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Nonadiabatic quantum control of valley states in silicon
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Nonadiabatic quantum effects, often experimentally observed in semiconductor nanodevices such as single-
electron pumps operating at high frequencies, can result in undesirable and uncontrollable behavior. However,
when combined with the valley degree of freedom inherent to silicon, these unfavourable effects may be
leveraged for quantum information processing schemes. By using an explicit time evolution of the Schrödinger
equation, we study numerically nonadiabatic transitions between the two lowest valley states of an electron in a
quantum dot formed in a SiGe/Si heterostructure. The presence of a single-atomic layer step at the top SiGe/Si
interface opens an anticrossing in the electronic spectrum as the center of the quantum dot is varied. We show
that an electric field applied perpendicularly to the interface allows tuning of the anticrossing energy gap. As a
result, by moving the electron through this anticrossing, and by electrically varying the energy gap, it is possible
to electrically control the probabilities of the two lowest valley states.
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I. INTRODUCTION

Adiabatic theorem and manifestations in single-electron
pumps. According to the adiabatic theorem, a system ini-
tially in its ground state, and whose Hamiltonian evolves
slowly in time, is expected to remain in the ground state of
the instantaneous Hamiltonian, provided the ground state is
nondegenerate. However, if the Hamiltonian varies quickly,
then this approximation is no longer valid and the state is
best described by a superposition of eigenstates of the in-
stantaneous Hamiltonian. This superposition of states induces
spatial oscillations of the wave function, which are an observ-
able manifestation of the violation of the adiabatic theorem.
This is encountered in single-electron pumps operating at
fast pumping frequencies, where being in the nonadiabatic
regime leads to a decrease in the accuracy and precision of
the pump [1]. For instance, in the work of Yamahata et al.
[2] nonadiabatic oscillations were experimentally measured
in single-electron pumps formed by a silicon nanowire field
effect transistor. They also presented a one-dimensional simu-
lation of nonadiabatic oscillations between electron orbitals
for a moving quantum dot and demonstrated the resulting
spatial oscillations of the wave function.

Valleys in silicon and SiGe structures. In a [001] grown
SixGe1−x heterostructure, the tensile strain between the Si
and SiGe layers breaks the sixfold valley degeneracy of bulk
silicon, leading to a fourfold degeneracy (kx and ky valleys)
raised in energy and a twofold degeneracy (kz valleys) low-
ered in energy. The latter can be further broken by interface
roughness, impurities, or electric fields [3,4]. It is sufficient to
focus on the two lowest kz valley states because of the high
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energy gap (typically around 200 meV [3]) between them and
the other kx and ky valley states.

Nonadiabatic transitions with valleys is unexplored. Whilst
Yamahata et al. considered electron orbitals, they do not take
into account the valley degrees of freedom inherent to sili-
con, which are expected to couple with the orbital states in
any realistic device [3,5,6]. Hence it may be possible, due
to valley-orbit coupling, to observe nonadiabatic transitions
between valley states. Note that coherent oscillations between
valley states has been previously studied in pure valley qubit
schemes based on double quantum dots [7,8], while we in-
stead focus on a single quantum dot. Similarly, Boross et al.
[9] considered coherent oscillations between valley states in
a single dot, but their driving scheme is limited to a weak
electric field, contrary to our scheme.

Model and contribution of the paper. In this paper, we
study the dynamics of a single electron trapped in a quantum
dot formed by a [001] grown Si0.8Ge0.2/Si heterostructure.
The appearance of valley physics stems from our modeling
of the SiGe/Si heterostructure by use of a two-band model.
Nonadiabatic effects are then introduced by quickly varying
the center of the quantum dot potential. We then successively
consider two two-dimensional models of a simplified SiGe/Si
heterostructure, both introduced in Sec. II.

In the first model, we present an ideally grown heterostruc-
ture, where the orbital degrees of freedom originating from
the quantum dot are decoupled from the valley degrees of
freedom, and thusly observe only nonadiabatic transitions
between orbital states. An analytic study of such transitions
is tackled in Sec. III.

In the second model, we model a miscut SiGe/Si het-
erostructure by introducing a single-atomic step at the
interface, akin to that of Boross et al. In Sec. IV, we explain
why the introduction of this step alters the spectrum of the
system as the quantum dot position is varied. The key physics
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FIG. 1. Geometry of the two-dimensional SiGe heterostructure
model with the y axis neglected. We apply a time-dependent har-
monic quantum dot potential VQD in x, and an electric field in z. The
quantum well in the z axis, originating from the SiGe/Si interfaces, is
composed of Nz atoms and decreases by one atomic layer at the step
(green circle). The dashed parabola represents the potential profile at
t ′ > t , reflecting the spatial movement of the harmonic potential.

is that an anticrossing between the two lowest valley states
opens, with an energy gap tuneable by an electric field applied
along the z direction. This behavior is verified by a realistic
tight-binding calculation using NEMO 3D’s 20 band sp3d5s∗
model [10]. We detail this in Appendix A. As a result of the
anticrossing, the nonadiabatic pulsing of the electron through
this step allows one to induce transitions from one valley state
to another. Section V discusses the main result of the paper,
namely that the final state can be electrically controlled by
varying the anticrossing energy gap. Due to the appearance of
the avoided crossing in the spectrum, we model the transition
using the Landau-Zener approximation [11] and achieve good
concordance. From studying the results there exists a range
of driving parameters in which the final state forms a good
two-level system, opening the door for qubit applications.
We discuss the viability of such nonadiabatic valley qubit in
Sec. VI.

II. MODELS

A. Ideal model

Quantum dot potential. We now present the two-
dimensional model, in the (x, z) plane, used throughout this
paper. We assume the growth axis z of our heterostructure
to be orthogonal to the x axis, as shown in Fig. 1. In the x
direction, the electron has a transverse effective mass mx =
0.19 me. The quantum dot potential VQD is a harmonic po-
tential of angular frequency ω whose minimum follows a
trajectory ξ , hence VQD(x, t ) = 1

2 mxω
2(x − ξ (t ))2. We choose

ω such that we obtain an orbital level spacing �ε = h̄ω =
2 meV for the orbital states. This value is chosen to isolate the
higher orbital states from the two lowest valley states. Note
that the y axis is neglected in our paper since it does not affect
the physics discussed.

