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Topological edge and corner states and fractional corner charges in blue phosphorene
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We theoretically study emergent edge and corner states in monolayer blue phosphorus (blue phosphorene)
using the first-principles calculation and tight-binding model. We show that the existence of the Wannier orbitals
at every bond center yields edge states both in zigzag and armchair nanoribbons. The properties of the edge
states can be well described by a simple effective Hamiltonian for uncoupled edge orbitals, where the structural
relaxation near the boundary significantly affects the edge band structure. For corner states, we examine two
types of corner structures consisting of zigzag and armchair edges, where we find that multiple corner states
emerge in the bulk gap as a consequence of hybridization of edge and corner uncoupled orbitals. In the armchair
corner, in particular, we demonstrate that corner states appear right at the Fermi energy, which leads to the
emergence of fractional corner charge due to filling anomaly. Finally, we discuss the relationship between blue
phosphorene and black phosphorene, and show that two systems share the equivalent Wannier orbital positions
and similar edge/corner state properties even though their atomic structures are totally different.
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I. INTRODUCTION

Since the discovery of graphene, a variety of two-
dimensional materials have attracted considerable attentions
as the post-graphene semiconductors [1–31]. One of these is
black phosphorene [14–17], in which phosphorus atoms are
arranged in a single layer of puckered honeycomb lattice.
Although the low-energy band structure of graphene near the
Fermi energy is described by 2pz orbital only, that of black
phosphorene consists of three orbitals of 3px, 3py, and 3pz.
Due to this multiorbital nature, black phosphorene hosts edge
states both in zigzag and armchair boundaries [17–20] unlike
graphene, which has only zigzag edge states.

On the other hand, there is another two-dimensional al-
lotrope called blue phosphorene, which is as stable as black
phosphorene [21–23,25]. Blue phosphorene also has a non-
flat two-dimensional honeycomb lattice, but with a totally
different atomic structure. For instance, black phosphorene
has four atoms in its unit cell due to its nonsymmorphic
symmetry, while blue phosphorene hosts only two atoms in
its unit cell. It is an indirect semiconductor with a band gap
of 2 eV [21,28], and expected as a promising candidate for
optoelectronic devices [22,23,25,27]. Blue phosphorene has
been recently synthesized [22], and its physical properties
were investigated experimentally [23,25].

The edge properties of blue phosphorene have also been
addressed by previous theoretical works, in terms of the
electronic structures [28,32], passivation effect [33], fer-
romagnetic effect [34], and electronic transport [35]. In
particular, it was shown that unpassivated zigzag and arm-
chair ribbons host edge states [31,33,34]. Interestingly, the
edge-state band structures in blue phosphorene resemble those
in black phosphorene nanoribbons [15,36], even though the
two systems have totally different atomic structures and
crystallographic symmetries. In our previous paper [17], we

showed that the topological origin of edge states in black
phosphorene can be understood by using the center of the
Wannier orbital, which is a topological invariant. The sim-
ilarity in the edge-state natures between the two allotropes
suggests a certain topological relationship, which is not yet
clear.

In this paper, we theoretically study edge and corner states
in blue phosphorene using the first-principles calculation and
tight-binding (TB) model, and investigated their topological
origins. We show that zigzag and armchair edge states and
the associated number of the edge bands can be explained by
considering the position of the Wannier orbitals, in a similar
manner to the black phosphorene [17]. Similarity between
blue and black phosphorenes can be understood by the fact
that two systems can be deformed into a topologically equiva-
lent model through the deformation of the bond angles to 90◦.
The properties of the edge states can be well described by
a simple effective Hamiltoinian for uncoupled edge orbitals,
where we find that the structural relaxation near the boundary
significantly modifies the edge-band structure.

For corner states, we examine two types of corner struc-
tures consisting of zigzag and armchair edges, where we
find that multiple corner states emerge in the bulk gap as
a consequence of hybridization of edge and corner uncou-
pled orbitals. These multiple corner states can also be well
described by a simple effective Hamiltonian for uncoupled
edge and corner orbitals. In the armchair corner, in particular,
we demonstrate that corner states appear right at the Fermi
energy, which leads to the emergence of fractional corner
charge due to filling anomaly [37–45].

This paper is organized as follows. In Sec. II, we perform
density functional theory (DFT) calculations and construct the
TB model. By using the TB model, we clarify the topological
origin of the edge states. In Sec. III, we examine the edge and
the corner states in two types of nanoflakes using effective
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Top view

Side view

FIG. 1. Atomic structure of blue phosphorene from the top and
the side views. All of the three bond angles are θ ∼ 93.1◦. The unit
cell is shown as the blue rhombus, with A, B sublattices. The red
(blue) balls indicate atoms in the top (bottom) layer.

edge-corner site model. We reveal that the isolated corner state
emerges at the Fermi energy and a fractional corner charge is
induced at the armchair-type corner. In Sec. IV, we compare
the result in blue phosphorene with that of black phosphorene.
Finally, we conclude this paper in Sec. V.

