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Ring of bound states in the continuum in the reciprocal space of a monolayer
of high-contrast dielectric spheres
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We consider light scattering by two-dimensional arrays of high-index dielectric spheres arranged into a
triangular and square lattices. We demonstrate the appearance of the double degenerate accidental super-BIC
modes with extremely suppressed radiative losses in the vicinity of the � point of the leaky band of the triangular
lattice. Two rings of BICs (circular lines of BICs in reciprocal space) with different polarization appear at the
point of the super-BIC destruction. The radius of the ring BIC (RBIC) changes as a function of the sphere’s
radius. We propose a generic analytical expression to describe the behavior of the guided mode decay rate as a
function of the sphere radii and the wave vector in the vicinity of the RBIC. The results are explained using a
multipolar approach.
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I. INTRODUCTION

All-dielectric nanophotonics is an extremely quickly de-
veloping area of modern optics. A great amount of scientific
interest to the field was attracted due to the low losses and ex-
cellent resonant properties of high-index nanostructures [1–3].
All-dielectric nanophotonics is driven by the idea to utilize
subwavelength dielectric nanoparticles with Mie resonances
to create highly efficient optical metasurfaces and metade-
vices [4–6]. The most important examples of such dielectric
structures are photonic crystal (PC) surfaces, which support
electromagnetic (EM) modes with a high Q factor. Moreover,
in the last decade, bound states immersed in the radiation
continuum (BIC), formally with an infinite Q factor, have been
actively studied. Such states in dielectric structures make it
possible to localize light with extremely high intensity. BICs
of different nature exist in infinite systems and are usually
classified as symmetry protected, which cannot decay due
to a different symmetry of radiation channels, and nontrivial
(accidental), which arise with a special choice of structure
parameters, due to destructive interference [7–11]. BICs of
different nature have been discovered and investigated for
the simplest optical systems—linear chain gratings, periodic
arrays of rods, and PC surfaces.

Due to the translational symmetry of the system, the lo-
calization occurs only along one or two spatial directions.
In a real experiment it is possible to fabricate finite systems
(with finite number of unit cells N) of a small size with a high
quality factor and a power-law behavior of Q ∼ Nα employ-
ing the same BICs that exist in the infinite system [12–16].
This is one of the areas for engineering high-Q subwavelength
dielectrics. By now BICs in all-dielectric structures are used
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for other purposes as well. For example, the so-called Bloch
BICs with a nonzero wave vector along the structure have a
topological charge [9] and can be a source of polarization
vortices in reciprocal space [17–19], which was experimen-
tally observed in plane-wave scattering [20]. In addition, BICs
with a topological charge can be successfully used for las-
ing [21,22].

Another interesting phenomena connected to the BICs
is the emergence of exceptional points (EPs) [23]. Due to
the accidental degeneracy of the dipole band with a BIC in
the � point with the quadrupole band a linear Dirac cone in
the dispersion relation is formed [24]. As the result of the
further deformation of the cone due to the non-Hermitian
perturbations, a circle of the EPs emerges in the reciprocal
space. In addition, Bloch BICs collapsing with a small change
in the parameters of the system can be formed in the vicinity
of the � point [24].

Symmetry-protected BICs can be transformed into conven-
tional high-Q resonances in a controlled manner when the
inversion symmetry is broken [25–27]. This approach pro-
vides a design route to PC surfaces, enabling fine tuning of
their spectral features.

All-dielectric structures supporting BICs can be a source of
strong optical forces. For example, two PC slabs are capable
of being attracted or repulsed by resonant optical forces that
are much higher than the usual radiation pressure forces and
grow proportionally to the Q factor [28]. Resonant optical
forces lead to significant optomechanical effects [29] caused
by elastic deformation. And, finally, let us note the promising
prospects [30] in the use of PC surfaces in biosensorics due
to the extreme sensitivity of BICs to small changes in the
environment.