Quantum dot trajectory. The evolution in time of the
quantum dot position is the only source of time-dependence
in Hamiltonian. The quantum dot is initially at position
x0 = 0 nm at t0 = 0 ps, and moves with constant velocity vQD

until it reaches x1 at time t1. The parameters x1 and t1 are
varied to obtain different values for vQD. The trajectory ξ of
the quantum dot can be written:

ξ (t ) =
⎧⎨
⎩

x0 for t � t0
x0 + vQD(t − t0) for t0 � t � t1
x1 for t1 � t

(1)

The Hamiltonian describing the dynamics along the x axis
corresponds to an effective mass method, given by

Hx(x, t ) = p2
x

2mx
+ VQD(x, t ) (2)

and is identical for all z in the ideal model.
Description of the z confinement. The z confinement and the

valley effects are modelled using the tight-binding model for
strained silicon quantum wells of Boykin et al. [12,13]. The
resulting Hamiltonian for the z slices depends on three pa-
rameters: the on-site energy η, the nearest-neighbor hopping
v and the second-neighbor hopping u giving the Hamiltonian
in Eq. (3):

Hz(η, u, v) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η v u 0 . . . . . . 0

v η v u 0 . . .
...

u v η v u . . .
...

0 . . .
. . .

. . .
. . .

. . . 0
...

. . . u v η v u
...

. . . 0 u v η v

0 . . . . . . 0 u v η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

In this Hamiltonian, each site represents an atom of the
quantum well in the z axis.

We will define Nz = 40 to be the total number of atoms
in the z axis, where each atom is separated by 1.366 Å. We
will also refer to Nz as the quantum well width, expressed in
number of atoms. A monolayer corresponds to two atoms,
so that our choice of quantum well width corresponds to
20 monolayers. Note that varying the width of the
Si/SiGe quantum well, as we could do in the simula-
tions, is experimentally feasible. For clarity, we should
mention that this Hamiltonian corresponds to a sin-
gle chain of Nz atoms, and one can model a chain
of Nz − 1 atoms by setting the last row and column
to zero.

Expected eigenstates and spectrum. In our model, the
quantum well width is Lz = Nz × 0.1366 = 5.464 nm. The
energies of this infinite quantum well barrier are given by
Em = m2 h̄2π2

2ml L2
z

with ml = 0.92me the electron’s longitudinal
effective mass and m ∈ N∗ the orbital number. The energy
gap between the first and second quantum well eigenstates
is then 3 h̄2π2

2ml L2
z

= 13 meV. Because of this high energy gap,
it is reasonable to only consider the first eigenstate of the
quantum well. The eigenstates of Hx, which are eigenstates
of the harmonic oscillator, are denoted by ϕn with n ∈ N
describing the orbital number.
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The Hamiltonian describing the z confinement gives a val-
ley splitting less than the orbital spacing �ε = h̄ω induced
by the harmonic oscillator. As a consequence, we expect to
observe two well defined valley states for each orbital. We will
denote the corresponding eigenstates ψn,v and energies εn,v ,
with (n, v) where n ∈ N is the orbital index and v ∈ {−,+}
the valley index. It will be convenient later on to index the
states and the energies with a single index for readability.
Since the v = − valley states always have lower energies than
the v = + states for a given n, we will use the natural mapping
(0,−) → 0, (0,+) → 1, (1,−) → 2 and so on to label the
energies and eigenstates by increasing energies. The meaning
of the indices will be understood from context depending on
whether there is one or two indices.

As a final note, the full Hamiltonian for this idealised
model is H = Hx ⊗ Hz and corresponds to a hybrid tight-
binding/effective mass model. This ideal model is separable
in x and z, and hence the valley degrees of freedom do
not couple to the orbital degree of freedom. The eigenstates
are the product of the eigenstates of the Hamiltonians Hx

and Hz, and indeed the indices (n, v) are good quantum
numbers.

B. Single-step model

Description of the interface step, and experimental jus-
tification. As in the work of Boross et al., we introduce
an interface step consisting of a single-atomic layer at xs =
30 nm, modelled by decreasing the width of the quantum
well for all z slices where x � xs (see Fig. 1). This interface
step is motivated by the single-atomic layer steps observed
in SiGe/Si heterostructures grown on slightly vicinal [0 0 1]
Si substrates [14–17]. In particular, these steps occur at polar
miscut angles θ � 2◦, with terrace width on the order of 10 nm
[15–17]. Given θ can be controlled by manufacturers to within
0.1◦ [14] and uniform terrace width can be achieved as in
[15], one could manufacture a structure with an interface step
similar to that modelled in this paper.

Differences with Boross et al. Unlike Boross et al., we do
not allow the wave function to penetrate inside the SiGe layer,
instead enforcing hard-wall boundary conditions, however,
the physics observed is expected to be similar. And indeed
as shown in Fig. 5, the evolution of the spectrum is similar to
that obtained in Boross et al. Another difference in our paper
is that we do not limit ourselves to weak perturbations along
the x axis: we study the opposite limit of strong nonadiabatic
perturbations. Furthermore, our modeling has been validated
with NEMO 3D’s 20 band sp3d5s∗ model, see Appendix A.

Implementation. Due to the presence of the interface
step, the Hamiltonian is not separable in x and z anymore,
since the Hamiltonian Hz of Eq. (3) gains a x dependence. For
the simulations, we simply set the last row and last column
of Hz to zero for all x > xs. This amounts to diminishing
the length of the quantum well by one atom for all x > xs,
hence implementing the step. In line with Fig. 1, we also
add an electric field Ez, which is implemented by varying
the on-site parameters η of Hz. Hence, Hz also gains a z
dependence.

