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Dispersion forces and equilibrium distance between deposited rough films in contact
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The average distance h0 separating two contacting bodies is a critical parameter for many problems, for ex-
ample, for control of unwanted stiction in micro/nanoelectromechanical systems. Here this problem is analyzed
in relation to precise determination of the dispersion forces in a difficult for measurement range of 5 − 30 nm.
The unloaded contact between two deposited rough films characterized by a relatively large number of high
asperities is considered. The equilibrium distance h0 can be found from the balance of attractive dispersion
forces and repulsive forces acting in the spots of real contact. A simple columnar model associated with AFM
images of rough surfaces is used to describe the balance. The numerical analysis, which treats the high asperities
as elastoplastic semispheroids, demonstrates that the columnar model describes the contact adequately. It is
shown that in contrast with the value of h0 the adhesion energy between the surfaces is nearly entirely defined by
the dispersion interaction, but the effects of contact interaction and plastic deformations can be neglected. This
property is proposed to use for more precise determination of the equilibrium distance.
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I. INTRODUCTION

Dispersion forces (DFs) acting between uncharged bod-
ies originate from quantum fluctuations of electromagnetic
field. At distances of the order of 1 nm they are called van
der Waals (vdW) forces, but at larger separations, when the
retardation of the electromagnetic signal becomes important,
they are called Casimir [1] (or retarded vdW) forces. Since
the physical origin of the forces is the same, a general name
DFs can be used. Lifshitz and co-workers [2,3] proposed a
macroscopic theory of the DFs, which expresses the forces
via the dielectric functions of interacting materials. The last
two decades have seen significant progress in understanding
of the forces [4,5]. The forces have been measured at distances
of the order of 100 nm with a high precision of 1% in a
series of experiments [6–10], which demonstrated a good
agreement with the predictions of the Lifshitz theory. The de-
pendence on the dielectric functions of different materials has
been checked in special experiments [11–15]. Measurement
of the forces at separations shorter than 50 nm are sparse and
not very precise [16–18] due to pull-in instability of the elastic
suspension systems used for measurement. Recently a method
of adhered cantilever [19,20] has been proposed to measure
the forces at shorter separations, which does not suffer from
the pull-in instability.

The problem that is considered in this paper stems from
the precise measurements of the Casimir forces but has much
broader interest. An important parameter that has to be mea-
sured together with the force is the distance of minimal

*Corresponding author: v.svetovoy@phyche.ac.ru

approach h0 between the surfaces used for the force measure-
ment [6–10]. This parameter is responsible for the main part of
the experimental uncertainty and is typically determined from
the electrostatic calibration with a precision of 1 nm. In most
cases h0 is determined at distances far away from the physical
contact.

In the method of adhered cantilever [20] proposed recently
(see the scheme in Fig. 1) the adhered end is in physical
contact with the substrate where the separation h0 between
the contacting surfaces is also a critical parameter. The better
we know the separation h0 the more precise we can deter-
mine the force from the shape of the cantilever. One can
also look at the problem from a different angle. When two
rough plates are in contact, the adhesion energy � between
them at certain conditions is completely defined by the DFs
[21] at the average separation h0. Therefore, we can get the
information on the dispersion interaction by measuring � and
h0. Experimentally it is simpler to find � than determine the
shape of the cantilever with a precision of 1 nm. However,
theoretically it is not that straightforward to find the function
�(h0) because roughness is an essential part of the problem.

It is worth to note that the contact of rough surfaces occurs
on the highest asperities. In the places of direct contact rather
strong forces are involved, which operate at distances �1 nm,
which are close to the molecular scale. On the other hand, the
asperities, which are not in direct contact, interact with weaker
DFs, but the area of this noncontact interaction is much larger.
Thus, measuring the forces with the adhered cantilever we
probe the transition between the discrete molecular and con-
tinuous scales. Practically all the existing measurements of the
DFs have been performed in the sphere-plate geometry. Only
in three papers [22–24] the forces were measured between
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FIG. 1. Scheme of the adhered cantilever. The left end is firmly
fixed at the height H in comparison with the right end. The latter
is adhered to the substrate with a rough film on top of it. The
equilibrium distance between the cantilever and rough surface is h0.
The parameters s and L are the unadhered length and total length of
the cantilever, respectively.

parallel plates. The method of adhered cantilever is naturally
designed in such a way that the forces are measured between
practically parallel surfaces.

The distance between solids in contact has a fundamen-
tal significance for the interaction between bodies including
capillary, dispersion, and other surface forces. This distance
defines the adhesion energy between surfaces that controls,
for example, such a phenomenon as stiction in microsystems
[25–27]. Besides, it is closely related to the problems of
contact resistivity [28,29], sealing and lubrication [30], heat
transfer [31–33], contact mechanics [34,35]. Determination of
the distance between contacting surfaces is one of the tasks of
the contact mechanics problem.

In a seminal paper by Greenwood and Williamson [36], the
rough topography was described as an ensemble of asperities
with the same curvature radius of summits and with a random
height that follows the normal distribution. The influence of
roughness on the equilibrium distance between contacting
surfaces has been analyzed in this single-scale asperity model.
The effect of adhesion on the contact of rough surfaces has
been taken into account by Fuller and Tabor [37], who demon-
strated that adhesion becomes important at small loads.

The single-scale asperity model has been generalized to the
multiscale case including fractal nature of the surface topogra-
phy [34,38–43]. It was demonstrated that asperities separated
by the in-plain distances smaller than the correlation length
can influence each other providing the deviations from the
single-scale asperity model. The question of mutual influence
of the asperities was also investigated for deterministic mul-
tiscale contact [44], where it was found that for a sufficiently
large distance between the asperities their mutual influence
can be neglected.