This work is devoted to special BIC transformations in
a two-dimensional (2D) periodic system of high-contrast di-
electric spheres—a monolayer (ML) of spheres. Despite its
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fabrication compatibility, such a system is less studied than
PC slabs. The earliest numeric calculations of the optical
response of MLs were performed by Ohtaka et al. [31–33]
using the multipole expansion of the electromagnetic field
(Mie theory). It was shown that a cluster of narrow Fano
resonances in the reflectance is associated with interaction of
a transmitted plane wave with long-lived bound states of the
EM field.

Ohtaka et al. [33] indicates the existence of BICs in such
a system at the � point of the leaky band (in modern termi-
nology, symmetry-protected BICs). In [34], using the dipole
approximation, the conditions under which reduced transmis-
sion or reflection of the incident wave is possible were studied.
In [35], within the framework of the symmetry approach, the
classification of the multipolar expansion of the EM field of
ML was obtained, and the conditions for the existence of the
BIC in the ML were derived.

Here we investigate special states that arise in the
reciprocal space due to its topological nature, which we call
the ring of BICs (RBICs), in a 2D periodic system of high-
contrast dielectric spheres. For the first time such a class of
resonant guided modes was discovered in PC slabs [16,36].
Specifically, these resonances arise when multiple BICs, each
carrying a topological charge, merge in the reciprocal space
and form a super-BIC [36] with radiation loss that follows
the β6

|| low (here β|| is the projection of the wave vector onto
the ML plane). Radiation losses can be suppressed strongly
in the vicinity of the � point. This turns out to be very useful
for real dielectric systems consisting of a finite number of PC
cells. The Q-factor of such a finite structure turns out to be
much higher than in the case of finite structures supporting
ordinary symmetry-protected BIC. In the end this leads to a
dramatic drop of the lasing threshold [36].

In contrast to the case described in [16,36] where at the
� point the symmetry-protected BIC always exist, in our
case the RBICs with different polarizations appear with the
destruction of the accidental BIC. The RBICs start to appear
from the � point in the reciprocal space when the accidental
BIC is destroyed due to the change in the radius of the spheres
(or ML period with fixed sphere radius). The RBICs radius
is extremely sensitive to changes of geometry parameters. In
the vicinity of the RBICs, strong suppression of the mode’s
decay rate takes place, γ ∼ β4

||. Moreover, we derive univer-
sal behavior of decay as a function of the wave vector and
spheres radius.

II. METHOD

In two earlier papers [31,32] the well-known KKR
(Korringa-Kohn-Rostoker) formalism designed to calculate
the electronic band structure was applied to solve the prob-
lem of electromagnetic waves passing through a 2D periodic
array of dielectric spheres. In a slightly different version,
this method was described in [37]. The idea is that the elec-
tromagnetic field inside and outside the dielectric spheres
is represented as a sum over vector spherical harmonics.
In this approach it is possible to obtain a system of linear
equations for the amplitudes of harmonics, while the matrix
of the system is expressed in terms of a t matrix describing
the Mie scattering of the individual sphere and the structural

factor �, which depend only on the type of lattice and the
frequency of the field. Within the framework of this for-
malism [38] the band structure of a 2D lattice of spheres
can be calculated taking into account the radiation decay.
To do this it is necessary to find the poles of the dispersion
equation for complex frequency values k0 = ω/c. The EM
field calculated for the pole is a resonant mode with a Q factor
equal to Q = −�(k0)/2�(k0) with the decay rate of resonant
modes γ = −2�(k0), which is equal to the FWHM on the
transmission spectra.

In this paper the multipole approach in the [31,32] variant
was used for numerical simulations of the scattering of plane
waves by a 2D lattice of spheres, the band structure and decay
of resonant modes, as well as for the theoretical interpretation
of the obtained results.

We also used the MULTEM Mie software to calculate the
transmission spectrum of the structure. The advantage of
MULTEM is the ability to calculate the transmission coefficient
for the infinite periodic array of NPs in the frequency domain
in a tiny portion of a second. It allows analysis of a large
amount of spectral data and can directly determine the spectral
position and the Q factor of the resonance [39].