C. Methods

We numerically solve the ground state of the total Hamilto-
nian H at the initial time t0 = 0 ps and use this result as the ini-
tial wave function for solving the time-dependent Schrödinger
equation. The time-dependent Schrödinger equation is solved
using the Crank-Nicolson scheme [18]. The on-site energy
parameter η of Hz [Eq. (3)] is set to 1.395 eV such that the
spectrum has negative values close to zero, allowing for eas-
ier differentiation between “real” eigenvectors and “artificial”
eigenvectors (eigenvalues of 0). Indeed, this is necessitated
by the setting the column and row of the relevant lattice
sites to zero in the Hamiltonian to produce the step in the
interface, described above, as this introduces null eigenvalues.
The difference between our chosen value of η and the choice
made in Boykin et al. is then restored after diagonalisation.
The values used for the off-diagonal elements can be found in
Fig. 2 of Boykin et al. [12].

In all simulations, we fix x0 = 0 nm and t0 = 0 ps. For
the simulations involving the ideal model, we fix t1 − t0 to
5 ps and vary x1 to change vQD. This choice ensures that the
perturbation is applied for the same amount of time in all sim-
ulations. For the step model however, we fix x1 = 55 nm and
vary t1 to change vQD. As discussed later, the spatial evolution
of the dot relative to the step is critical for analysis of the
simulations, such that fixing the initial and final positions and
changing the time is the more appropriate choice of altering
the velocity.

III. NONADIABATIC EFFECTS IN THE IDEAL MODEL

A. Preliminary remarks

Introduction. In this section, we comment on the numerical
results obtained with the ideal model (Fig. 2) of Sec. II A,
i.e., when no interface step is present. As explained in the
previous section, the Hamiltonian is separable in the x and
z coordinates. Since the time-dependence only originates
from the x axis, the dynamics of the system reduce to that
of a driven quantum harmonic oscillator described by the
Hamiltonian Hx of Eq. (2). As a consequence, the only param-
eter we vary in our simulations is the quantum dot speed vQD

(in particular, the applied electric field Ez does not influence
the numerical results). This model is essentially the same as
the one from Yamahata et al. [2], with the difference being the
trajectory ξ of the quantum dot. Our choice for the trajectory
ξ [see Eq. (1)] will simplify the interpretation of the numerical
results.

Oscillatory features of the probabilities amplitude and
period. As a preliminary remark, one can notice that the states
of energy εn,+ have a zero probability of occupation for all
time. Indeed, since the dynamics only originate from the or-
bital degree of freedom, and no valley orbit coupling exist in
this ideal model, no transition to a state of valley index v = +
can happen because we started in a state with v = −.

A second striking feature is the oscillatory behavior of
the probabilities. Noticeably, the period of the oscillations is
constant (it depends only on the potential of the quantum dot),
but the amplitude can be increased through vQD. An analytical
derivation of this fact is performed in the next subsection
under the adiabatic approximation. Note, however, that higher
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FIG. 2. Time evolution of the probabilities for the ideal model
(no step and hence no valley physics). For small speeds, the system
mostly occupies the two lowest energy orbitals, forming a two-
dimensional Hilbert space, as needed for a qubit. However, a higher
speed introduces higher excited states and does not behave as a
two-level system anymore. Note that the period of oscillations is
constant and the higher the speed the bigger the amplitudes of the
probability oscillations.

values of vQD slowly increase the probabilities of higher or-
bital states (i.e states with n � 1), as can be seen in the last
row. For low values of vQD, the coherent oscillations between
the two states are effectively Rabi oscillations encountered in
qubits, but this does not hold at higher quantum dot speeds.

Classical analogy and spatial oscillations of the probability
density. A consequence of the presence of states other than
the ground state manifests itself in the spatial oscillations of
the probability density. The spatial oscillations of the electron
can easily be understood classically as follows. Applying the
Heisenberg equation of motion to the operators x̂ and p̂x, we
obtain:

d〈p̂x〉
dt

=
〈

1

ih̄

[
p̂x, Ĥx

]〉

=mω2(ξ (t ) − 〈x̂〉(t )),

d〈x̂〉
dt

=〈p̂x〉
m

.

From which we can derive the following equation of motion
for 〈x̂〉:

d2〈x̂〉
dt2

+ ω2〈x̂〉 = ω2ξ (t ). (4)

This is exactly the equation of motion of a classical har-
monic oscillator driven by some force ξ . Hence we see that
the average position behaves exactly as in the classical case

(a) (b)

FIG. 3. Adiabatic and nonadiabatic driving of a classical har-
monic oscillator. (a) In the adiabatic case, the mass follows the
position of the spring. (b) In the nonadiabatic case, the spring is
moved so quickly that the mass initially stays at the initial position—
it does not have enough time to react to the external perturbation.

of a driven harmonic oscillator. The period of the spatial
oscillations depends only on ω and not on the initial condi-
tions, whilst the amplitude increases with an increase in the
driving force.

Classically, the movement of the quantum dot can be un-
derstood by pushing a spring to which a mass is attached, as
shown in Fig. 3. Pushing the spring adiabatically, the mass
is expected to follow the movement of the spring, i.e., adapt
to the perturbation at each time. However, pushing the spring
over the same distance during a shorter period of time, one
expects the mass to oscillate, as it does not have time to adjust
to the perturbation.

Spatial oscillations from a quantum superposition Return-
ing to the quantum case, one can assume that the effect of
a nonadiabatic perturbation is to put the wave function into
a superposition of states. For instance, assuming that at the
end of the quantum dot’s trajectory, i.e., for t = t1, and for
relatively low values of vQD, the state is of the form:

|ψ (t = t1)〉 =
√

1 − p|ϕ0〉 + √
p|ϕ1〉

where ϕ0 and ϕ1 are respectively the ground and first ex-
cited state of the harmonic oscillator at t1, and p if the state
probability. Since for t > t1 the Hamiltonian becomes time
independent [it corresponds to a harmonic oscillator centered
at ξ (t1) = x1], the time evolution of the state is of the form:

|ψ (t )〉 =
√

1 − p|ϕ0〉 + e−i2π t
τ
√

p|ϕ1〉
with τ = 2π h̄

�ε
and period corresponding to a pulsation ω =

�ε
h̄ . Note that here the superposition is time dependent but

the state probability is time independent, since the probability
p does not depend on time.