The theories of rough contact usually assume elastic con-
tact between solids and a Gaussian height distribution of the
asperities (see, however, [45]). For the problem considered in
this paper both of these assumptions are broken and we cannot
use directly the developed theories for the following reasons.

First, the problem is solved for thin metallic films de-
posited on a substrate at room temperature by thermal
evaporation or magnetron sputtering. Such surfaces are typ-
ical for microfabricated devices. It was noted that thermally

evaporated thin films of oligomer [46] and gold [47] demon-
strate excessive number of high asperities in comparison with
the normal distribution. Very recent analysis [48] of different
materials (W, Pt, Cu, SiO2) magnetron sputtered on Si sub-
strate at room temperature demonstrated that the excessive
number of high asperities is observed for all the investigated
materials. Because the films deposited on hot substrates fol-
low the Gaussian roughness distribution, one can expect that
the large number of high asperities is generated due to the non-
equilibrium deposition conditions. To feel the magnitude of
the effect let us compare the number of peaks with the height
h > 5w for 200-nm-thick Pt film that has the root-mean-
square (rms) roughness w = 1.0 nm. The area investigated
with an atomic force microscope (AFM) was 20 × 20 μm2

and the correlation length was found to be ξ = 20 nm (typical
size of the features on the surface is 2ξ ). The number of high
peaks determined from the AFM image was about 800, but the
normal distribution predicts less than one high peak (≈0.3) in
this area.

Second, the experiments measuring the Casimir forces
demonstrate that the equilibrium distance between the bodies
is considerably larger than the rms roughness [49] and for
gold this distance is typically as large as h0 = (4 − 6)w. At
the separations h0 ∼ 10 nm the Casimir pressure between the
surfaces is PC (h0) = 104 − 105 Pa. If the lateral size of the
asperity is 2ξ and the size of the nominal area of contact
is L, then the local pressure on the highest asperity will
be Ploc = PC (L/2ξ )2. For L = 100 μm and ξ = 20 nm, one
finds Ploc = 1011 − 1012 Pa that exceeds the flow stress for
any metal. This estimation is conservative and we can expect
that the number of high asperities deformed plastically will be
much larger than just one.

Also it is worth to note that small elastic deformations
of the high asperities are balanced by the attractive interac-
tion between bodies that can be due to capillary, electrostatic
or other surface forces, but in this paper we consider only
the DFs, which cannot be excluded by any special prepa-
ration of the surfaces. This interaction results in a rather
weak adhesion energy between the surfaces �100 μJ/m2

that can be compared with the adhesion �100 mJ/m2 [50]
typically considered for rough contact. In spite of the
weak adhesion the DFs have to be carefully controlled in
micro/nanoelectromechanical systems (MEMS/NEMS) be-
cause they can lead to unwanted stiction of separate elements
during fabrication or operation [25–27].

The adhered cantilever shown in Fig. 1 has been used as a
test system [26,51] for analysis of the weak adhesion between
rough surfaces. The adhesion energy per unit area � can be
expressed via the unadhered length s [52–54]. The value of
� has been determined for a number of materials but only
one attempt has been made to relate its value to the DFs
acting in the gap between the contacting surfaces [55]. It has
been concluded that the main contribution to the adhesion
energy comes from the dispersion interaction acting across the
average gap separating the contacting surfaces.

This paper presents a full version of the Letter [21] in
which a relation between the adhesion energy � and the
distance upon contact h0 has been deduced. The most impor-
tant conclusion was that for a couple of interacting material
the function �(h0) does not depend on the parameters of

075401-2



DISPERSION FORCES AND EQUILIBRIUM DISTANCE … PHYSICAL REVIEW B 105, 075401 (2022)

short-distance interaction and can be considered as univer-
sal. This function can be found within the Lifshtz theory.
On the contrary, the equilibrium distance is sensitive to the
parameters of the short-distance interaction. In this paper we
provide the details of the analytical model that allows calcu-
lation of the average separation gap between a flat and rough
surfaces based on the roughness statistics of asperities of the
deposited films and plastic deformation of high asperities.
This information is used to calculate the adhesion energy
between the surfaces in contact. We demonstrate numerically
that the simple columnar model of asperities is adequate to the
real situation.

II. THEORY

A rough adhesive contact is modelled on the basis of a
single-asperity contact. The solutions of this problem used
the concept of surface (adhesion) energy were pioneered by
Johnson, Kendall, and Roberts [56] and Derjaguin, Muller,
and Toporov [57] who applied different approaches. A strict
formulation of the contact problem in the presence of inter-
molecular interactions assumes the existence of a certain gap
between the contacting bodies. The size of this gap depends
on the deformation of the bodies and has to ensure the equiv-
alence of the deformation and intermolecular forces at the
contact (Derjaguin’s self-consistent approach [58]). For the
first time the contact problem based on the self-consistent
approach was considered for a spherical Hertz contact in
the presence of intermolecular interactions described by the
Lennard-Jones potential [58]. This approach was developed
further in many studies (see, for example, [59–61]).

A. Formulation of the problem

Let us consider two rough plates getting into the mechan-
ical contact. A special analysis provided by Greenwood and
Trapp [62] demonstrated that this problem can be simplified.
One can consider instead a compliant rough plate with the
combined roughness, which is the sum of the two topogra-
phies, and a rigid flat plate. The validity of this statement is
based on a simple fact that the asperities on two surfaces are
misaligned. The plastic deformations of the combined rough
plate are defined by the softest material. As an example close
to this effective configuration we consider the interaction of
a smooth Si plate with an rms roughness of 0.2 − 0.3 nm
(cantilever) and a Si wafer with the deposited thin layer of
a metal with larger rms roughness.