II. EDGE STATES OF BLUE PHOSPHORENE

A. DFT calculations

Blue phosphorene has a buckled honeycomb structure
shown in Fig. 1, where the A sublattice and B sublattice are
located on different two-dimensional planes. The lattice con-
stant is a = 3.28 Å and the buckling height (vertical distance
between A and B sites) is d = 1.23 Å [22–24]. The structure
belongs to the symmorphic group P3̄m1, which consists of
rotoinversion S3 = C3P along the z axis, reflection about the
y − z plane and translations along the primitive lattice vectors
a1 and a2. In this paper, we take the lattice vectors as shown
in Fig. 1.

We perform first-principles band calculation by using the
Quantum-ESPRESSO package [46,47]. Figure 2(a) shows the
bulk band structure along the high-symmetry line of the first
Brillouin zone, where we see that blue phosphorene is a semi-
conductor with a band gap of approximately 2 eV.

We calculate the band structures of armchair and zigzag
blue phosphorene nanoribbons by using DFT. The lattice
structures of the ribbons are depicted in Fig. 3. The super
unit cells of the armchair and zigzag ribbons consist of 30
and 16 atoms, respectively. We take surface reconstruction
into account, where we allow the edge atoms (yellow sites in
Fig. 3) to be relaxed until the forces acting on the nuclei are
less than 10−4 Ry/Bohr. By the relaxation of the edge atoms,

(a)

(b)

(c)

FIG. 2. Electronic-band structures of blue phosphorene obtained
by (a) DFT calculation, (b) the Slater-Koster tight-binding model,
and (c) the 90◦ model. For the DFT calculation, we employ the
Vanderbilt ultrasoft pseudopotential with Perdew-Zunger exchange-
correlation functional. The cutoff energy of the plane-wave basis is
30 Ry, and the convergence criterion is 10−8 Ry in 12 × 12 × 1 k-
points mesh. The Fermi energy is set to E = 0.

the buckling height of the edge atoms is decreased (the top
panel of Fig. 3).

The resulting electronic-band structures are shown in the
middle panels of Fig. 3. The Fermi energies are set to be
zero. In the armchair nanoribbon [Fig. 3(a)], we observe a
pair of in-gap bands, which are repelled from each other,
forming a gap at the Fermi energy. On the other hand, in
the zigzag nanoribbon [Fig. 3(b)], a single band appears in
the bulk gap and the Fermi energy is in the middle of the
band. By examining the local density of states (LDOS) of
these electronic states (the bottom panel of Fig. 3), we confirm
that these in-gap states are localized around the edges of the
ribbon, namely, they are indeed edge states.
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(a) armchair (DFT) (b) zigzag (DFT)

LDOSLDOS LDOS

FIG. 3. (a) The atomic structure (top), the electronic-band structure (middle), and the local density of states (LDOS, bottom) of a relaxed
armchair nanoribbon calculated by DFT. In the atomic structure, yellow sites indicate the edge atoms, which are relaxed to decrease the
buckling height. In the band structure, the edge states are marked by arrows, and the red-horizontal lines indicate energies E 1

arm = −1.05eV
and E 2

arm = 0.23eV at which the LDOS is computed in the bottom panel. In the LDOS plot, the atomic positions are shown by an overlaid
honeycomb lattice. (b) Corresponding plots for a relaxed zigzag nanoribbon. The LDOS is calculated at Ezig = −0.15eV.

B. Topological origin of edge states

The origin of the edge states in the zigzag/armchair
nanoribbons can be understood by considering the tight-
binding model, in a similar manner to the method for the
black phosphorene [17]. Below we introduce the Slater-Koster

tight-binding model to qualitatively reproduce the DFT band
structure, and a simplified 90◦ model where all the bond
angles are deformed to 90◦. In the 90◦ model, the emergence
of the edge states can be easily understood by considering the
position of the Wannier orbitals. These edge states survive
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a continuous deformation from the 90◦ model to the Slater-
Koster model due to the topological equivalence of the two
models.

1. Slater-Koster tight-binding model

We construct a TB model using the Slater-Koster
parametrization [48]. The model is given by

HSK
αβ (k) =

∑
R

tαβ (R)eik·R, (1)

where R = n1a1 + n2a2 with n1 and n2 to be integers, and
we take α, β = As, Apx, Apy, Apz, Bs, Bpx, Bpy, Bpz as the
basis. The on-site term tαα (R = 0) is parameterized by
εs, εpx , εpy , εpz for s, px, py, pz orbitals, respectively. Due to
the symmetry requirement, they do not depend on A and
B sublattice, and we have εpx = εpy . The hopping integrals
(R �= 0) are written in the Slater-Koster form as

tnm(R) = enem(Vppσ (R) − Vppπ (R)) (2)

tnn(R) = e2
nVppσ (R) + (

1 − e2
n

)
Vppπ (R) (3)

tsn(R) = enVspσ (R) (4)

tss(R) = Vssσ (R), (5)

where n, m = x, y, z and en = R · n̂/R with n̂ being the
unit vector in n direction. We assume that the parameter
Vi jα (R) (i, j = s, p; α = σ, π ) depends on R exponentially,

Vi jα (R) = V (0)
i jα e−(R−τ )/r0 , (6)

where τ = [(a/
√

3)2 + d2]1/2 is the distance between the
nearest-neighbor sites. The decay length r0 = (a − τ )/ ln 10
is determined in order to let the second nearest-neighbor hop-
ping V (a) be 0.1 times the nearest-neighbor hopping V (0) [49].
Note that Vi jα (τ ) = V (0)

i jα by definition.