The average position for t > t1 can then be expressed as:

〈x〉(t ) = 〈ψ (t )|x̂|ψ (t )〉
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= (1 − p)〈ϕ0|x̂|ϕ0〉 + p〈ϕ1|x̂|ϕ1〉

+ 2
√

p(1 − p) cos
(

2π
t

τ

)
�〈ϕ0|x̂|ϕ1〉

= x1 +
√

2h̄p(1 − p)

mω
cos

(
2π

t

τ

)

where we have used Eq. (4.174) of Ref. [19] to write

〈ϕ0|x̂|ϕ1〉 =
√

h̄
2mω

. Hence, we recover the fact that the
probability density oscillates in space, due to a quantum
superposition of states. These spatial oscillations of the proba-
bility density are at the root of the oscillations experimentally
observed by Yamahata et al.

B. Transition probabilities in the weak nonadiabatic regime

In this section, we follow a method by B. H. Bransden
[19] to derive an analytical expression for the probability of
the first orbital excited state, i.e., the state ψ1,−. To simplify
notations, we will drop the time dependence of ξ and de-
note by m = mx the electron’s transverse effective mass and
Ĥ (t ) = Hx the Hamiltonian. We will also make use of the
single index notation defined in Sec. II, such that we study
the transition ψ0,− ≡ ψ0 → ψ2 ≡ ψ1,−. One can expand the
Hamiltonian of the 1D model as follows:

Ĥ (t ) = p̂x
2

2m
+ 1

2
mω2x̂2 + 1

2
mω2ξ 2 − mω2ξ x̂.

The derivative with respect to time comes out as:

∂Ĥ

∂t
= mω2ξ̇ (ξ − x̂) = −mω2ξ̇ (x̂ − ξ ) (5)

Following B. H. Bransden, the probability amplitude of the
first orbital excited state ψ2 under the adiabatic approximation
is (Eq. 9.100):

c2(t ) = h̄−1
∫ t

t0

dt ′ 〈ϕ1(t ′)| ∂Ĥ
∂t ′ |ϕ0(t ′)〉
ω

exp

(
i
∫ t ′

t0

ωdu

)
(6)

with {ϕn(t )}n∈N denoting the eigenstates of the harmonic
oscillator centered at ξ (t ). We can simplify the numerator
using Eq. (5):

〈ϕ1(t ′)|∂Ĥ

∂t ′ |ϕ0(t ′)〉 = −mω2ξ̇〈ϕ1(t ′)|x̂ − ξ (t ′)|ϕ0(t ′)〉

= −mω2ξ̇〈ϕ1(0)|x̂ − ξ (0)|ϕ0(0)〉.
Using the generating function for the Hermite polynomials
(see equation 4.174 of Ref. [19]), one has the following
identity:

〈ϕn|x̂|ϕm〉 =

⎧⎪⎪⎨
⎪⎪⎩

√
h̄

mω

√ n
2 if m = n − 1√

h̄
mω

√
n+1

2 if m = n + 1

0 else

. (7)

Hence

〈ϕ1(t ′)|∂Ĥ

∂t ′ |ϕ0(t ′)〉 = −mω2ξ̇

√
h̄

2mω
.

We can then obtain a more explicit expression for the proba-
bility amplitude of the first orbital excited state:

c2(t ) = −mω2

h̄ω

√
h̄

2mω

∫ t

t0

dt ′ ξ̇ (t ′) exp (iω(t ′ − t0))

= −ω

√
m

2h̄ω

∫ t

t0

dt ′ ξ̇ (t ′) exp (iω(t ′ − t0)).

At this stage, it is useful to introduce the maximum speed of
a quantum harmonic oscillator in the ground state. Assuming
that the total energy corresponds to kinetic energy, we have

ε0 = h̄ω
2 = 1

2 mv2
max, where vmax ≡

√
h̄ω
m =

√
�ε
m the maximal

speed. We can then rewrite the expression for c2(t ) as

c2(t ) = −ω√
2

∫ t

t0

dt ′ ξ̇ (t ′)
vmax

exp (iω(t ′ − t0)). (8)

For t0 � t � t1, ξ̇ (t ) = vQD we can obtain the transition prob-
ability from the modulus squared of c2(t ):

P2(t ) = 2

(
vQD

vmax

)2∣∣∣sin
(ω

2
(t − t0)

)∣∣∣2
. (9)

Hence, the state probabilities oscillate with an amplitude
proportional to v2

QD as observed in Fig. 2. The period of
oscillations can be made more apparent by rearranging the
equation above:

P2(t ) = 2

(
vQD

vmax

)2∣∣∣sin
(ω

2
(t − t0)

)2∣∣∣

=
(

vQD

vmax

)2∣∣∣∣1 − cos

(
2π

(t − t0)
2π
ω

)∣∣∣∣

=
(

vQD

vmax

)2∣∣∣∣1 − cos

(
2π

(t − t0)

τ

)∣∣∣∣
with τ = 2π h̄

�ε
as previously defined. In the context of our

simulations, the orbital spacing �ε = 2 meV gives τ =
2.1 ps, which matches the period observed in Fig. 2.

In Appendix B, a similar calculation is performed to es-
timate the probability of the second excited orbital state
ψ2,− = ψ4.

C. Criterion for the transition to the nonadiabatic regime

Strictly speaking, an adiabatic evolution implies that the
probability of being in eigenstate remains the same throughout
the infinitely slow perturbation. For instance, if the initial
probability of the state ψ2 is initially zero, then it should con-
tinue being zero at all future times. In practice, it is convenient
to adopt a less restrictive definition by comparing how well an
adiabatic approximation matches with the actual results.