Figure 2 shows the cross-section profile of a Pt film mag-
netron sputtered on Si substrate [48]. The reference plane is
taken at the average height of the film. When the flat plate
approaches the rough one the bodies contact on the highest
asperities, which are deformed elastically and plastically and
some equilibrium distance h0 is established as a balance of the
attractive DFs and repulsive forces in the places of contact.
The elastic deformations are much smaller than the plastic
ones, but the energy of the elastic deformations is collected
in the bulk of the bodies while the energy needed to produce
plastic deformations dissipates.

The attractive force between the plates varies locally due
to the roughness. According to the Lifshitz theory the force

FIG. 2. The profile of a 200-nm-thick Pt film that is in contact
with a flat surface of the cantilever (w = 1.0 nm, ξ = 20.0 nm). The
average position of the rough surface is shown by the red dashed
line. Only high peaks are in direct contact with the rigid surface of
the cantilever. These peaks are deformed elastically and plastically.

has to diverge in the places of direct contact. Indeed, it is not
possible physically and the local separation stays finite due
to short-range repulsion of electron clouds. To this end we
introduce at short distances the Lennard-Jones intermolecular
potential

uLJ (r) = −4ε0[(σ/r)6 − (σ/r)12], (1)

where ε0 and σ are the parameters specific for each pair of
molecules and r is the distance between the molecules. The
pressure between parallel plates separated by the distance h
[63] calculated with the use of the potential (1) is

PLJ (h) = − AH

6πh3

[
1 −

(
hc

h

)6]
, (2)

where AH is the Hamaker constant. Both parameters AH and
hc are related to the original parameters ε0 and σ but for AH

this relation has no special meaning because the attractive
vdW forces [first terms in (1) and (2)] are not additive. On the
other hand, the molecular size σ does not change significantly
when the molecules are arranged in a solid and the relation
hc = (2/15)1/6σ has sense. We can conclude that hc has the
meaning of the equilibrium distance between parallel plates
without application of an external load.

The prefactor in Eq. (2) describes the vdW force and is
the short distance asymptotic of the DF. At larger separa-
tions one has to take into account the effect of retardation
and at arbitrary distances the prefactor has to be changed by
the Lifshitz formula for the DFs. This procedure is justified
because the second term in (2) can be neglected already at
h ∼ 1 nm since typical value for the equilibrium distance
is hc = 0.2 − 0.3 nm [64]. After these explanations one can
generalize the DF to include the short distance repulsion. The
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pressure between two parallel plates can be written as

P(h) = PLif (h)[1 − (hc/h)6]. (3)

The function PLif (h) has to be calculated using the Lifshitz
theory [3], where one can neglect the thermal fluctuations
since in the range of distances important for this study (h ∼
10 nm) the quantum fluctuations dominate and the thermal
effect is very small. The calculation procedure is nontrivial
but have been described in many papers [3,4] and textbooks
[65] and will not be repeated here. It includes as inputs the
dielectric functions ε1,2(ω) of interacting materials in a wide
range of frequencies ω.

The problem that will be solved in this paper consists of
two parts. First, we determine the equilibrium distance h0

between the flat rigid plate and the rough plate that can be de-
formed plastically and elastically. Second, for a given distance
h0 we determine the adhesion energy per unit area � between
these two plates. Both values can be directly measured exper-
imentally in the proposed experiment [20] and compared with
the theoretical prediction.

B. Columnar model of roughness

We consider first the simplest model of the rough surface,
which will highlight the most important steps in determination
of the equilibrium distance h0. In this model it is assumed
that the rough surface consists of columns with equal cross
sections Aξ = 4ξ 2 and random height hi, where the index i
enumerates the columns. The height of the columns can be
positive or negative with respect to the reference plane. In
this simplified model the tops of the columns are considered
flat. When the contact pressure is applied to a column, it
is deformed plastically provided that the pressure is larger
than the stress needed for plastic deformation Pf (flow stress).
Despite its simplicity this model seems to be adequate to the
considered problem of crumpling high and rare peaks.

It is worth noting that the columns loaded in this way
are also deformed elastically, but the elastic deformations are
small in comparison with the plastic ones. Really, if the ith
column is stressed homogeneously, it is deformed as δh =
(Pf /Er )hi, where Er is the Young modulus of the rough plate.
On one hand, this value is small in comparison with hi because
for all metals Pf � Er . On the other hand, the elastic defor-
mation is small in absolute terms because for hi ∼ 10 nm and
for the ratio Pf /E ∼ 10−3 one has δh ∼ 0.1 Å that is equal to
the vertical resolution of AFM and is much smaller than the
plastic deformations.

Following the Derjaguin self-consistent approach [58] we
assume the existence of a certain gap h0c between the con-
tacting columns and the flat plate (Fig. 3). The size of this
gap has to ensure the balance between the flow stress Pf and
intermolecular forces, so that according to Eq. (3) one finds
the relation

Pf = P(h0c), (4)

which is valid for any column in contact. The force acting on
the contacting columns is repulsive and for this reason h0c <

hc. The force between the flat plate and a column, which is
not in contact, is defined by the long-distance intermolecular
forces in correspondence with Eq. (3).

FIG. 3. Columnar model for rough films. The red dashed line
shows the average plane of the rough surface (reference plane). The
rough profile is shown after plastic deformation of some columns
whose original position is indicated by the blue dashed lines. The
columns deformed plastically are marked by the sign “+” while the
columns which are not deformed are marked by the sign “–”. The
distance h0c is the distance of closest approach (contact gap).

Let Anom = L2 be the nominal area of contact. The total
number of columns is Ntot = Anom/Aξ = (L/2ξ )2. When the
bodies approach each other some high peaks are deformed
plastically. In the simple columnar model we take into account
only the reduction of the column heights but do not consider
the change of their area. The latter effect will be accounted
numerically in an advanced version of the roughness model
(see Sec. III). At the distance between the bodies h the relative
area of contact R(h) is

R(h) =
∫ ∞

hp

dz f (z), hp = h − h0c, (5)

where f (z) is the density distribution function of column
heights.

