbon sandwiched between two N = 1
TSCs as shown in Fig. 1(a), right-going electrons (holes) at the
bottom edge in the central QAHI will be reflected to left-going
holes (electrons) at the top edge with the probability of 1/4
at the interface between the QAHI and the right TSC. The
left-going holes (electrons) are then reflected to right-going
electrons (holes) at the bottom edge by the left interface
and form a complete ABS. This ABS is nonlocal in that
electrons and holes are separated in space by the insulating
bulk [78–80]. As a result, a transverse electric field Ey can
endow two paired electrons with different potential energies.
The difference in the potential will result in different wave
vectors of electrons and holes, and then lead to a dynamical
phase shift in ABSs due to the traveling of electrons and
holes in the central QAHI with finite length. Therefore, an
electrically modulated anomalous Josephson effect with an
arbitrary ground-state phase difference should be observable
in experiments. The manipulation of nonlocal ABSs presents
another mechanism to realize the anomalous Josephson ef-
fect. Moreover, in a Majorana-Josephson interferometer (MJI)
where the Josephson junction is sandwiched between two
QAHI leads [35] as shown in Fig. 1(b), the phase shift in ABSs
results in a conductance oscillation as the function of Ey in the
absence of an external magnetic field. These findings provide
different proposals to experimentally identify the existence of
CMMs, and as well as promise potential applications in phase-
controllable Josephson devices and topological transistors.

The rest of this paper is organized as follows. In Sec. II, we
introduce the model of the TSC-QAHI-TSC junction and the
MJI, and present the method to calculate the Josephson effect
of the Josephson junction and the conductance of the MJI.
In Sec. III, we present the numerical results and a discussion
on the anomalous Josephson effect. In Sec. IV, the numerical
results and a discussion on the conductance oscillation are
presented. Finally, a brief summary is given in Sec. V.

II. MODEL AND FORMALISM

The QAHI is described by the low-energy effective
Hamiltonian [81,82]

HQAHI = (m − Bk2)σz + A(kxσx + kyσy), (1)

where the basis is (ck↑, ck↓)T with ck↑(↓) annihilating an elec-
tron with momentum k and spin ↑ (↓), σx,y,z are the Pauli
matrices for spin, A is the strength of spin-orbit coupling, and
B and M are material parameters. The QAHI phase emerges
for m/B > 0. When the QAHI is in proximity to an s-wave su-
perconductor, a nonzero pairing potential � can be induced in
this system. The Bogoliubov–de Gennes (BdG) Hamiltonian
is

HBdG =
(

HQAHI(k) − μS i�σy

−i�∗σy −H∗
QAHI(−k) + μS

)
, (2)

where the basis is (ck↑, ck↓, c†
−k↑, c†

−k↓)T and μS is the

chemical potential. When the condition m2 <
√

�2 + μ2
S is

satisfied, the TSC phase with Chern number N = 1 is real-
ized [19,33].

To consider a ribbon geometry in the y direction, we
discretize the Hamiltonian in real space along the x and y
directions. Then the discretized BdG Hamiltonian is

H =
∑

r

�†
r

(
h(k) − μ i�σy

−i�∗σy −h∗(−k) + μ

)
�r

+
∑
r,r0

[
�†

r

(
hr0 0

0 −h∗
r0

)
�r+r0 + H.c.

]
, (3)

where r = (x, y) is the site index, r0 = x or y represents
the unit vector along the x or y direction, and �r =
(cr↑, cr↓, c†

r↑, c†
r↓)T is the field operator with cr↑(↓) the anni-

hilation operator of an electron at site r with spin ↑ (↓). The
components included in the Hamiltonian are

h(k) = (m − 4Bh̄2/a2)σz,

hx = (Bh̄2/a2)σz − i

2
Aσx,

hy = (Bh̄2/a2)σz − i

2
Aσy, (4)

where a is the lattice constant and h̄ is Planck’s constant. The
chemical potential μ = μN in the QAHI region and μ = μS

in the two TSC regions. The superconducting pairing potential
� = 0 in the QAHI region and � = �eiϕ1,2 with the supercon-
ducting phase ϕ1,2 in the left and right TSC regions. Moreover,
a transverse electric field Ey has also been considered in
the normal QAHI region and modeled by linearly increasing
on-site energies along the y direction. It can be equivalently
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modeled by the modification of the chemical potential μN →
μN − eEyy with e the unit charge.