Using Eq. (9) we can find an upper bound for the probabil-
ity of the first orbital in the adiabatic approximation, namely
the maximum value of P0→2 is given by

max
t

P0→2(t ) = 2m
v2

QD

�ε
. (10)

As the bound is directly proportional to the square of vQD (the
orbital spacing �ε is fixed to 2 meV), one can appreciate that
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FIG. 4. Maximum value of the probability of the first excited
orbital state ψ2 for different values of vQD. The blue-solid line is
the upper bound of Eq. (10) derived in the adiabatic approximation.
The red-dashed line correspond to the maximum over time of the
probability of observing the state ψ2 in our numerical simulations.
The dotted-yellow line gives an indication of how well the adiabatic
approximation agrees with the numerical results. For small values
of vQD, the upper bound is a very good approximation, but the
error widens at vQD increases, reflecting the smooth transition to the
nonadiabatic regime.

the physics is particularly sensitive to the quantum dot speed.
This upper bound is plotted in Fig. 4 (blue-solid line).

As discussed in the previous subsection, and considering
the results of Fig. 2, the value of the final probabilities depend
on the time at which we look for a fixed value of vQD. As a
consequence, we plot in Fig. 4 the the maximum value of the
probability of P0→2 depending on vQD, as obtained from the
simulations (red-dashed line).

We remark that the numerical data matches the adia-
batic approximation for low vQD, i.e., when the adiabatic
approximation is valid. However, as vQD increases, the
adiabatic approximation, utilised to derive the analytic ex-
pression, becomes invalid and the difference between the
upper bound and the numerical results widens as expected.
Indeed, this can easily be interpreted by looking at the re-
sults of Fig. 2 where we see higher orbital states appearing
as vQD increases. As a consequence, some of the probabil-
ity leaks to these higher orbital states, explaining why the
results diverge. The yellow-dotted line gives an estimation
of how “nonadiabatic” the system is. Low values testify to
an adiabatic system for the orbitals, while values above a
certain threshold (arbitrarily chosen) indicate a nonadiabatic
regime.

To conclude this section, we would like to emphasise that
the plot of Fig. 4 only considers the orbital degrees of free-
dom, as the valley degrees of freedom do not play a role in
the ideal model. Still, Fig. 4 will prove useful for analyzing
the results involving the valley degrees of freedom of the step
model, discussed in Sec. V.

FIG. 5. Spatial evolution of the spectra of the single-step model
for different electric fields Ez. In this figure, the reference energy
has been set to 0 meV to increase readability. An anticrossing opens
after the step located at xs = 30 nm, and can be understood by the
probability densities of the two lowest states. The numerical results
show that the energy gap at the anticrossing can be tuned by the
electric field Ez applied perpendicular to the SiGe interfaces (see
Fig. 1). Note also the global increase of the energies as the electron
is confined to a tighter region, as we would expect.

IV. SPECTRUM IN THE STEP MODEL

We now perform the same analysis but with the step model.
Critically, the perturbation now couples the orbitals with the
valley states of the electron.

General remarks on the spectrum. We now discuss the
salient features of the spectrum of the step model as the
minimum of the quantum dot potential is varied. The results
are plotted in Fig. 5 for different electric fields Ez. To simplify
notations, we continue to label the energies with the indices
(n, v) ∈ N × {−,+}, but one should be reminded that near
the step, the strong valley-orbit coupling prevents (n, v) from
being good quantum numbers. Note that far away from the
steps, the wave functions are well defined valley states, and
the indices (n, v) are still good quantum numbers.

Origin of the anticrossing. A critical observation is the
existence of an anticrossing near the step location (at xs =
30 nm). As mentioned in the previous paragraph, the step
causes the coupling of the valley and orbital degrees of free-
dom. In the absence of disorder at the well interface there
exists globally defined valley states, where the valley states are
translationally invariant, however, the step potential explicitly
breaks this symmetry resulting in the observed anticrossing.

The physics behind this avoided crossing can be under-
stood by examining the probability density of the two lowest
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energetic states, and is well described in Boross et al. Indeed,
as shown in both atomistic simulations [12,13] and effective
mass theories [5,20], the wave functions exhibit modulations
on the atomic scale of the envelope function. The two lowest
kz valley states are symmetric and antisymmetric superposi-
tions of ±k0 with k0 
 0.82 2π

a , where a = 5.41 Å is the lattice
spacing of the silicon crystal. The atomic scale oscillations of
the two valley states are similar except for a spatial dephasing.
A consequence of this spatial dephasing is that one of the state
will have a maxima at the step location, while the other will
have a minima. Hence, as the quantum dot goes through the
step, the lowest energetic state will feel the step, increasing its
energy, while the other will not.

Control of the anticrossing gap with electric field. As shown
in Fig. 5, the energy gap at the anticrossing of the two lowest
valley states can be electrically controlled through the applied
electric field Ez. The dependence of the gap with the electric
field is nontrivial and also depends on the quantum well width,
which we have fixed to Nz = 40 atoms in this paper. As dis-
cussed in later sections, the values of Ez for which the energy
gap of the anticrossing is small will prove particularly useful
for electrical control of the final state. One could question
whether this behavior is expected in real devices, or if it is
an artifact of the two-band model we are using to model the
valleys. In Appendix A, NEMO 3D calculations using a 20
band sp3d5s∗ model show that the gap at the anticrossing
is indeed controllable with the electric field Ez. Akin to the
results of the two-band model, the anticrossing gap varies
in the same nontrivial way, but it seems the trend can be
reproduced only for certain quantum well widths. As a result,
we expect the control of the anticrossing gap to be feasible in
real devices.

Higher orbital anticrossing. We notice that a similar anti-
crossing happens between valley states of higher orbitals too
(states of energies ε1,− and ε1,+). However, this anticrossing
happens before that of the ground-state orbital. This makes
sense since the higher orbital states of the harmonic oscillators
have a wider spatial extent over the x position as the orbital
number n increases. In turn, the step is felt earlier, explaining
the earlier appearance of the anticrossing.