When the plates approach or retreat, the forces between
them are different because plastic deformations are not recov-
ered. For our purposes it is sufficient to know only the force
during the retraction since it allows us to deduce the force
balance equation and calculate the adhesion energy. When the
plates are in contact at the equilibrium position, the distance
between them is h = h0. The height of the contacting columns
in this position is h0p = h0 − h0c and the relative area of
contact is R(h0). When the flat plate retreats the height and
area of these columns do not change and the force from them
(marked with “+” in Fig. 3) is

F+(h) = AnomP(h − h0p)R(h0).

Contrarily, the force from the columns that never have been in
contact (marked with “–” in Fig. 3) is

F−(h) = Anom

∫ h0p

−∞
dz f (z)P(h − z).

The total force per unit area at the distance h will be

Ptot (h) =
∫ h0p

−∞
dz f (z)P(h − z) + P(h − h0p)R(h0). (6)

At h = h0 the plates are in equilibrium where the total
force has to be zero. In this point P(h0 − h0p) = P(h0c) and
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according to (4) it is equal to Pf . Then one finds from Eq. (6)∫ h0p

−∞
dz f (z)P(h0 − z) = −Pf R(h0). (7)

This equation describes the balance of the forces and allows
determination of the unknown equilibrium distance h0. The
left side presents the attractive forces acting between the
plates, while the right side describes the short-distance repul-
sion.

If the force between the plates is known, the adhesion
energy can be found as the work needed to remove one plate
from the equilibrium distance h0 to infinity. This work is

�(h0) = −
∫ ∞

h0

dhPtot (h)

= −
∫ h0p

−∞
dz f (z)W (h0 − z) − R(h0)W (h0c). (8)

Here W (h) is the dispersion energy (per unit area) between
two flat plates separated by the distance h defined as

W (h) =
∫ ∞

h
dxP(x). (9)

The relation (8) defines the adhesion energy �. The Eqs. (7)
and (8) solve the problem in the frame of the simple columnar
model.

C. Equilibrium distance

From an AFM image of the rough surface one can de-
termine the density distribution function of separate pixels
fp(z) but not the distribution function f (z) of asperities that
enters Eq. (7). However, for the simple columnar model this
difference is not important. It is obvious for the left-hand side
of Eq. (7) because the columns do not contact with the flat
plate and as an elementary column one can take an AFM pixel.
This is true also for the right-hand side because in the simple
model it is assumed that the cross section of the deformed
columns does not change and the area of real contact can be
calculated as the sum over all the pixels, which are deformed
by the flat plate.

The function fp(z) extracted from any AFM image is the
number of pixels with the heights from z to z + 
z relative to
the total number of pixels and to the interval 
z. For the 200-
nm-thick Pt film magnetron sputtered and Au film thermally
evaporated on Si substrate the distribution functions are shown
in Figs. 4(a) and 4(b), respectively. One can clearly see that the
number of high pixels in both cases is considerably larger than
that predicted by the normal distribution (dashed curve).

The force PLif (h) is calculated following the Lifshitz theory
[3,65]. To find this force, one has to know the dielectric
functions of the interacting materials at imaginary frequencies
ε(iζ ). With the help of the Kramers-Kronig relation ε(iζ )
can be expressed via the dielectric function at real frequen-
cies ε(ω), which is directly measurable. For Si crystal the
dielectric function is well documented and it was calculated
using the handbook [66] optical data. For gold εAu(iζ ) was ex-
tracted from the spectral ellipsometry data [67] collected from
the thermally evaporated films. As a representative example,
sample 3 in [67] has been chosen. For Pt the corresponding

FIG. 4. (a) The density distribution function for Pt film extracted
from the AFM data [48]. The dashed curve corresponds to the normal
distribution with the same rms roughness. (b) The same as (a) but
for Au film thermally evaporated. (c) The dielectric functions of Pt
and Au at imaginary frequencies. (d) The attractive forces PLif (h)
calculated for Si-Pt and Si-Au systems. The forces for these two
systems nearly coincide (see text).

dielectric function εPt (iζ ) was taken from [68] where the
film was magnetron sputtered on Si substrate and the data
were collected from the reflectance spectrum. The dielectric
functions of metals are shown in Fig. 4(c). The imaginary
frequencies that give the main contribution to the force PLif (h)
are of the order of the characteristic frequency ζch = c/2h
(it is not true for real frequencies). For h in the interval
1 − 100 nm the frequency ζch varies in the range 1 − 100 eV.
As one can see from the figure in this range the dielectric
functions of Pt and Au differ only slightly. For this reason one
can expect that the forces for Si-Au and Si-Pt will be close to
each other. It is really the case as one can see in Fig. 4(d). The
maximum difference of about 10% is realized at h = 0.2 nm.

To take into account the short-distance repulsion in Eq. (3)
one has to know the parameter hc. As we already mentioned it
is related to the parameter σ in the Lennard-Jones potential as
hc = (2/15)1/6σ . For interaction of two equivalent molecules
the values of σ used often in molecular dynamics simulations
are the following σSi = 0.392 nm [69], σAu = 0.293 nm [69],
and σPt = 0.247 nm [70]. When two different molecules 1
and 2 interact we use the Loretz mixing rule σ = (σ1 + σ2)/2
used in molecular dynamics. Thus, we find for Si-Au interac-
tion hc = 0.245 nm and for Si-Pt interaction hc = 0.228 nm.

An additional parameter that has to be known is the flow
stress Pf . This parameter can depend on many factors; for
bulk materials a range of values is usually provided in de-
pendence of the material preparation method, but for the
deposited thin films additional uncertainties appear related to
the film nanostructure [71]. For Au the stress-strain curves
were directly measured [72–75] for nanostructured samples.
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FIG. 5. Determination of the equilibrium distance h0. (a) Attrac-
tive (solid) and repulsive (dashed) forces between flat Si and rough
Pt plates calculated as the left and right sides of Eq. (7), respectively.
The cross point gives the equilibrium distance. (b) The integrand for
the attractive force as a function of asperities height z. The insets
show the short and long distance behavior. (c) and (d) are the same
as (a) and (b) but for Si-Au interaction.