To determine the band parameters εα and V (0)
i jα , we obtain

the maximally localized Wannier functions and associated
tight-binding model by using the Wannier90 package [50].
The V (0)

i jα are determined so as to best reproduce the nearest-
neighboring hopping integrals in the Wannier90 tight-binding
model, resulting in

V (0)
ppσ = 3.60 eV, V (0)

ppπ = −0.90 eV,

V (0)
spσ = 2.09 eV, V (0)

ssσ = −1.55 eV. (7)

The on-site energy can also be taken from the Wannier90
tight-binding model as

εs = −10.7 eV, εpx = εpy = −2.01 eV, εpz = −2.23 eV.

(8)

The bulk band structure of the obtained TB model
[Fig. 2(b)] qualitatively reproduces that of the DFT calcula-
tion [Fig. 2(a)].

2. 90◦ model

The 90◦ model is a simplified, but topologically equivalent,
model of blue phosphorene where all the bond angles are
deformed from 93.1◦ to 90◦ [Fig. 4(a)]. By using the model,

we can understand the origin of the emergent edge states
of blue phosphorene. Here we take the orthogonal x′, y′, z′
axes to be parallel to the bond directions and consider only
3s, 3p′

x, 3p′
y, 3p′

z orbitals as the basis. We incorporate only the
nearest-neighbor hopping integrals. We neglect the hopping
between s and p orbitals because the energy bands originat-
ing from s orbitals are located far below in energy and the
coupling hardly affect the states at the Fermi energy. The
Hamiltoinian of the 90◦ model is then written as

H90◦ (k) = diag[Hs(k), Hx′ (k), Hy′ (k), Hz′ (k)], (9)

where the subscripts s, x′, y′, z′ denote the respective
s, p′

x, p′
y, p′

z atomic orbitals. The 2 × 2 matrices Hα (k)(α =
s, x′, y′, z′) are

Hα (k) =
(

0 hα (k)
hα (k)∗ 0

)
+ εα, (10)

and

hα (k) = tαx′eik·a1 + tαy′eik·a2 + tαz′ , (11)

tαβ =
{

ts (α = s)
δαβtσ + (1 − δαβ )tπ (α = x′, y′, z′) (12)

in the basis of the A, B sublattices. We take the hopping param-
eters tπ = −1 eV, tσ = 4 eV, ts = −1.28 eV, and the on-site
energies are εs = −12 eV, εx′ = εy′ = εz′ = 0. These param-
eters are determined to approximately reproduce the original
band structure. Specifically, we apply the Slater-Koster tight-
binding model [Eqs. (2) to (8)] to the 90-degree lattice, and
round the numbers for simplicity. The band structure obtained
from Eq. (9) is shown in Fig. 2(c).

From Eq. (9), we find that the s, p′
x, p′

y, p′
z orbitals are

completely decoupled, allowing us to consider each sector
individually. Focusing on the three p orbitals, each of them
is equivalent to a single-orbital TB model on a flat anisotropic
honeycomb lattice as shown in the middle panel of Fig. 4(b).
For example, we can see the p′

x sector of the 90◦ model has
stronger σ bonds along x′ direction and weaker π bonds along
y′ and z′, and therefore the system is formally equivalent to
an anisotropic honeycomb tight-binding model with hopping
tσ (thick-blue lines) in a single direction and tπ in the other
two. In the anisotropic honeycomb model, it is known that
the energy spectrum is gapped when tσ > 2tπ (it is the case
in our 90◦ model) [51–54], and then the Wannier orbital of
the valence band is centered at the midpoint of the strong
bond [17,51]. By applying the argument to the 90◦ model, we
immediately see that three Wannier orbitals associated with
the p′

x, p′
y, p′

z orbitals are centered at the inequivalent bond
centers, as shown in the bottom panel of Fig. 4(b).

Importantly, the center position of the Wannier orbital
(Wannier center; WC) is a topological invariant, i.e., its value
is unchanged unless a gap-closing or a symmetry-breaking
occurs [55–59]. As we will demonstrate in the next section,
blue phosphorene and the 90◦ model are topologically equiv-
alent, and thus, they both have a WC at each bond center.
In Appendix, we identify the WCs of blue phosphorene by
an alternative method based on the symmetry-based indicator
[55–59] and obtain the same result.