V. NONADIABATIC EFFECTS IN THE STEP MODEL

A. General comments

Results at a fixed low quantum dot speed. The movement
of the quantum dot potential has the effect of bringing energy
into the system. This additional energy allows the ground state
to overcome the anticrossing gap observed in the spectrum.
As intuitively expected, the smaller the gap between the two
lowest eigenstates, for the same perturbation the stronger the
probability of transitioning to other valley states. This is il-
lustrated well in Fig. 6 for vQD = 1 nm/ps where the value
of vQD is small enough that the system is mostly confined to
the two valleys of the first orbital state (this can be verified
by examining the yellow dashed line of Fig. 4, showing that
the perturbation is adiabatic for the orbitals). For this fixed
quantum dot speed, the variation of the applied electric field
is the only parameter used to tune the final probabilities of
the valley states. Comparing the gaps in the spectra of Fig. 5

FIG. 6. Evolution of the probabilities at vQD = 1 nm/ps for dif-
ferent electric fields Ez. The probabilities of higher energy states
were at most 0.25%, so they have been omitted here for readabil-
ity. To a good approximation vQD = 1 nm/ps results in a two-level
system (see Fig. 4) and can form the basis states of a qubit. Through
the applied electric field Ez, the energy gap of the anticrossing can be
tuned, which results in the control of the valley states.

and the final probabilities of Fig. 6, one can relate the final
probabilities to the tuning of the anticrossing gap.

Results for different combinations of quantum dot speeds
and electric fields. In the ideal model, the final probabilities
were tuned through vQD (see Fig. 4). In the step model too,
the quantum dot speed vQD can be used to tune the final
probabilities. In Fig. 7, we plot the probability of the state
ψ0,+ for a combination of electric fields Ez and quantum dot
speeds vQD. As expected from the spectra of Fig. 5, the “sweet
spot” for transitioning to the state ψ0,+ corresponds to small
anticrossing gaps, which happens in a range of electric fields
Ez ∈ [4, 6] mV/nm. One can also remark that increasing the
quantum dot speed increases the transition probability for rel-
atively small values of vQD. For higher values of vQD however,
the transition probability actually decreases with increasing
vQD, since transition to higher orbital states starts to take place
instead. This is easily interpreted from Fig. 4, which testifies
to the presence of higher orbital states.

Higher orbital valley flipping. The spectra of Fig. 5 show
that an anticrossing exists between the states of the first ex-
cited orbital. Since the transition between valley states is due
to the anticrossing, it is legitimate to expect valley flipping
behavior for the first excited orbital. Still, according to the
spectrum, this valley exchange should happen before that of
the ground orbital states, as the anticrossing happens at an ear-
lier position as explained in Sec. IV. This behavior is indeed
verified at higher quantum dot speeds as shown in Fig. 8.
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FIG. 7. Probability of the state ψ0,+. This allows to find the com-
bination of parameters (vQD, Ez ) to reach a specific final probability
for ψ0,+. For the quantum well width we chose, the anticrossing
gap is the smallest at values of Ez 
 6 mV/nm. This explains the
high transition probabilities observed for this range of electric fields.
For high values of vQD, transition to higher orbital states take place,
which explains the reduction of the probability occurring around
vQD = 9 nm/ps.

B. Landau-Zener approximation

Standard Landau-Zener formula and anticrossings. The
probability of nonadiabatic transitions in a two-level
system with an avoided crossing has been heavily studied,
see Ref. [11] for instance. In particular, the Landau-Zener
formula can be used to estimate the transition probabilities due
to nonadiabatic effects. The benefit of such an analysis is that
one can simply compute the final state probabilities without
solving the full time-dependent Schrödinger equation.

Under the Landau-Zener approximation, the energy
separation between the uncoupled states is a linear function
of time with gradient α, which is assumed to extend over all
time. Furthermore, due to the presence of the avoided crossing
in the spectrum of the step model, and its absence in the
ideal model, then the step couples the valley states. We can
introduce an off-diagonal fitting parameter W to mix the two
valley states and account for this induced coupling. As per the
Landau-Zener approximation, we also assume it is constant in
time. Knowing this, we can define the quantity

� = W 2

h̄|α| (11)

where the probability of transitioning to the excited state is
given by the formula

PLZ = e−2π�. (12)

Fit to Landau-Zener. In a realistic model the perturbation
is only linear over a finite range of time, as our numerical

FIG. 8. In this figure, vQD = 9 nm/ps and Ez = 6 mV/nm. We
can observe an exchange of valley states for the orbital (n = 1), due
to an anticrossing in the spectrum happening earlier than that of the
ground orbital (n = 0). Another interesting feature is the change in
both the amplitude and the period of the oscillations after the valley
flipping occurs.

results for the spectra show in Fig. 5. An analytical modeling
of our spectra is complicated, as the expression of the wave
functions is not analytical in a quantum well with an applied
electric field. As a consequence, we take the approach of
fitting our numerical results to a simpler model. Luckily, such
a simpler model is provided by Rubbmark et al. [11]. Hence
we fit the energy level separation between the two lowest
energy states (ε0,+ − ε0,−) to Eq. (18) of Ref. [11] reproduced
below (α and τ are the fitting parameters). The resulting tran-
sition probabilities are plotted in Fig. 9(b) for different values
of vQD and Ez:

ε0,+(t ) − ε0,−(t ) = ατ

(
1

1 + exp(−4t/τ )
− 1

2

)
. (13)

A surprising result is that the evolution of the transi-
tion probabilities is well captured by the Landau-Zener fit
for almost all electric field values and the quantum dot
speeds. In Fig. 9(a), the simulated transition probabilities
1 − P0,− are plotted. The Landau-Zener approximation in
Fig. 9(b) shows the same evolution as that of our numeri-
cal results. In Fig. 10, we plot the difference between the
simulated transition probabilities and the ones obtained from
the Landau-Zener approximation PLZ. This illustrates that the
Landau-Zener approximation deviates only slightly from our
numerical results. However, one should note that for large vQD

one would certainly observe transitions to higher orbitals and
valley states whilst Landau-Zener only considers the transi-
tion to the other state in the two-level system. Regardless,
the maximum value of the relative error across all values
of electric field and quantum dot speed was only 1.0% (not
shown in Fig. 10), and hence it provides a good measure
of whether the electron is in the ground state or not—with
perhaps no qualification on which state is has transitioned to.
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FIG. 9. Result of the Landau-Zener approximation. (a) The sim-
ulated transition probabilities (1 − P0,−, see main text) in the step
model. (b) Transition probabilities under the Landau-Zener approx-
imation in the step model. We can observe a remarkable agreement
between our numerical results and those obtained from the Landau-
Zener approximation.