For single crystals the experiments demonstrate significant
increase of the flow stress with the size decrease. For the
deposited films the grains can be considered as single crys-
tals and roughly the flow stress for Au can be estimated as
Pf ≈ 1 GPa. For Pt single crystal the molecular dynamic sim-
ulations [76] give Pf ≈ 1.8 GPa. The direct measurement [77]
for nanostructured samples gave close but somewhat smaller
value. However, uncertainties in Pf are too large to choose any
specific value for a given material without knowing details of
the nanostucture.

Considering the left and right sides of Eq. (7) as indepen-
dent functions of the distance h we can find the solution as a
cross-point at h = h0. Figure 5(a) shows the attractive (solid
curve) and repulsive (dashed curve) forces, respectively. The
cross-point corresponds to the equilibrium distance h0, which
we are looking for. It has to be stressed that although the rms
roughness of Pt film is w = 1.0 nm the value of h0 = 12.0 nm
is significantly larger. In panel (c) the same is shown for Au
film with the rms roughness w = 2.4 nm and h0 = 14.8 nm.
As follows from Fig. 4(d) the forces Si-Pt and Si-Au between
flat plates are very close to each other. The difference between
the attractive (and repulsive) forces in Figs. 5(a) and 5(c) are
explained by the different character of roughness. Figure 5(b)
demonstrates the integrand in the attractive force at h = h0

(for Pt). One can see (see also the insets) that there are two
main contributions to the force. The first contribution orig-
inates from the non-touching high peaks with heights in a
narrow range h0 − hs < z < h0p, which approach to the flat
plate closer than hs. Conventionally we choose for hs the value

hs = 1 nm, but the results are not very sensitive to hs in the
nanometer range. The second one originates from the typical
asperities, for which the local distance between the bodies
is of the order of h0. These contributions are Pa1 = 0.84 kPa
and Pa2 = 8.29 kPa so that the total attractive pressure is Pa =
Pa1 + Pa2 = 9.13 kPa. For Si-Au interaction these values are
Pa1 = 1.73 kPa and Pa2 = 5.45 kPa. For gold the second con-
tribution is smaller but still dominates over the short distance
contribution.

It is interesting to compare these results with the case when
the roughness is described by the Gaussian distribution with
the same rms value. For the normal roughness distribution we
have found for Si-Pt interaction the equilibrium distance h0 =
3.3 nm that is considerably smaller than a value of 12.0 nm
that takes into account the high peaks. This difference is easy
to understand because for the normal distribution the highest
peaks are about of (3 − 4)w = 3 − 4 nm. Indeed for smaller
h0 the equilibrium pressure is much larger: Pa = 1.29 MPa
and the role of the short-distance interaction is more impor-
tant: Pa1 = 0.52 MPa. For the case of Si-Au interaction the
difference is also significant but less dramatic. For the Gaus-
sian roughness distribution of Au we have found h0 = 9.5 nm,
Pa = 40.8 kPa, and Pa1 = 9.6 kPa.

D. Adhesion energy

Now let us discuss the adhesion energy �. In the first term
in Eq. (8) one can separate the contribution of asperities which
approach so close to the flat plate that the local distance is
in the range h0c < h0 − z < hs. Combining this contribution
with the second term in (8) we introduce a “nearly” contact
contribution to �:

�c(h∗
0 ) = −

∫ hs

h0c

dx f (h∗
0 − x)W (x) − W (h0c)R(h∗

0 ), (10)

where a new integration variable x = h∗
0 − z has been intro-

duced. The rest is the noncontact contribution

�nc(h∗
0 ) = −

∫ ∞

hs

dx f (h∗
0 − x)W (x). (11)

Note that h∗
0 in Eqs. (10) and (11) is a variable in contrast

with h0, which is still an equilibrium distance. The argument
h∗

0 is considered as a variable because Pf is not well-defined
parameter and change in Pf will correspond to the change in
the equilibrium distance.

If only the DFs and short-range repulsion are acting in the
area of direct contact then

W (h0c) = − AH

12πh2
0c

[
1 − 1

4

(
hc

h0c

)6]
(12)

is the contact energy at h = h0c that is the integral from
the force (2) with the opposite sign. From the used optical
data the Hamaker constant for Si-Pt system is AH = 29.0 ×
10−20 J and from Eq. (4) one finds h0c = 0.204 nm, then
the contact energy is W (h0c) = −94.6 mJ/m2. For the Si-Au
system it was found, h0c = 0.225 nm, AH = 31.3 × 10−20 J,
and W (h0c) = −95.5 mJ/m2. Although for both systems the
absolute value of W (h0c) is quite large, its contribution to � is
small because the relative area of real contact R(h0) is small.

075401-6



DISPERSION FORCES AND EQUILIBRIUM DISTANCE … PHYSICAL REVIEW B 105, 075401 (2022)

FIG. 6. (a) The adhesion energy as a function of distance h∗
0

for Si-Pt system. The blue curve shows the total energy for Pf =
1.8 GPa and red dashed curve shows the contact adhesion energy.
The curve marked by brown dots corresponds to the total energy
for Pf = 0.9 GPa. The straight dashed lines indicate the equilibrium
positions for both Pf . (b) The same as (a) but for Si-Au system with
Pf = 1.0 GPa and Pf = 0.5 GPa.