When the WC of occupied bands is mismatched with the
atomic positions, the system is classified as an obstructed
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(a) (b)

(c)
armchair edge zigzag edge

FIG. 4. (a) The crystal structure of blue phosphorene in the 90◦ limit. The blue (red) ball represents the A (B) site. (b) Top panel: The
schematic figure of the p′

x , p′
y, p′

z orbitals in the 90◦ model. Here, white (black) circle stands for the A (B) site. Middle panel: The anisotropic
honeycomb lattices corresponding to the 90◦ model with only one of the p′

x , p′
y, p′

z orbitals. The thick bonds indicate the stronger (σ ) bonding.
Bottom panel: Three Wannier states, which originate from the respective σ bonding of the models of the anisotropic honeycomb lattices.
(c) The half-broken Wannier functions at the edge in the armchair/zigzag nanoribbons. The yellow region represents the ribbon and the blue
parallelogram represents the super unit cell. The blue and red Wannier orbitals correspond to p′

x and p′
z orbitals, respectively.

atomic insulator (OAI). The blue phosphorene is an OAI
because the WCs of the occupied bands are centered at the
midpoints of the bonds between atomic sites. In an OAI, edge
states appear when the WC is half-broken at the boundary.
The Wannier orbital located at the bond center is nothing but
a covalent bond, and the emergent edge states correspond to
a dangling bond (i.e., uncoupled orbitals), which are energeti-
cally isolated from the bulk band region. If a WC is cut at the
corner of a finite-sized system (e.g., a flake), the correspond-
ing zero-dimensional corner state appears. This is known as a

2D higher-order topological state [17,37,51,58,60–62]. In the
following, we investigate these localized topological states of
blue phosphorene in detail.

3. Origin of the edge states

We model the armchair and zigzag nanoribbons without
surface reconstructions using the tight-binding models intro-
duced above. We consider a continuous deformation from the
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FIG. 5. (a) Band structure of an armchair nanoribbon in the 90◦ model (λ = 0) and that in the TB model without the surface reconstruction
(λ = 1). The red lines represent the edge-state bands, which are two-fold degenerate. (b) Corresponding plot for a zigzag nanoribbon. There
is only a single edge-state band. (c) (Left) Band structure of the armchair nanoribbon in the TB model with the surface reconstruction, where
the two edge bands in the main gap are split. (Top right) Energy band of the effective model considering edge uncoupled orbitals, which are
indicated in the bottom right panel. (d) Corresponding plot for the zigzag nanoribbon.

90◦ model to the TB model

Hλ(k) = (1 − λ)H90◦ (k) + λHSK(k), (13)

where H90◦ (k) and HSK(k) are the Hamiltonians of the
nanoribbon of the 90◦ and the Slater-Koster models, re-
spectively, and 0 � λ � 1 is the deformation parameter. By
diagonalizing Hλ(k), we obtain the band structure of nanorib-
bons.

For the armchair case, we consider a ribbon with width
of 7a, which is of the same size as the DFT calculation
[Fig. 3(a)]. Figure 5(a) shows the band structure of 90◦ model
(λ = 0) and that of the Slater-Koster model (λ = 1). The
red curves represent the bands of the edge states, which are
defined by the condition that more than 90% of the probability
amplitude is localized within an interval of length τ (= a/

√
3)

from the edge sites. Here we set the cut-off length such that
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it is around the typical decay length of the in-gap states and
much smaller than the ribbon width, to correctly distinguish
the bulk states and the edge states. A small change in the
cut-off length does not affect the identification, except for
some marginal edge states, which are energetically very close
to the bulk states. We observe that the band structure of
the Slater-Koster model (λ = 1) is deformed into the 90◦
model (λ = 0) without closing the bulk gap, i.e., without a
topological phase transition, and hence the WCs shown in the
bottom panel of Fig. 4(b) are unchanged through the defor-
mation. The edge state bands remain almost intact during the
deformation.

The origin of the edge-state bands can be explained in
terms of broken Wannier orbitals at the boundary of the
system. As argued, the edge states appear when the center
of the Wannier orbital is cut by the boundary. In the case
of blue phosphorene, three Wannier functions are localized
at the three inequivalent bonds. At the edge of the armchair
nanoribbon, two Wannier orbitals corresponding to p′

x and p′
z

sectors are broken per super unit cell [Fig. 4(c)]. The number
of broken Wannier orbitals per super unit cell coincides with
the number of the edge-state bands per side, Nedge = 2.

The same argument can be applied to the zigzag nanorib-
bon. Here we consider a ribbon with the super unit cell
including 16 atoms, which is of the same width as the DFT
calculation [Fig. 3(b)]. The band structures under the con-
tinuous deformation are shown in Fig. 5(b). In this case, we
have only one edge-state bands, corresponding to the fact that
the zigzag boundary breaks only the Wannier orbital of the p′

z
sector in the 90◦ limit, as shown in Fig. 4(c).

In the 90◦ limit, the edge state bands converge to E = 0
both in the armchair and zigzag cases. This is because the
90◦ model has chiral symmetry, i.e., the 2 × 2 Hamiltonian
for each sector of α = x′, y′, z′ satisfies the condition,

σzHα (k)σz = −Hα (k), (14)

where σz = diag(1,−1). Under chiral symmetry, the spec-
trum is symmetric with respect to E = 0. The two edge states
are chiral zero modes satisfying σzψ = ψ , which are lock to
the zero energy [63].

C. Surface reconstruction

In the Slater-Koster model in the previous section, we see
that the zigzag and armchair edge bands are almost flat, which
is the feature inherited from the completely-flat chiral zero
modes in the 90◦ limit. In the DFT calculation in Sec. II A,
on the other hand, the edge bands are much broader in energy,
and two edge-state bands in the armchair ribbon are repelled
away opening an energy gap at the Fermi energy. Actually,
the difference can be explained by incorporating the edge-site
reconstruction in the Slater-Koster tight-binding model.