By using nonequilibrium Green’s functions, the Josephson
current through column l in the central QAHI region is calcu-
lated by

I = 1

h

∫ ∞

−∞
Tr[ť†ěG<

l,l−1 − ěťG<
l−1,l ]dE , (5)

where ť = (Bh̄2/a2)τz ⊗ σz + i
2 Aτ0 ⊗ σx and ě = −eτz ⊗ σ0

denote the hopping matrix and the charge matrix, respectively.
τz (τ0) is the Pauli (unit) matrix in Nambu space. In equilib-
rium, the lesser-than Green’s function is calculated by G< =
f (E )[Ga − Gr], where f (E ) is the Fermi-Dirac distribution
function. The retarded and advanced Green’s functions read

Gr (E ) = [Ga(E )]† = 1

E − HN − �r
L(E ) − �r

R(E )
, (6)

where HN is the Hamiltonian of the QAHI region. The
retarded self-energy �r

L,R(E ) = [�a
L,R(E )]† due to coupling

with the superconducting leads L(R) can be calculated numer-
ically by the recursive method [83,84].

In addition, the ABS spectra can also be numerically cal-
culated through the Green’s function technique. The ABSs
result in peaks of particle density within the superconducting
gap. By searching the peaks of particle density in column l
(x3 � l � x2),

ρl = − 1

π
Im{Tr[Gr (l, l )]}, (7)

at a given phase difference ϕ = ϕL − ϕR, the energies of ABS
levels can be located. The ABS spectra are important for
understanding the phase shift and the anomalous Josephson
current.

For the MJI junction, the conductance can be calculated by
means of the lattice Green’s function method in the Landauer-
Buttiker formalism as [85,86]

G = e2

2h
(1 − R + RA + T − TA). (8)

The normal reflection coefficient R, the normal transmission
coefficient T , the local Andreev reflection coefficient RA, and
the crossed Andreev reflection coefficient TA can be given
by [34]

T = Tr
(

L

eeGr
ee


R
eeGa

ee

)
,

RA = Tr
(

L

eeGr
eh


L
hhGa

he

)
,

TA = Tr
(

L

eeGr
eh


R
hhGa

he

)
,

R = Tr
(

L

eeGr
ee


L
eeGa

ee

) + iTr
[

L

ee

(
Ga

ee − Gr
ee

)] + 1, (9)

where e (h) represent electron (hole), and 
L,R = i[�r
L,R −

�a
L,R] are the linewidth functions of left and right leads cou-

pled to the central scattering region.

III. ANOMALOUS JOSEPHSON EFFECT

In this section, we present the numerical results and dis-
cussions on the electrically modulated anomalous Josephson
effect in the TSC-QAHI-TSC junction as shown in Fig. 1(a).
We consider a right-going electron in the central QAHI region

FIG. 2. (a) Spectra of electrons and holes in the QAHI ribbon
in the absence of transverse electric field (black solid lines). In the
presence of a transverse field, the electron energy bands move in the
−kx direction (red solid lines) and the hole energy bands move in the
kx direction (blue dashed lines). The transverse field is Ey = 0.003.
(b) Current phase relationship for different anomalous phases of the
transverse field Ey which varies from 0 to 3π/2S with the junction
area S = W ∗ L. The temperature T = 0.001Tc, where Tc is the criti-
cal temperature. The dimensions of the QAHI region are W = 100a
and L = 100a, and the other parameters are A = B = 1, m = −0.5,
μN = 0, μs = 1, � = 0.35.