Figure 6 shows � (solid blue curve) and its contact com-
ponents �c (dashed red curve) as functions of varied distance
h∗

0. At the equilibrium distance h∗
0 = h0 the noncontact con-

tribution dominates and we found that the total and contact
adhesion energies for Si-Pt are � = 38.9 μJ/m2 and �c =
0.65 μJ/m2 for Pf = 1.8 GPa, respectively. For Si-Au system
it was found � = 24.2 μJ/m2 and �c = 0.91 μJ/m2 for Pf =
1.0 GPa. Note that the contact contribution to � is small. For
Si-Pt the relative contribution of �c at equilibrium distance
h0 = 12.0 nm is 1.7% and for Si-Au at h0 = 14.8 nm it is
3.8%. It is an important property of the adhesion energy that
says that the main contribution to � comes from pure DFs.

If similar calculations will be performed for Gaussian
roughness distribution the adhesion energy will be signifi-
cantly larger mostly owing to smaller equilibrium distance
h0. For Si-Pt interaction we have found � = 1137 μJ/m2 and
�c = 79 μJ/m2. Here the role of the short-distance interac-
tion (�c) is more important in comparison with the actual
distribution of roughness but still far from dominating. For
Si-Au interaction it was found � = 94.3 μJ/m2 and �c =
3.9 μJ/m2.

One has to stress also the following. The value of �

can be relatively easily measured with a good precision by
the adhered cantilever method, but the experimental deter-
mination of the equilibrium distance is more difficult and a
typical precision of ±1 nm is not sufficient for small sep-
arations ∼10 nm. Knowledge of the function �(h∗

0 ) allows
precise determination of h0 via the measured value of �.
Equation (8) provides this function if all other forces but the
DFs are excluded. One would expect a significant uncertainty
in � due to not well defined flow stress, but it is not the
case. The parameter Pf does not appear in �(h∗

0 ) explicitly
but manifests itself via the value of h0c [see Eq. (4)] and
this dependence is weak because of sharp variation of the

FIG. 7. Schematic presentation (out of scale) of the elastoplastic
problem of compression of a semispheroid bump with the height
hi and diameter 2ξ . Both upper and lower substrates have equal
thickness d1 = d2 = 50 nm.

function P(h) near h = h0c. If we reduce Pf twice the function
�(h∗

0 ) changes negligibly as the curve in Fig. 6 marked with
brown dots shows, but the equilibrium distance can change
more significantly because Pf enters explicitly in Eq. (7). It
means that when Pf varies the function �(h∗

0 ) stays practi-
cally the same, but the value of � = �(h0) corresponding to
the equilibrium situation changes. This dependence can be
used in the opposite direction: Using the measured value of
� = �(h0) we can determine unknown h0 with a good preci-
sion. For Si-Pt system with Pf = 0.9 GPa we have found the
equilibrium values h0 = 11.2 nm and � = 44.8 μJ/m2 and
for Si-Au system with Pf = 0.5 GPa the corresponding values
are h0 = 14.1 nm and � = 30.1 μJ/m2.

The reason for the weak sensitivity of the function �(h∗
0 ) to

the value of Pf is also related to a small area of real contact.
For example, for Si-Pt the relative area is R(h0) = 4.1 × 10−6

and in spite of large W (h0c) the contact contribution to � is
small. On the other hand, the small area of real contact is
due to excessive number of high peaks in the deposited films
in comparison with the normal distribution. Materials with
the normal roughness distribution would have much larger
area of real contact because the equilibrium distance for these
materials will be as small as (2 − 3)w and much larger num-
ber of asperities will be in direct contact. Then the contact
contribution to � will dominate and the adhesion energy will
be significantly larger (strong adhesion). This consideration
explains in particular the result of the experiment by DelRio
et al [55] who observed that weak adhesion between Si and
oxidized Si is due to the noncontact vdW interaction.

III. BEYOND THE COLUMNAR MODEL

It was established [78] that the shape of high peaks is
described much better by a semispheroid than by a straight
column or cone. We can improve the columnar model using
this more realistic shape for high asperities. A high peak is
described now by the upper half of a spheroid with the half-
axes hi (height, i enumerates the high peaks) and ξ (radius) as
shown in Fig. 7. Deformations of such peaks can be described
independently on each other because the average distance
between them is large in comparison with the lateral size of
asperities 2ξ .

075401-7



SOLDATENKOV, STEPANOV, AND SVETOVOY PHYSICAL REVIEW B 105, 075401 (2022)

As we already noted, the left-hand side of the balance equa-
tion (7) responsible for the attraction does not depend on the
description of the peaks, which are not in direct contact with
the flat plate. Only the repulsive force [right side of Eq. (7)]
is sensitive to the shape of the peaks contacting with the flat
plate. Since in equilibrium the pressure on all these peaks is
the same and equal to Pf , the repulsive force is proportional
to the relative area of real contact R(h0). However, beyond
the columnar model this relative area does not reduced to the
simple relation (5). In this section we are going to use more
correct elastoplastic model and find the value of R(h0) for
the case when the contacting peaks are described by semi-
spheroids.

A. Deformation of a single peak

Let us start from the case of elastic deformations. As
we know, in reality the elastoplastic contact is realized, but
the elastic contact can be used to control the numerical cal-
culations. The contact of a stiff flat plate with an elastic
semi-spheroid can be described as the Hertzian contact [79]
of a stiff plate and an elastic sphere of radius R = ξ 2/hi with
an effective Young modulus E∗. This effective modulus is a
combination of the parameters of both interacting materials

1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
, (13)

where E1,2 and ν1,2 are the Young modulus and Poisson ratio
of the materials. If the bodies are pressed together with the
force F , the well-known results relate the force F and contact
area S with the mutual approach δ [79]

F = 4E∗

3
(Rδ3)1/2, S = πRδ. (14)

For the elastoplastic deformations one has to apply a force
smaller than that given by Eq. (14) to produce the same
approach, but the same δ will correspond to larger area of
contact. To find the force and area of contact in the general
case we have to do numerical simulations. The axisymmetric
problem of elastoplastic compression of a semispheroid is
solved by the method of finite elements (FEM). It is assumed
that the semispheroid is a bump on an otherwise flat substrate
of the same material. The semispheroid is compressed by a
stiff flat plate.