Once we obtain the atomic positions after the surface
reconstruction by the DFT calculation (Sec. II A), we can
immediately construct the tight-binding Hamiltonian for the
relaxed ribbons using the Slater-Koster parametrization in-
troduced in Sec. II B. The electronic band structures of the
relaxed armchair and zigzag nanoribbons are shown in the left
panels of Figs. 5(c) and 5(d). We observe that the calculation

well reproduces the deformed edge-state bands in the DFT
calculation [Figs. 3(a) and 3(b)].

The relaxed band structure of the edge states can be de-
scribed by a simple 1D model for the edge atoms. In the
90◦ model, the edge states are contributed by the uncou-
pled orbitals at edge sites, where the edge-state bands are
completely flat since the hopping integrals between the edge
orbitals vanish in the 90◦ limit. By the relaxation, the edge
atoms are aligned near the horizontal plane [the top panels of
Figs. 3(a) and 3(b)], and therefore nonzero hopping integrals
emerge. We can construct an effective 1D Hamiltonian of the
edge atoms by estimating the emergent hopping terms in the
following manner. We write the Slater-Koster Hamiltonian for
the relaxed ribbon as

HSK,relaxed(k) =
(

Hedge(k) U (k)
U †(k) Hbulk (k)

)
, (15)

where k is the 1D wave number, Hedge is the edge sector
consisting of the uncoupled orbitals of the edge atoms, Hbulk

is the bulk sector composed of the other orbitals, and U is the
coupling between the edge and bulk sector. By treating U as
a perturbation and projecting HSK,relaxed onto the edge sector,
the effective Hamiltonian is given by

Heff (k) = Hedge(k) + U †(k)
1

E − Hbulk (k)
U (k), (16)

where we take E to be the average of the eigenvalues of
Hedge(k). From the effective Hamiltonian Heff (k), we extract
the nearest-neighbor hopping integrals between uncoupled
edge orbitals. For the armchair nanoribbon, ts = −1.46 eV
and tw = −0.31 eV, and t = 0.36 eV for the zigzag ribbon
[the right bottom panel of Figs. 5(c) and 5(d)]. We can calcu-
late the effective edge-band structure analytically, only with
the nearest-neighbor hopping integrals (farther hoppings are
negligibly small) :

E arm
eff,±(k) = ±[

t2
s + t2

w + 2tstwcos
√

3ka
]1/2

, (17)

E zig
eff (k) = 2tcoska, (18)

where the respective band widths are 2(ts + tw ) and 4t . For the
armchair nanoribbon, the band gap is 2(ts − tw ). As shown
in Figs. 5(c) and 5(d), the calculated band structures well
reproduce those of the original Slater-Koster model.

III. CORNER STATES OF BLUE PHOSPHORENE

A. Armchair-armchair corner

We consider a hexagonal-shaped flake of blue phospho-
rene with armchair edges depicted in Fig. 6(a) (hereafter we
call this the armchair flake) by using the Slater-Koster TB
model constructed in Sec. II B. The nanoflake consists of 222
atoms and the surface reconstruction of the outermost sites
(indicated by yellow atoms) is included in a similar manner
to the nanoribbon. The whole structure has the crystalline
symmetry D3d . Here we define the corner sites by six atoms
at the vertices of the hexagon, and the edge sites by the rest of
the yellow atoms.

We diagonalize the TB Hamiltoinan of the armchair flake
to obtain the energy eigenvalues and the eigenstates. The cal-
culated energy levels are shown in the left panel of Fig. 6(b),
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FIG. 6. (a) The structure of the armchair-armchair flake with the surface reconstruction. Yellow balls are the relaxed edge atoms. The total
number of atoms is 222. (b) The energy levels (left) and the wave functions (right) of the corner states calculated by the tight-binding model.
The edge states and the corner states are indicated by red and blue lines, respectively. The Fermi energy is in the middle of the B level (see the
text). In the wave function figure, the black dots represent the atomic sites, the radii of colored disks indicate the probability amplitude. Red
and blue represent positive and negative component in the real part of the wave function. (c) The illustration of the effective edge-corner site
model. (d) The energy levels and the corner state wave functions in the effective edge-corner site model.

where the red and blue lines stand for the edge and corner-
localized states, respectively. Here an edge state is defined by
the condition that more than 80% of the total probability am-
plitude is localized at the edge and corner sites, and a corner
state is by that more than 90% of the probability amplitude is
localized within a distance of 1.5a from the corner sites. The
right panels of Fig. 6(b) show the wave amplitudes of three
p-orbital components for the corner states (the amplitudes of
s orbital are negligibly small).