which is localized at the bottom edge and can be viewed as
the superposition of two CMMs [19,33]. At first, the elec-
tron travels from the left interface to the right interface and
accumulates a dynamic phase ke+L, where ke+ is the wave
vector of right-going electron edge mode and L is the length
of QAHI region. Then, mediated by the single CMM at the
QAHI-TSC interface, the electron will be reflected as either an
electron or a hole at the top edge, with the same probability of
1/4 [33,76]. The hole will travel from the right interface to the
left interface and accumulates a dynamic phase kh−L, where
kh− is the wave vector of the left-going hole edge mode. Then,
the hole will be reflected as an electron with the probability
of 1/4, which finishes a cycle to form an Andreev bound
state. It is clearly seen that this ABS is chiral and nonlocal,
and travels around along the edges of QAHI region. Note
that the nonlocality of the ABS is attributed to the CMMs
traveling along the two interfaces. Without the CMMs, the
coupling between electrons and holes which are separated by
the insulating bulk, can be induced only by the superposition
of edge states, i.e., the finite-size effect, and will vanish when
the width of the ribbon increases [77]. Therefore, a nonlocal
ABS with spatially separated electrons and holes is the unique
signature of Josephson junctions with CMMs.

Due to the spatial separation of electrons and holes in the
ABSs, a transverse electrical field will cause an important
consequence. The transverse electric field Ey can be mod-
eled by a linearly distributed on-site potential. Therefore, the
separation of electrons and holes in space makes it possible
that Ey endows two paired electrons with different potential
energies. For μN = 0, the spectra of electrons and holes in
the QAHI are shown in Fig. 2(a). When Ey = 0, the spectra of
electrons and holes superpose. With finite Ey, the energy of the
right-going electron at the bottom edge increase while that of
the left-going electron at the top edge decrease. Equivalently,
it is seen that the spectra of electrons move left towards the

075409-3



XU, FU, CHEN, LIU, WANG, AND XU PHYSICAL REVIEW B 105, 075409 (2022)

FIG. 3. ABS spectra with various transverse electric fields
(a) Ey = 0, (b) Ey = π/2S, (c) Ey = π/S, and (d) Ey = 3π/2S.
Other parameters are the same as those in Fig. 2(b).

−kx direction. On the contrary, the spectra of holes move right
towards the positive direction.

The wave vector difference δk between electrons and holes
will lead to an extra phase δkL in the formation of ABS due
to the traveling of electrons and holes in the QAHI region.
The wave vector difference δk can be estimated by δk = ke

x −
kh

x = −EyW/A with W the width of the QAHI ribbon. There-
fore, the anomalous phase shift is ϕ0 = δkL = −EyS/A with
S = W ∗ L the area of the QAHI region. Then the Josephson
current will correspondingly have an anomalous phase shift,
I = Ic sin(ϕ + ϕ0), where ϕ = ϕ1 − ϕ2 is the phase difference
between the two TSCs with superconducting phase ϕ1,2 and
Ic is the critical Josephson current. The nonlocal ABSs and
linear dependence of the ground-state phase difference ϕ0 on
the transverse electric field is a signature of CMMs. In the
other ϕ0 junctions without CMMs, such dependence of ϕ0 on
the transverse electric field will not be observed.

Figure 2(b) shows the CPR for various values of Ey. In
the process of numerical calculation, we take parameters A =
B = 1, m = −0.5, μN = 0, μs = 1, � = 0.35, W = 100a,
and L = 100a. The CPR displays a distorted sinusoid due
to the low temperature T = 0.001Tc with Tc the critical tem-
perature. It is clearly seen that the anomalous phase shift ϕ0

increases linearly with increasing Ey while the critical current
Ic almost remains unchanged, which is consistent with our
above estimation. Moreover, the numerical results of ABSs
(shown in Fig. 3) also verify the same Ey-induced anomalous
phase shift ϕ0. It is concluded that the nonlocal Josephson
current and nonlocal ABSs can be shifted in phase by a trans-
verse electric field due to the spatial separation of electrons
and holes.