Schematic presentation of the problem that is solved is
shown in Fig. 7. The upper plate is assumed to be elastic
with the Young modulus E2 = 160 GPa and Poisson ratio
ν2 = 0.27 (silicon). The lower plate is made of Au or Pt
and assumed to be elastoplastic. The stress-strain dependence
for gold was taken from the experimental data [73] for a
nanocrystal with a size of 85 nm (closest to a grain size of
72 nm for Au film). The Young modulus determined from
the same experiment is E1 = 60 GPa and the flow stress we
define as Pf = 1.0 GPa. For platinum the parameters have
been taken from [76] where they have been determined from
the molecular dynamics simulations. The case of Pt is nearly
ideally elstoplastic with E1 = 121 GPa and Pf = 1.8 GPa.
The correlation lengths for both materials were taken from
[48]. All the material parameters are collected in Table I.

TABLE I. Parameters used to calculate the deformation of a
single elastoplastic semispheroid.

ξ (nm) E1 (GPa) ν1 Pf (GPa)

Au 38 60 0.420 1
Pt 20 121 0.385 1.7
Si flat 160 0.27 ∞

The problem is solved in cylindrical coordinate system
with consideration of finite deformations by use the FEM
[80–82]. Only normal stresses are considered within the con-
tact area. The bottom surface of the lower substrate as well
as the top surface of the upper substrate are assumed to be
rigid with ability to move in vertical direction only (Fig. 7).
The process of the semispheroid deformation is simulated
by a set of stationary contact problems being solved for a
given mutual approach δ of the top and upper substrates which
incrementally increased from 0 to some fixed value (3 nm).

The simulation results for pure elastic contact Si-Au are
shown in Fig. 8 for hi = 14 nm. One can see that both the
force and area of contact as functions of the deformation
reproduce well the Hetrtzian behavior for small deformations.
Some deviations are observed for larger u since the relations
(14) hold only for small deformations. Similar results have
been found for Si-Pt elastic contact, which are shown in
Fig. S1 [83].

Our main interest is in determination of the area of contact
for the elastoplastic deformations. It has been calculated for
four different values of height hi = 10, 12, 14, 16 nm. For
Si-Au contact the result is presented in Fig. 9 and for Si-Pt

FIG. 8. Elastic contact Si-Au. (a) The force applied to the peak
as a function of the approach δ. The result of simulation is shown
by the blue dots. The red curve corresponds to the Hertz theory (14).
(b) The area of contact as a function of the approach.
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FIG. 9. Si-Au contact. (a) The area of contact as a function of the
approach δ for the cases of elastoplastic (black dots) and pure elastic
(blue dots) contacts. (b) The dependence of the contact area on the
height of the peak for two values of δ. Open circles show the points
of actual calculations connected by cubic interpolation.

contact the result is shown in Fig. S2 [83]. Figure 9(a) shows
the area of elastoplasic contact (black dots) in comparison
with pure elastic contact (blue dots) as a function of the
approach. As one can expect the area of contact is larger
for the elastoplastic case. On the other hand, the force that
produces the same δ has to be larger for the elastic contact
that is confirmed by Fig. S3 [83]. Figure 9(b) shows the area of
contact as a function of the peak height hi for two fixed values
of δ. The actual calculations have been performed in the points
indicated by the circles and the curves between these points
were obtained by cubic interpolation. Similar results for Si-Pt
contact are shown in Fig. S2 [83]. In comparison with the
Si-Au case the area of contact for Si-Pt is significantly smaller
that is explained by a considerably smaller grain size for Pt
film.

B. Total area of contact

The area of contact for each peak depends on the initial
height and lateral size. Using the AFM image of the rough
plate we can find the heights hi and radii ξi of the contacting
asperities. All asperities with the height hi > h0p are deformed
elastoplastically. For ith peak the deformation generated by
the short-distance repulsion will be δi = hi − h0p. If we know
the values for δi we can find the total area of contact or
equivalently the relative area of contact R(h0) using the results
of Sec. III A. Figure S4 [83] shows high-resolution binary
images of Au and Pt films at the threshold height z = 3w (0
for the pixels with z < 3w and 1 for z > 3w). In panels (b) and
(c) one can see those peaks that get into contact with the flat
plate. Counting the number of bright pixels for each peak we
can find the cross-section ai of ith peak at the offset z = 3w

and assuming the spheroid shape it is possible to determine
the individual radius ξi for each peak at the basement z = 0

FIG. 10. (a) Relative area of contact for Si-Au system. Blue
curve with circles (points of actual calculations) shows the result
that has been found using the numerical calculations described in
Sec. III A. For comparison the red curve with squares demonstrates
the relative area for the simple columnar model. (b) The same for
Si-Pt system.

using the relation

ξi =
√

ai

π
(
1 − 9w2/h2

i

) . (15)

Averaging over all contacting asperities one can find the cor-
relation length ξh for high peaks. For Au we have found
ξh = 35 ± 3 nm that agrees with the value ξ = 38 nm deter-
mined for all asperities. Similar for Pt we have found ξh =
23 ± 4 nm (for all asperities ξ = 20 nm). It demonstrates that
for high peaks the correlation length still keeps its meaning.
However, it is more precise to use individual radii to calcu-
late the area of contact since this area scales as ξ 2

i . Such a
dependence suggested by the Hertz theory is supported by the
numerical simulations.