The bunch of edge levels (red lines) at E ∼ 1 eV cor-
responds to the upper edge-state bands in the armchair
nanoribbon [Fig. 5(c)]. We have two corner levels A and
B just above and below the edge levels. Each of the level
A and B is actually composed of sixfold degenerate states.
The degeneracy is slightly broken by weak coupling among
the six corners since the system has a finite size, while they
are completely degenerate in the limit of infinite system size.
The Fermi energy for the charge neutrality is located in the

075407-8



TOPOLOGICAL EDGE AND CORNER STATES AND … PHYSICAL REVIEW B 105, 075407 (2022)

(b)

(c)(a)

Level Level (d) Level 

Level 

E
ne

rg
y 

(e
V

)

E
ne

rg
y 

(e
V

)

FIG. 7. (a) The structure of the zigzag-zigzag flake with the surface reconstruction. Yellow balls are the relaxed edge atoms. The total
number of atoms is 294. (b) The energy level and the wave functions of the corner states calculated by the tight-binding model are shown in
the same manner as Fig. 6. (c) The illustration of the effective edge site model. (d) The energy level and the corner states of the effective edge
site model.

middle of the level B, where three out of six degenerate levels
are occupied.

When the Fermi energy is shifted to the gap above the
level B (i.e., three electrons are doped to the charge neutral
system), a fractional electric charge −e/2 appears at each
corner point. This is because three excessive electrons must
be equally distributed to the six corners due to S3 symmetry.
When the Fermi energy is in the gap below the level B, like-
wise, +e/2 appears at each corner. This situation is so-called
filling anomaly [37,38]. The emergence of corner states in a
blue-phosphorene armchair flake was also reported in very

recent paper [64], where the corner state is located off the
charge neutrality point since the structural relaxation is not
included in the calculation.

Just similar to the case of the armchair ribbon, these edge
and corner states can be well described by an effective model
only taking the uncoupled pz orbitals at the boundary. The
Hamiltonian can be obtained by applying Eq. (16) to the
flake. Figure 6(c) illustrates the schematic view of the model,
where the strong hopping (ts ≈ −1.36eV) and the weak hop-
ping (tw ≈ −0.25eV) are arranged alternately, except that ts
appears successively at the corner site (i = 0). This simple
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model yields three corner levels A, B, and C as well as the
edge levels between them, as shown in Fig. 6(d). The wave
function of the corner states are essentially the eigenstates of
a three-site system composed of i = −1, 0, 1. We see that the
energy spectrum and wave functions coincide with the results
in the TB model, while the corner level C and the lower edge
bands are absorbed into the bulk states in the TB model. The
filling anomaly argued above is best understood by this model.
The charge neutral point corresponds to the half filling of
the six-fold level B, which is the zero mode of the three-site
system at each corner.

B. Zigzag-zigzag corner

We also investigate a nanoflake with zigzag edges as shown
in Fig. 7(a). The system also has D3d symmetry. We obtain the
eigenenergies and the eigenstates using the TB model with the
relaxed edge structure. The result is summarized in Fig. 7(b).
We have the two corner levels A and B, which are both six-
fold degenerate. Unlike the armchair flake, the Fermi energy
for the charge neutral point is located in the middle of the edge
bands between the two corner states, and hence we do not
have isolated fractional corner charge when the Fermi energy
is shifted.

The effective edge-site model derived by using the same
method is depicted in Fig. 7(c). There are no corner sites
(i = 0), and i = 1 and −1 are directly connected. The nearest-
neighbor hopping parameter between i and i + 1 takes a
constant value t = 0.29eV, while the bond between i = 1 and
−1 is t ′ = −1.03eV. The model qualitatively reproduces the
spectrum and the characters of the two corner states as shown
in Fig. 7(d). Obviously, the level A and B can be understood
as the antibonding and bonding states, respectively, at the
irregular bond between i = 1 and −1.

IV. COMPARISON WITH BLACK PHOSPHORENE

The topological nature of blue phosphorene is analogous
to that of its close cousin, black phosphorene [14–17]. The
crystal structure of black phosphorene is shown in Fig. 8(a).
Locally it has a nonflat three-bonded structure similar to that
of blue phosphorene, while the buckling directions at A and
at A′ are opposite, resulting in a completely different global
structure. The blue phosphorene belongs to the symmorphic
space group P3̄m1, and black phosphorene to the nonsym-
morphic space group Pmna. Because of the nonsymmorphic
structure, a unit cell of black phosphorene consists of four
atoms, while blue phosphorene consists of two.

It is notable that, in spite of these differences, the Hamil-
tonian of black phosphorene is equivalent to that of blue
phosphorene within the 90◦ model with the nearest neighbor
hopping, as explained in the following. Figure 8(b) illustrates
the 90◦ model for black phosphorene. Here we see that a
vertical bond from A to B and one from A′ to B′ are opposite,
i.e., in +z and −z directions, respectively. If we reverse the
bond A′B′ from −z to +z, then the entire structure becomes
identical to the 90◦ model for blue phosphorene [Fig. 4(a)]. In
this process, however, the Hamiltonian matrix is not modified
because the hopping integral between two pz orbitals aligned
along z direction does not change if we swap the positions of
the two orbitals, and the hopping among px and py orbitals

Top view

Side view

(a)

(b)

FIG. 8. (a) The crystal structure of black phosphorene from the
top and the side views. The bond angles are θ1 ∼ 103◦ and θ2 ∼ 98◦.
The unit cell is shown as the blue rectangular, with A, B, A’, B’
sublattices. (b) The 90◦ model of black phosphorene. Both θ1 and θ2

are deformed to 90◦.

are all zero for vertical bonds. Therefore, the px py pz sector of
90◦-model Hamiltonian of black phosphorene is identical to
that of the blue phosphorene.