III. RESULTS

A. Accidental BIC at � point of ML

The structures under consideration are infinite 2D arrays
or monolayers of spherical NPs of radius R with a distance
between the centers of the nearest particles a. Hereafter we
use dimensionless R and k: R = R′/a and k = k′ · a, where
R′, a are NP radius and structure period in meters and k′ is
wave vector in meters−1. Triangular and square lattices are
considered [see Figs. 1(a) and 1(b)].

The modes that are supported by the ML can be divided
into three categories:

(i) pure modes with infinite lifetimes that are located be-
low the light line;

(ii) delocalized resonant modes with a finite lifetime lo-
cated above the light line; and

(iii) two types of localized modes above the line of light:
symmetry protected and accidental.

When plane waves are scattered by the ML, these usually
long-lived resonant modes manifest themselves as Fano
resonances in the transmission spectrum. At the resonance
point, the mode is strongly excited, which leads to a sharp
increase in amplitude of EM field in the vicinity of the ML.
The BIC in the scattering pattern appear as a collapse of
the Fano resonance with a variation of the parameters, i.e.,
the direction of the wave vector or a physical parameter
of the system, in our case the radius of the spheres.
The collapse of the Fano resonance is frequently used
to observe BIC in the system. In Figs. 1(c) and 1(d) we
show the transmission spectra at normal incidence. In this
case the symmetry-protected BICs do not appear in the
spectra. However, the presence of accidental BICs at the �

point is clearly seen in the points marked as 1,2,3. Their
exact positions and the twofold-degenerate mode profiles
are shown in Figs. 1(c), 1(d) and 1(e). Two degenerate
BICs in the � point for a certain R = Rc (here Rc is
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FIG. 1. The sketch of 2D array of dielectric NPs with ε = 15
in a homogeneous environment with ε = 1, (a) triangular packing
and (b) square packing, (c, d) transmission spectra for correspond-
ing arrays and various radius of the sphere and wave vector at the
� point, showing three bound states in the continuum considered in
the paper: BIC-1 with Rc = 0.3764, k0 = 2.985; BIC-2 with Rc =
0.4778, k0 = 3.669; BIC-3 with Rc = 0.4049, k0 = 2.771. (e) Cor-
responding wave functions (Hz component of the EM field). Rc is the
critical radius of spheres with accidental BIC at the � point.

the critical radius of NPs) which is transverse
electric/transverse magnetic (TE/TM)-like belong to two
different leaky bands. In the vicinity of the � point in these
bands, the states with abnormally low decay rate appear with
a slight change in R, as can be seen in Fig. 2.

B. Ring of BICs

The doubly degenerate accidental BIC in the center of
the band is not stable and disappears if the ML parameters
change. In the case of a triangular lattice, this destruction oc-
curs with the simultaneous emergence of 12 accidental BICs
in the reciprocal space with wave vectors directed strictly
along the ML symmetry axes and which are located pre-
cisely on the ring k2

x + k2
y = k2

r of resonant modes with an
extremely large Q- actor (Q > 1011) (RBIC). One RBIC
with TM-like polarization emerge if R > Rc, and another

FIG. 2. The decay rate of resonant modes γ for BIC-1 (see
Fig. 1) and TE polarization as a function of β|| for various particle
sizes R.

FIG. 3. γ for BIC bands for triangular lattice in dependence of
kx, ky for different R. For BIC-1: (a, b) TE polarization, R < Rc; (c, d)
TM polarization, R > Rc. For BIC-2: (e, f) TE polarization, R < Rc;
(g, h) TM polarization, R > Rc. For BIC-3: (i, j) TE polarization for
square lattice, R < Rc. The insets at (a, c) Hz component of wave
functions corresponding to the marked positions at RBICs.