VI. QUBIT APPLICATION

Validity of the two-level system and qubit application. The
choice of the wide energy level spacing �ε = h̄ω = 2 meV
for the orbital states allows one to prevent transitions to higher
orbital states, thus allowing for a two-level valley system to
form. However large values of vQD can still lead to leakage to
higher orbitals, and the electric field Ez also plays a complex
role. Regardless, there does exist a range of parameters for

FIG. 10. Difference between the simulated transition probabili-
ties and those obtained under the Landau-Zener approximation. We
can see that the Landau-Zener approximation gives good agreement
with our numerical results. The maximum value of the relative error
was 1.0%, not shown in this figure.

which the probability of higher orbital states is negligible and
a set of qubit basis states is realized. We can estimate the
range of parameters for which the final state is a two-level
system numerically by summing the probabilities of the two
states ψ0,− and ψ0,+ forming our preferred two-level system,
as shown in Fig. 11. Using the two lowest energy states
as a computational basis, our model effectively describes
the time-evolution of a pure valley qubit with all-electrical
control.

Coherence time and protection from charge noise. The
use of the valley degrees of freedom to encode the quantum
information is interesting in that it provides certain immu-
nity to charge noise [21]. Charge noise is one of the leading
sources of decoherence of silicon qubits [21–24]. The resis-
tance to charge noise has been experimentally verified through
Laudau-Zener interferometry in a Si/SiGe double quantum
dot by Mi et al. [25]. Previous implementations of qubits
leveraging valley states in double quantum dots have shown
a coherence time on the scale of nanoseconds [7,8,26,27].
Although those qubits were implemented in double quantum
dots, whilst our system is a single quantum dot, we expect the
coherence time of our architecture to have a similar order of
magnitude.

Experimental advantage. The all-electrical control of the
final state probabilities is critical for scalability, as one
would not need magnetic fields for qubit manipulation as
in most spin qubit implementations [23,24]. The absence of
applied magnetic field, and hence large microwave antennas,
makes the integration of such a system significantly more
simple. A second advantage is that we are not constrained
by any adiabatic condition, as a consequence, provided the
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FIG. 11. Evolution of the probability of being in a two-level
system based on the two lowest valley states ψ0,− and ψ0,+ at the
final simulation time. The two-level system probability is defined to
be the sum of the probabilities of the states ψ0,− and ψ0,+. The bright
yellow/orange regions give a range of parameters for which the final
state is a good two-level system suitable for qubit applications.

decoherence times are similar to that of other hybrid val-
ley qubits, we can perform orders of magnitude more gate
operations.

Coupling, readout, and other issues. Serious difficulties are
to be overcome for this scheme to be usable in practice. First,
the engineering of the control pulses may pose significant
experimental hurdles. As argued by Boross et al., it may be
somewhat achievable using a double quantum dot architecture
and varying the barrier and detuning to move the electron
through the step [28]. However, this procedure will inevitably
be complicated by the additional gates needed to apply the
electric field Ez, due to the existence of cross couplings. An-
other issue may be raised concerning the picosecond scales of
the pulses, but one should remember that the control is deter-
mined by the spatial movement of the center of the quantum
dot. As an example, Yamahata et al. demonstrated a movement
of the electron on similar time scales in a single-electron pump
based on a silicon nanowire [2]. Furthermore, we have been
limiting ourselves to constant speeds for ξ , and hence more
complicated trajectories are unexplored and may partly solve
some of these issues.

We should also mention that finite barrier heights and
diffused interfaces present in realistic devices significantly
suppress the valley splitting [6,29]. Critically, if the avoided
crossing in the spectrum remains, the physics observed will
be similar. The reduced magnitude of the valley splitting will
facilitate transitions to higher excited states because of the
smaller energy gap. A possible solution could be decreasing
the strength of the perturbations, i.e., the quantum dot speed.
This will also have the advantage of potentially reducing the

complexity of engineering fast control pulses, at the expense
of the speed of operation.

Finally, both readout and coupling to other such qubits
has not been explored and may pose a significant techni-
cal challenge for the scalability of the proposed scheme.
A potential avenue towards readout could be implemented
with a form of charge sensing, as is done in most sili-
con qubits [24]. This would require the incorporation of
another dot after the step, and adjusting the energy levels
so that only the highest energy valley states tunnels to the
second dot.

VII. CONCLUSION

To summarize our paper, we have shown that displacing
a quantum dot potential through an interface step leads to
an anticrossing in the spectrum of the two lowest energetic
states. A critical observation, which was verified with tight-
binding calculations of NEMO 3D, is that the energy gap
at the anticrossing can be controlled by applying an elec-
tric field perpendicular to the interface. Since the transition
probabilities depend on the energy gap, and the latter is elec-
trically controlled, we can achieve all-electrical control of
the final state probabilities. There is a range of parameters
for which the final state behaves as a charge qubit encoded
on valley states, though readout and coupling have not been
explored.

There are two main limitations of our results. The first is
the qualitative nature due to our highly idealized modeling.
Indeed, we enforced hard-wall boundary conditions for the
z confinement, so that the wave function does not penetrate
through the SiGe layers, while a more realistic choice would
be adding a finite height barrier of around 150 meV. We also
neglected both the strain and alloy disorder of the Ge atoms.
We also note that our work is only valid in the low-density
limit hence ignoring both Coulomb and exchange effects.
Despite these remarks, the results obtained from NEMO 3D
indicate that the physics discussed should still be applicable
to real devices, with only qualitative modifications. Finally,
the precise engineering of both the device geometry and the
applied voltages for adequate control poses additional experi-
mental challenges.