This immediately concludes that the blue and black phos-
phorenes share the same Wannier orbital centers, and thus
the same properties in emergence of the edge/corner states
[17]. Indeed, it was previously shown that the zigzag edge
of black phosphorene has a single edge-state band, and the
armchair edge has two edge-state bands [15,17,19]. Also, the
first-principle calculation for black phosphorene [15] showed
that two edge-state bands of an armchair edge are split by
the lattice relaxation, in a similar manner to our result for
blue phosphorene. We expect that the filling anomaly in an
armchair-armchair corner also occurs in black phosphorene,
too, because it is owing to splitting of the armchair-edge bands
such that a corner state can come to the charge neutral point.

V. CONCLUSIONS

We have examined the edge and corner states of blue phos-
phorene and investigated their origins in relation to the center
positions of Wannier functions. We found that the existence
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of the Wannier orbitals at every bond center yields edge states
both in zigzag and armchair edges. The band structures and
wave functions of the edge states can be described by a sim-
ple effective Hamiltonian for uncoupled boundary orbitals.
In particular, the effective model qualitatively explains the
effect of the surface relaxation on the band structure in the
first-principles calculation.

We investigated two types of nanoflakes consisting of
zigzag/armchair edges, and found that several corner-
localized states emerge in the bulk gap. These modes are again
explained by a similar effective model considering edge and
corner uncoupled orbitals. In the armchair flake, particularly,
we demonstrated that corner states appear right at the Fermi
energy, leading to the emergence of fractional corner charge.

Finally, we discussed the relationship between blue phos-
phorene and black phosphorene. Although the two systems
have completely different atomic structures, we showed that
they share the equivalent Wannier orbital positions and similar
edge/corner state properties.
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APPENDIX: WANNIER CENTER OF BLUE
PHOSPHORENE AND SYMMETRY-BASED INDICATOR

As shown in the main text, positions of Wannier centers
are crucial to understanding the topological origin of edge
and corner states in the blue phosphrene. In Sec. II B, these
positions are identified in terms of continuous deformation
between the blue phosphorene and the 90◦ model. On the
other hand, there is another generic scheme to detect the Wan-
nier centers from the symmetry character of occupied bands
[55–59]. In this Appendix, we show that the latter scheme also
gives the consistent results with Sec. II B.

Quite generally, each single particle states are classified
into the irreducible representations (irreps) at the high-
symmetry points in k space. We list these irreps for space
group P3̄m1 specific to the blue phosphorene in Table I. Here,
the high-symmetry points are � = (0, 0), K = (4π/3a)(1, 0),
and M = (2π/

√
3a)(0, 1). The irreps allow us to describe the

symmetry character of a set S of bands by a vector called
symmetry-based indicator,

bS = (γ +
1 ,γ +

2 , γ +
3 , γ −

1 , γ −
2 , γ −

3 ; κ1, κ2, κ3; μ1g, μ2g, μ1u, μ2u),

(A1)

where γ ±
i , κi, and μis (i = 1, 2, ... and s = u, g) are the num-

ber of irreps �±
i , Ki, and Mis, respectively, for the bands

included in the set S.
Let us identify the indicator (A1) of occupied bands in the

blue phosphorene. We specify the irreps of the occupied bands
in Fig. 9, which is obtained by considering the symmetry
of the wave function of the each single particle states. The
indicator corresponding to the irreps in Fig. 9 is

bocc = (2, 0, 2, 0, 1, 0; 1, 0, 4; 2, 0, 1, 2). (A2)

FIG. 9. The irreducible representations of the occupied bands
(E < 0). 3p and 3s orbitals are included.

Not all components of the indicator (A1) are independent,
but they are connected by compatibility relations,

γ +
1 + γ −

1 + γ +
2 + γ −

2 + γ +
3 + γ −

3 = M, (A3)

κ1 + κ2 + κ3 = M, (A4)

μ1g + μ1u + μ2g + μ2u = M, (A5)

γ +
1 + γ −

1 + (γ +
3 + γ −

3 )/2 = κ1 + κ3/2, (A6)

γ +
1 + γ −

2 + (γ +
3 + γ −

3 )/2 = μ1g + μ2u. (A7)

Here, Eqs. (A3)–(A5) guarantee that the number of valence
bands is fixed to M at every k point. The conditions (A6) and
(A7) forbid the band crossing of opposite-parity states under
the 180◦ rotation C2x and the reflection σx, respectively. These
compatibility relations (A3)–(A7) reduce the 13 degrees of

TABLE I. The irreducible representations (irreps) for the three
high-symmetry points are given. We show the character of each irrep
rather than the representation matrix. �i

±, Ki, Mis are the irreps at �,
K , M points, respectively. C2x is the 180◦ rotation along the x axis,
P is the spatial inversion, and σx is the mirror reflection about the
y-z plane. The little group of D3d (crystallographic point group of
blue phosphorene) at K point is D3, which do not contain P and σx

operations, so the rows of them for K point are blank.