one with TE-like polarization if R < Rc [see Figs. 3(a)–
3(h)]. To be precise, the concept of polarization of resonant
modes cannot be formally defined for a photonic crystal
(PhC) slab [40]. In our case, by polarization we will under-
stand the ability to interact (to be excited) by a plane wave
with corresponding polarization. Figure 3 clearly demon-
strates the emergence of RBIC of TE and TM polarization in
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FIG. 4. RBIC radius kr and corresponding particle size R for
TE and TM polarization. (a) BIC-1 and (b) BIC-2. Approximations
R(kr ) = C + D · k2

r were performed with coefficients
CTE

BIC−1 = 0.376 38, DTE
BIC−1 = −0.015 41, CTM

BIC−1 = 0.376 35,
DTM

BIC−1 = 0.006 97, CTE
BIC−2 = 0.477 92, DTE

BIC−2 = −0.005 81,
CTM

BIC−2 = 0.477 86, DTM
BIC−2 = 0.003 39.

reciprocal space in the case of the triangular lattices, as well
as the fact that in the case of the square lattice RBIC is not
formed. In Figs. 3(a) and 3(c) we show the field profiles of
resonant modes with different polarizations located on the
RBIC for the ϕ = π/4 angle (kx = kr cos ϕ, ky = kr sin ϕ).
For small RBIC radii kr the wave functions look almost
the same as in the case of the BIC in the band center [see
Fig. 1(e)]; however, the wave functions are rotated by an
angle ϕ.

A remarkable fact is that the RBICs radius kr strongly
depends on the radius of the spheres. It can be clearly seen
in Fig. 4. Even a tiny change of one ten thousandth leads to a
significant change in the position of RBICs.

FIG. 5. (a) γ as a function of β|| for various R of BIC-1
TE polarization. (b, c) Coefficients of A · (β2

|| − B)2 approximation
depending on R.

FIG. 6. γ for (a) BIC-1 and (b) BIC-2 (Fig. 1) and TE polariza-
tion with various β||.

In Fig. 5 we show the dependence of the decay rate of
resonant modes γ as the function of R and wave vector
β|| = |�β|||, �β|| = �exkx + �eyky. In our case, γ differs greatly
from the standard behavior γ ∼ β2

|| and is analyzed in detail

in the Appendix. Here we consider �β|| is directed along the
symmetry axes. The decay rate γ follows the γ = A(β2

|| − B)2

law precisely, wherein A is a constant depending only on
polarization, and the parameter B, which is the key parame-
ter to determine kr = √

B, depends on both polarization and

R = R − Rc. As follows from Fig. 5, the dependence of B
on R is linear; therefore, at the RBIC collapse point the decay
law transforms into a power function, γ = Aβ4

||.
An intriguing feature of the square lattice is that there are

no RBICs formed in the vicinity of BIC-3 with the change of
the spheres radius R. Nevertheless, eight accidental BICs with
β || �= 0 emerge in the center of the band along the symmetry
axes when the accidental BIC is destroyed at the � point
[see Figs. 3(i) and 3(j)]. The newly formed accidental BICs
drift away with different velocities from the � point when
R is changed so that no RBICs can be formed. For each
direction mentioned, there is still a common decay rate behav-
ior γ = A(β2

|| − B)2 but with different values of parameters
A and B.

Using the obtained dependencies, we present the behavior
of the BIC (for BIC-1 and BIC-2) near the corresponding
resonance points as approximations by a function γ (R, β||) =
A · [β2

|| − B(R)]2 with a linear dependence B(R). The resulting
plots are shown in Figs. 6(a) and 6(b), respectively.

These calculations were performed for TE polarized light.
The behavior of the RBIC will differ for TM polarization in
that the ring appears at R > Rc as demonstrated in Fig. 4. The
TE and TM polarizations are obviously identical at normal
incidence, so the curves describing the position (radius) of
the ring for the different polarizations converge at β|| = 0 to a
point R = Rc.