The calculated area of contact for Si-Au and Si-Pt systems
are shown in Figs. 10(a) and 10(b), respectively. These results
can be compared with the simple columnar model, for which
the relative area of contact is shown by the red curve. One can
see that the columnar model reproduces well the more precise
result, while a significant number (�10) of high asperities
takes part in the contact. If the contact is realized on a few
asperities, then the columnar model underestimates the area of
contact. It can be expected since the columnar model does not
account for the area increase at plastic deformations. This ef-
fect becomes visible when the short-distance repulsion forces
are distributed among few asperities. It is important to note
that for both cases the equilibrium distances h0 = 14.8 nm for
Si-Au and h0 = 12.0 nm for Si-Pt are in the range where the
columnar model can be applied.

IV. DISCUSSION

The analysis presented in Sec. III shows that the sim-
ple columnar model adequately describes a realistic contact
between rough and flat plates. On one hand, the attractive
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interaction between plates is realized via the long-distance
dispersion interaction. The rough surface is presented as a
matrix of patches (AFM pixels) and the total attractive force
is calculated as the sum over all patches separated from the
flat plate by different local gaps. This approach is restricted
only by the nonadditivity of DFs, but since we consider the
distances smaller than the size of high asperities, nonadditivity
is not an essential factor. On the other hand, the repulsive force
that balances the attraction acts only in the places of direct
contact between the plates. The high asperities contacting
the flat plate are deformed plastically and AFM image data
cannot be used to calculate the force. However, the numerical
analysis demonstrated that these deformations do not change
the area of contact significantly in comparison with the simple
columnar model. Therefore, the columnar model can be used
to evaluate both the attractive and repulsive forces.

The force balance equation (7) gives a way to evaluate the
distance between the plates in contact (equilibrium distance
h0), if there is an AFM image of a sufficiently large area of
the rough surface. This equation depends on the flow stress
parameter Pf , which is defined by details of the material
nanostructure. Due to uncertainty in Pf the equilibrium dis-
tance h0 can vary. The decrease of Pf by half reduces h0 by
0.8 nm for both gold and platinum films. It is not much better
than the typical experimental precision in determination of h0.
The adhesion energy � is a direct consequence of the force
balance as expresses Eq. (8), but the function �(h0) defined
by this equation practically does not depend on Pf . Physically
the Eqs. (7) and (8) carry the same information but both the
force and energy can be measured independently.

Very weak dependence of � on the flow stress can be used
to improve the precision of the force measurement in the
distance range from 5 to 30 nm, where the force is difficult
to measure with a decent precision due to pull-in instability
and errors in determination of h0. The pull-in instability can be
overcome in the configuration of the adhered cantilever shown
in Fig. 1. In this configuration the force can be measured as
the deviation of the cantilever from a known classical shape.
Simultaneously it is possible to measure the adhesion energy
by measuring the unadhered length s. Here there are two
possibilities.

First, if we know h0, for example measured interferomet-
rically, the value of � gives the magnitude of the dispersion
interaction at the distance h0, which is related to the force
P(h0) by Eq. (9). In this case the information on the force ex-
tracted from the shape of the cantilever will be complimentary.
This approach, however, does not allow reaching precision
better than 30% at h0 ∼ 10 nm since the uncertainty in h0 is
about ±1 nm.

Second, both values P(h0) and �(h0) have been measured
at some unknown distance h0. It is assumed that these values
are defined by the dispersion interaction and we would like to
compare them with the prediction of the Lifshitz theory. As
was demonstrated in Sec. II D the function �(h0) practically
does not depend on the parameters, which are not well known,
including the flow stress or deformation of high asperities.
Therefore, using the measured � we can find the value h0

corresponding to this � in the Lifshitz theory. Even if � is
measured with a modest precision, the corresponding value of
h0 will be known with precision better than ±1 nm. For this h0

we can then calculate the force PLif (h0) and compare it with
the measured value. This method gives a chance to improve
the total precision in the force measurement at short distances.

V. CONCLUSIONS

In this paper we presented a full version of the Letter [21]
where a relation between the adhesion energy and the distance
upon contact has been deduced. We considered the contact
of two rough plates with the aim to determine the equilib-
rium distance h0 between them. Specificity of our problem
is that the plates are contacting without an external load and
nongaussian roughness of the plates with excessive number
of high asperities is produced by typical deposition pro-
cesses used in micro- and nanotechnologies. These conditions
restricts the adhesion energies by rather small values � �
100 μJ/m2, which are usually not considered in the classical
contact theory. This weak adhesion, however, is important for
functioning of MEMS/NEMS devices and for precise mea-
surement of the dispersion forces in the interval 5−30 nm.

The equilibrium between plates being in contact is es-
tablished through balance of the attractive dispersion forces
acting across the equilibrium gap h0 and repulsive forces
generated in the places of direct contact between high asper-
ities and flat plate. This balance gives the equation (7) for
determination of the distance h0. The roughness of deposited
films is characterized by a large number of high asperities,
which are significantly higher than the rms roughness w. For
this reason h0 � w and the adhesion is weak. The adhesion
energy � given by Eq. (8) is determined via the forces acting
between the plates.

The distance h0 depends on plastic deformations of high
asperities. The state of equilibrium is characterized by a
fixed pressure on every asperity in contact. This pressure
corresponds to the border separating plastic and elastic defor-
mations and for metallic surfaces it can be identified with the
flow stress Pf of the material. A specific nanostructure of the
material results in uncertainty of this parameter, which prop-
agates to uncertainty in the equilibrium distance. The most
important conclusion is that in contrast with the value of h0 the
adhesion energy is practically not sensitive to the exact value
of Pf . It means that the function �(h0) can be evaluated using
only the Lifshitz theory, but the effects of contact interaction
and plastic deformations in � can be neglected. We discussed
the possibility to use this conclusion to improve determination
of the equilibrium distance h0 in the experiments where the
force and adhesion energy are measured simultaneously.
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