Irrep C2x P σx

�+
1 +1 +1 +1

�−
1 +1 −1 −1

�+
2 −1 +1 −1

�−
2 −1 −1 +1

�+
3 0 +2 0

�−
3 0 −2 0

K1 +1
K2 −1
K3 0
M1g +1 +1 +1
M1u +1 −1 −1
M2g −1 +1 −1
M2u −1 −1 +1
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FIG. 10. The Wyckoff positions of the space group P3̄m1. Each
of the vertices of the hexagon corresponds to the atomic site of blue
phosphorene. Gray, red, and white dots represent the positions with
the heights 0, z, and −z, respectively. Positions 6g and 6i can move
on the red-thick lines. 12 j is the general positions and each dot can
be located at any position in the blue triangular region.

freedom of the indicator (A1) to 9 components:

b̃S = (γ +
1 , γ +

2 , γ +
3 , γ −

1 , γ −
2 ; κ1; μ1g, μ2g; M ). (A8)

In this representation, the indicator for the occupied bands in
blue phosphorene is written as

b̃occ = (2, 0, 2, 0, 1; 1; 2, 0; 5). (A9)

To detect the Wannier centers of blue phosphorene from
the indicator (A9), we use the concept of elementary band
representations [57]. The elementary band is a set of band
structure obtained from possible atomic orbitals, which are
restricted from the symmetry. Given the symmetry of the
system, we can classify the positions in the unit cells into
Wyckoff positions (WPs). Each of the WPs are character-
ized by its site-symmetry group (SSGs), namely the space
subgroup keeping the WP invariant up to the lattice vectors.
Irreps of the SSG give the possible atomic orbitals (e.g., s-like,
pz-like) at the WP. We summarize all of the WPs for the space
group P3̄m1 in Fig. 10 and all SSGs for the WPs in the second
column of Table II. For example, the SSG of WP 3e is the
point group C2h, which consists of the 180◦ rotation along x
axis (C2x) and the mirror reflection about y-z plane (σx), see
Fig. 10. The possible orbitals for this WP 3e are Ag (s-like),
Au (px-like), Bg (dxz-like), and Bu (py-like), see also Table II.
In the same way as Eq. (A9) the symmetry-based indicator
also characterize the elementary bands generated from each
of atomic orbitals:

b̃χ = (
γ +

1
(χ ), γ +

2
(χ ), γ +

3
(χ ), γ −

1
(χ ), γ −

2
(χ ); κ (χ )

1 ;

μ
(χ )
1g , μ

(χ )
2g ; M (χ )

)
, (A10)

TABLE II. The symmetry-based indicators of the 21 elementary bands for the space group P3̄m1. All of the WPs are listed in the 1st
column and the corresponding SSGs are shown in the 2nd column. For these SSGs, several irreps, which designate the symmetries of atomic
orbitals are displayed in the 3rd column. For each of them labeled by the serial numbers χ , we show the indicator (A10) in the 5th–13th
columns.

WP SSG irreps χ γ +
1 γ +

2 γ +
3 γ −

1 γ −
2 κ1 μ1g μ2g M

1a D3d A1g 1 1 0 0 0 0 1 1 0 1
A1u 2 0 0 0 1 0 1 0 1 1
A2g 3 0 1 0 0 0 0 0 0 1
A2u 4 0 0 0 0 1 0 0 0 1
Eg 5 0 0 2 0 0 0 1 0 2
Eu 6 0 0 0 0 0 0 0 1 2

2c C3v A1 7 1 0 0 0 1 1 1 0 2
A2 8 0 1 0 1 0 1 0 1 2
E 9 0 0 2 0 0 0 1 1 4

2d C3v A1 10 1 0 0 0 1 0 1 0 2
A2 11 0 1 0 1 0 0 0 1 2
E 12 0 0 2 0 0 1 1 1 4

3e C2h Ag 13 1 0 2 0 0 1 1 1 3
Au 14 0 0 0 2 1 2 1 1 3
Bg 15 1 2 0 0 0 1 0 1 3
Bu 16 0 0 0 1 2 1 1 0 3

6g C2 A 17 1 0 2 1 0 2 2 2 6
B 18 0 1 2 0 1 0 1 1 6

6i Cs A′ 19 1 0 2 0 1 1 2 1 6
A′′ 20 0 1 2 1 0 1 1 2 6

12 j C1 A 21 1 1 4 1 1 2 3 3 12
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which are listed in the 5th–13th columns of Table II.
Here χ = 1, 2, · · · , 21 is a serial number of the atomic
orbitals.

In terms of the indicator, any Wannier representable band
structure is decomposed into the linear combination of the
elementary bands:

b̃S =
21∑

χ=1

nχ b̃χ . (A11)

For the occupied bands in blue phosphorene, the decomposi-
tion is uniquely determined as

bocc = b10 + b13. (A12)

Here b10 represents the s orbital of the phosphorus atom lo-
cated at the WP 2d . The remaining b13 is the contribution from
px, py, pz orbitals of the phosphorus. According to Table II,
they construct three s-like orbitals centered at 3e correspond-
ing to the bond centers between phosphorus atom, which is
the same as the Wannier center obtained in the main text.
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