C. Conclusion

Super BIC is a BIC with extremely suppressed losses in
the vicinity of the � point. This concept was first proposed in
Refs. [16,36] for PhC slabs and are associated with merging of
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multiple accidental BICs. As usual, a whole line of extremely
high-Q resonances is formed in its vicinity. In this paper we
continue to study this new class of high-Q modes for the
case of a 2D triangular lattice of dielectric spheres which
was called a ring of BICs in the reciprocal space. The origin
of RBICs is different from that discussed in [16,36]. Two
RBICs of different polarizations appear with the destruction
of twofold-degenerate accidental super-BIC as a function of
the radius of the spheres (or lattice constant). True BICs
(Q is infinite) which belong to the RBICs are located on the
symmetry axes of the lattice. In the vicinity of the RBICs there
is a significant suppression of the loss of guided modes and a
universal behavior of damping rate as a function of the radius
of the sphere and the wave vector, which can be explained in
terms of multipolar theory.

The possibility of the existence of a line of BICs for
meta-atoms packed in a subwavelength lattice was hypothet-
ically discussed using a multipolar approach. However, its
origin was not associated with super-BIC but only with the
presence of a large-amplitude octupole in modal expansion
which has a nodal cone. RBICs were also observed for the
triangular lattice of spheres near a Dirac cone [24], and its
existence was ensured due to the interaction of two photonic
bands with strong and weak damping. As it turned out, the
anomalous suppression of decay rate caused by super-BIC
leads to a significant increase in Q factor of the finite system
and can be used in optoelectronic devices, for example, to
reduce the lasing threshold power.

Moreover, a particularly interesting feature of RBIC is the
fact that the polarization of the BIC continuously changes
along the ring, making a full turn. We expect that this fact
can be used to generate optical vortices as shown in [19].
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APPENDIX

The theory which allows one to calculate the decay rate
of quasi-BIC under the conditions of weak symmetry break is
developed in [27]. The decay rate has a universal behavior as a
function of the symmetry-breaking parameter. The decay rate
is expressed via overlap coefficients between the mode profile
inside the PC and the vertically propagating plane wave. In
this section we will show that similar expressions can also
be obtained using modal decomposition over spherical vector
harmonics.

The scattering wave function outside the ML in the KKR
method is expressed in terms of vector spherical harmonics:

�Esc(�r) =
∑
�Rj∈�

∑
nm

[
anmei�β|| · �Rj �M (3)

nm (k0, �r j )

+ bnmei�β|| · �Rj �N (3)
nm (k0, �r j )

]
, (A1)

where �r j = �r − �Rj ,
∑

nm ≡ ∑∞
n=1

∑+n
m=−n, while �Rj iterates

over the Bravais lattice (�). We assume that the system is
excited by an external plane wave with a wave vector along
the ML plane. It is also assumed that the amplitudes of vec-
tor spherical harmonics anm, bnm are known as a result of
numerical calculation using the KKR method. In a far field
the scattered field in Eq. (A1) should be a superposition of
plane waves. In order to find this decomposition, we apply the
well-known summation equation to Eq. (A1) [41],

�Esc(�r) =
∑
�pg∈�∗

(
2π i−n

k0k+
g,zA2

)[∑
nm

[anm �Xnm(�̂k±
g ) + ibnm �Znm(�̂k±

g )]

]

× ei�k±
g �r

{+ for z > 0

− for z < 0 ,
(A2)

where �pg iterates over the reciprocal lattice (�∗), �k±
g = �β|| +

�pg ± �ez

√
k2

0 − (�β|| + �pg)2, k+
g,z =

√
k2

0 − (�β|| + �pg)2, and A2 is

the unit cell area A2 = |�a × �b|, where �a, �b are the basis vectors
of the Bravais lattice, and the symbol ˆ denotes the unit vector.
Additionally,

�M (3)
nm (k0, �r) = hn(k0r) �Xnm(�,ϕ)

�Znm = [�er × �Xnm], (A3)

where X and Z are the angular parts of the spherical vector
harmonics.