IV. CONDUCTANCE OSCILLATION IN MJI

In addition to the anomalous Josephson effect, the anoma-
lous phase shift in ABSs can also induce an oscillation of
the two-terminal conductance in the MJI junction (QAHI-
TSC-QAHI-TSC-QAHI junction) as shown in Fig. 1(b). In
the absence of a transverse electric field, when the phase
difference ϕ between the two TSCs equals π , one set of ABS

FIG. 4. The relationship of the Josephson current (red) and the
transverse field and the relationship of the conductance (red) and
the transverse field with superconductor phase difference ϕ = 0.
The length of TSC is x2 − x1 = x4 − x3 = 60a and the width is
W = 100a. Other parameters are the same as those in Fig. 2(b).

levels near the zero energy crosses the zero energy exactly.
It is shown that the wave functions of CMMs at the top and
bottom edges of two TSCs are orthogonal to each other, i.e.,
〈�TSC1|�TSC2〉 = cos(ϕ/2) = 0 [35]. Hence, the conductance
of the MJI junction vanishes and reaches a minimum with
varying phase difference ϕ. From the above discussion of the
anomalous Josephson current, we know that the Ey-induced
anomalous phase shift ϕ0 is fully equivalent to ϕ. Therefore,
we expect a conductance oscillation tuned by the transverse
electric field Ey in the MJI junction without a magnetic
field [35].

Figure 4 shows the Josephson current and the MJI con-
ductance as functions of the transverse electric field Ey when
the superconducting phase difference ϕ = 0. The anomalous
Josephson current displays a sinusoidal dependence on Ey,
which verifies that ϕ0 is fully equivalent to ϕ. The MJI
conductance also displays a periodic oscillation over Ey. Ap-
proximately when the Ey-induced anomalous phase shift ϕ0 =
(2n + 1)π , the conductance reaches its minimum which is
close to zero. The deviation of the period in Ey away from
2π/S is attributed to the side effect of Ey and grows with
increasing Ey. For a large area S, only a weak electric field
Ey is necessary and then the side effect can be suppressed. To
verify this argument, we also plot the conductance oscillation
as the function of the length L = x3 − x2 of the QAHI region
when a small Ey = 0.02π is applied, as shown in Fig. 5. The
perfect oscillation over the length shows that the period in L is
very close to 100a and the side effect of Ey is well suppressed.
This conductance oscillation is also the unique signature of
CMMs and will not appear in other Josephson interferom-
eters. For potential applications, the conductance oscillation
can be applicable in CMM-based topological transistors.

V. CONCLUSION

In summary, we propose to employ a transverse electric
field to introduce a phase shift in the nonlocal CMM-mediated
ABSs in a QAHI sandwiched between two N = 1 TSCs.
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FIG. 5. The relationship of the conductance and length of QAHI
region with superconductor phase difference ϕ = 0 and the trans-
verse field Ey = 0.02π . Other parameters are the same as those in
Fig. 4.

This phase shift results in an anomalous Josephson effect
in TSC-QAHI-TSC junctions where the ground-state phase
difference becomes arbitrary, other than 0 or π , and tunable

by a transverse electric field. Furthermore, in the QAHI-TSC-
QAHI-TSC-QAHI junction which is also referred to as the
MJI junction, the anomalous phase shift in the nonlocal ABSs
is shown to lead to a conductance oscillation as the function
of the transverse electric field. Compared with previous ϕ0

junctions, the nonlocal ABSs, linear dependence of ϕ0 on the
transverse electric field, and the conductance oscillation in the
MJI junction are unique signatures of CMMs. These results
provide complementary experimental proposals to identify
the existence of CMMs and promise potential applications in
phase-controllable Josephson devices and CMM-based topo-
logical transistors.
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