The second limitation is due to the experimental feasibility,
namely, the precise control of the fast electrical pulses to move
the quantum dot and the existence of a single-atomic step.
Indeed, we expect multiple steps to form over the spatial range
chosen for our simulations. We have also neglected relaxation
mechanism, as these are supposed to occur on a timescale
greater than the operation times.

Nevertheless, nonadiabatic control of valley states may
open quantum information processing schemes. In this pa-
per, we have limited ourselves to the study of a single
quantum dot, but we suspect that the results could be
adaptable to more complicated double-dot systems making
the possible implementation of these ideas more realistic.
Additionally, in some emerging 2D and topological materials,
spin and valleys are strongly momentum locked, thus fast
manipulation of valleys could lead to nonadiabatic control
of spins.

075406-10



NONADIABATIC QUANTUM CONTROL OF VALLEY STATES … PHYSICAL REVIEW B 105, 075406 (2022)

FIG. 12. Evolution of the spectrum with the location of the quan-
tum dot relative to the step at 0 nm. The anticrossing can happen
either before (a) or after (b) the step, a fact captured in both our step
model (solid lines) and NEMO 3D’s 20 band sp3d5s∗ model (dotted
lines). In (a), the quantum well width is 16.5 monolayers for the solid
lines and 18 monolayers for NEMO 3D. In (b), the quantum well
width is 21 monolayers for the solid lines, and 20 monolayers for
NEMO 3D. The applied electric field is Ez = 10 mV/nm for all the
curves in this figure.
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APPENDIX A: VALIDATION OF THE MODEL

Objective. Most results discussed in the main text depend
on two critical facts: the existence of an anticrossing be-
tween the two lowest valley states, and the relative control
of the anticrossing gap with the electric field Ez. While hybrid
tight-binding/effective mass models have been used to model
interface steps, in this Appendix we propose to verify that the
main results are supported by more sophisticated calculations,
using NEMO 3D’s 20 band sp3d5s∗ model [10].

FIG. 13. Evolution of the anticrossing energy gap with the
electric field in the step model (solid-dotted blue) and NEMO simula-
tions (dashed-circled red). Depending on the quantum well width, the
magnitude and location of the minimum of the gap can change. (a) In
the step model, we used 16.5 monolayers, while 19 monolayers were
used for NEMO 3D. (b) In the step model, we used 19 monolayers,
while 20 monolayers were used for NEMO 3D.

NEMO model. In our step model of Sec. II B, we used hard-
wall boundary conditions, which corresponds to an infinite
barrier height. To model this in NEMO 3D, we utilised a SiO2
interface, which has a large barrier height of 3 eV. To reduce
simulation time, we also adopted a tighter confinement for
the quantum dot. In all results presented in this Appendix, the
curvature of the quantum dot was set to k = 10−1 meV/nm2,
which amounts to an energy level spacing �ε = h̄ω ≈ 9 meV.

Limitations. In their paper, Boykin et al. showed that
the two-band model they proposed correctly reproduced the
trends expected for the valley splitting evolution with the
width of the quantum well. In particular, the valley splittings
have the correct order of magnitude but differ from NEMO 3D
calculations. As such, their model is qualitative and not quan-
titative, and we expect to observe the same differences with
our model. Similarly, we shall focus on only verifying that
the critical trends necessary for our conclusions, namely the
anticrossing and the control of the energy gap, are mirrored
by NEMO 3D.

Results. In Fig. 12, we compare spectra obtained using our
step model (solid lines) and those obtained from NEMO 3D
calculations (dotted lines). The reference energy was set to 0
to facilitate the comparison of both spectra. We remark that in
both simulations, the location of the anticrossing can happen
before or after the step depending on the quantum well width.
In both cases, the existence of the anticrossing is verified by
NEMO 3D.
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Similarly, the tuning of the anticrossing gap with the elec-
tric field is observed in both simulations, as shown in Fig. 13.
As mentioned in the main text, the tuning of the gap with
the electric field depends on the quantum well width. Some
key features are exhibited by both our step model and the
NEMO 3D calculations. Namely, the range of the tuning of
the gap, the existence of a minimum, and the location of this
minimum all depend on the quantum well width.

APPENDIX B: ESTIMATION OF THE PROBABILITY
OF THE SECOND EXCITED ORBITAL STATE IN

THE IDEAL MODEL

In this Appendix we estimate the form of the probabil-
ity P4 of the state ψ4 = ψ2,− in the ideal model. We adopt
the notations of Sec. III B. From Eqs. (4.174) and (9.97) of
Ref. [19], we can estimate that the probability amplitude of
the second excited state c4(t ) is related to the amplitude of the
first excited state c2(t ) by:

ċ4(t ) = c2(t )

h̄ω
〈ϕ2(t )|∂Ĥ

∂t
|ϕ1(t )〉eiω(t−t0 ).

Following Eq. (7), we find that 〈ϕ2(t )| ∂Ĥ
∂t |ϕ1(t )〉 =

−mω2ξ̇

√
h̄

mω
. Using Eq. (8) we find

ċ2(t ) = −iω

(
vQD

vmax

)2(
e2iω(t−t0 ) − eiω(t−t0 )

)
.

The integration is straightforward and gives

c2(t ) = 2

(
vQD

vmax

)2

sin
(ω

2
(t − t0)

)2
eiω(t−t0 ).

Finally, the transition probability to the second excited state
can be computed as

P0→4(t ) = 4

(
vQD

vmax

)4∣∣∣sin
(ω

2
(t − t0)

)∣∣∣4

= P0→2(t )2. (B1)

Comparing Eq. (9) and Eq. (B1) we see that the probability of
the electron being in the state ψ4 at time t is the square of it
being in the state ψ2.
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