Suppose that only one diffraction channel is open, i.e.,
k2

0 > (�β|| + �pg)2 only for �pg = 0. In this case, in the upper
half space (z > 0) we have a single plane wave in the far field
which reads as

�Esc(�r) = C
∑
nm

i−n[anm �Xnm(�̂k0) + ibnm �Znm(�̂k0)]ei�k0·�r . (A4)

Here �k0 = �β|| + �ez

√
k2

0 − β2
||, C = 2π/(k0kzA2). The scatter-

ing wave function [Eq. (A4)] appears when a plane wave
with a wave vector �k0 is scattered. Let �β|| be directed along
one of the lattice symmetry axes, X . When mirrored relative
to the (XOZ) plane, the field components take the following
form [42]:

Ex(x,−y, z),−Ey(x,−y, z), Ez(x,−y, z)

Hx(x,−y, z),−Hy(x,−y, z), Hz(x,−y, z). (A5)

The fields in Eq. (A5) are also a solutions of Maxwell’s
equations. There are even and odd solutions:

�̂ �E (�r) = (−1)S �E (�r), S =
{

0, even
1, odd . (A6)

Even solutions are obtained when the system is excited by a
TM; plane-wave, odd solutions are obtained when excited by
an TE wave. It is easy to check that in this case

anm = (−1)S+m+1an,−m

bnm = (−1)S+mbn,−m

Accordingly, the components of a plane wave in the single-
channel case are equal to
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Eθ = C
∑

n,m�0

i−n[1 + (−1)S (1 − δm0)] · (−1)m

√
n(n + 1)

[
anm

(
im

sin θk0

)
Pm

n (cos θk0 ) + ibnm

(
∂

∂θk0

Pm
n (cos θk0 )

)]
,

Eϕ = C
∑

n,m�0

i−n[1 + (−1)S+1(1 + δm0)] · (−1)m

√
n(n + 1)

[
−anm

(
∂Pm

n (cos θk0 )

∂θk0

)
+ ibnm

im

sin θk0

Pm
n (cos θk0 )

]
. (A7)

Here Pm
n (x) are normalized associated Legendre functions. Let

us also introduce the following functions:

πm
n (θ ) = 1

sin θ
Pm

n (cos θ ); τm
n = d

dθ
Pm

n (cos θ ). (A8)

Here we consider the limiting case θ → 0. Then [43]

Pm
n (cos θ ) ≈ Cnm

(m + n)!

(n − m)!

(
2

2n + 1

)m

Jm

(
2n + 1

2
θ

)

πm
n (θ ) ≈ Cnm

1

2

(n + m)!

(n − m)!(m − 1)!

(
θ

2

)m−1

τm
n ≈ πm

n (θ ),Cnm =
√

2n + 1

2

(n − m)!

(n + m)!
. (A9)

Precisely in the � point (θk0 = 0) the contributions to Eq. (A7)
with m = 0, 2, 3, ... automatically nullify. A nonzero contri-
bution is provided by a sum term with m = 1 [35].

Bound states in a continuum are a special class of solutions
of Maxwell’s equations that exist without a source and are
nonradiative due to the conservation of energy. In the � point
it becomes possible only if an,m=1 = bn,m=1 = 0. Such BICs
are called symmetry protected [9]. One more BIC type are
accidental or non-symmetry-protected BICs. In this case,

Eθ = −C[1 + (−1)S]i
∞∑

n=1

i−n an,1 + bn,1√
n(n + 1)

π1
n (0) = 0,

Eφ = −C[1 + (−1)S+1]
∞∑

n=1

i−n an,1 + bn,1√
n(n + 1)

π1
n (0) = 0.

(A10)

Here π1
n (0) = τ 1

n (0) = 1/4
√

2n(n + 1)(2n + 1). Thus the ac-
cidental BIC is possible if for some k0 = k0B,

∞∑
n=1

i−n

√
n(n + 1)

(an,1 + bn,1)π1
n (0) = 0. (A11)

All the terms in Eq. (A11) i−nan,1, i−nbn,1 are real up to the
common phase [35]. k0B is not an independent variable but is
determined from the solution of Maxwell’s equations under
radiation boundary conditions. Nevertheless, by varying any
parameter, for example, the radius of spheres, it is possible to
achieve �(k0B) = 0, or the validity of Eq. (A11).

It is possible to find the law of waveguide modes decay in
the vicinity of the � point using the standard definition of the
Q factor:

Q = ω
U

P
, (A12)

where U is the mode energy and P is the radiation power. In
our case of an infinite system, it is necessary to consider the

surface energy density as U in Eq. (A12) and the radiation
intensity of a plane wave as P so that P = c/(8π | �Esc|2). As
far as ωa/c = k0a ∼ 1, in the case Q � 1 we obtain the
estimation U � | �Esc|2a. The resonant mode is determined up
to a constant multiplier, so we fixate the amplitudes anm, bnm

by the condition
∑
nm

(|anm|2 + |bnm|2) = 1.

In the vicinity of super-BIC (Rb point), with a small change
of R = Rb + 
R, the value | �Esc|2 crosses zero, while U is
just slightly changed due to the small change of anm and bnm.
Therefore in the vicinity of super-BIC we have the following
estimation for the Q factor:

Q ≈ λ

| �Esc|2
, −�(k0) ≈

(
k0B

2

) | �Esc|2
λ

, (A13)

where λ is some constant. In Fig. 7 we show the comparison
of −�(k0) calculated using Eq. (A13) with an exact procedure
for numerical search for the poles. As one can see, Eq. (A13)
provides good accuracy. Since the expansion for amplitudes
in Eq. (A10) begins with linear terms,

a(S)
n,1(R) ≈ a(S)

n,1(Rb) + A(S)
n 
R,

b(S)
n,1(R) ≈ b(S)

n,1(Rb) + B(S)
n 
R, (A14)

therefore, using Eqs. (A10) and (A13) we can conclude that
−�(k(s)

0 ) ∼ 
R2, which is also confirmed by Fig. 7.
Let us write the Eq. (A10) for θk0 �= 0 (θk0 = β||

k0
) to

evaluate the behavior of the pole at β|| → 0:

E (S)
θ = − C[1 + (−1)S]

∞∑
n=1

i−n

√
n(n + 1)

× [a(S)
n,1(R, θk0 )πn,1(θk0 ) + b(S)

n,1(R, θk0 )τn,1(θk0 )],

FIG. 7. (a) Definition of the vectors and angles of the system.
(b) Normalized |E 2| and �(k0) dependencies of R in the vicinity of
accidental BIC for BIC-1.
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E (S)
φ = C[1 + (−1)S+1]

∞∑
n=1

i−n

√
n(n + 1)

× [a(S)
n,1(R, θk0 )πn,1(θk0 ) + b(S)

n,1(R, θk0 )τn,1(θk0 )].

(A15)

Due to the symmetry the decomposition of a(S)
n,1, b(S)

n,1 by θ

starts with quadratic terms:

a(S)
n,1(R, θ ) ≈ a(S)

n,1(Rb, 0) + A(S)
n 
R + γ (S)

n θ2,

b(S)
n,1(R, θ ) ≈ b(S)

n,1(Rb, 0) + B(S)
n 
R + δ(S)

n θ2. (A16)

Besides,

πn,1(θ ) ≈ πn,1(0) + αnθ
2,

τn,1(θ ) ≈ τn,1(0) + βnθ
2. (A17)

After substituting Eq. (A16) and Eq. (A17) into Eq. (A15),
we find

∣∣ �E (S)
sc

∣∣2 = ∣∣A(S)
R + B(S)θ2
k0

∣∣2
(A18)

or

�(k0) = CS

∣∣
R + λ(S)k2
x

∣∣2
. (A19)

One can make sure that for θk0 �= 0, the contributions with
m �= 1 in Eq. (A7) become nonzero and provide the correction
to the amplitudes of ∼ θ2 for square and ∼θ4 for triangular
lattices, so that the result in Eqs. (A18) and (A19) does not
change in the leading order. Moreover, λ(S) in Eq. (A19) is
real; therefore there is always a solution, �(ω) = 0, for kx =√

|
R/λ(S)|.
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