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Emergent linear Rashba spin-orbit coupling offers fast manipulation
of hole-spin qubits in germanium
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The electric dipole spin resonance (EDSR) combining strong spin-orbit coupling (SOC) and electric-dipole
transitions facilitates fast spin control in a scalable way, which is the critical aspect of the rapid progress
made recently in germanium (Ge) hole-spin qubits. However, a puzzle is raised because centrosymmetric Ge
lacks the Dresselhaus SOC, a key element in the initial proposal of the hole-based EDSR. Here, we demonstrate
that the recently uncovered finite k-linear Rashba SOC of 2D holes offers fast hole-spin control via EDSR with
Rabi frequencies in excellent agreement with experimental results over a wide range of driving fields. We also
suggest that the Rabi frequency can reach 500 MHz under a higher gate electric field or multiple GHz in a
replacement by [110]-oriented quantum wells. These findings bring a deeper understanding for hole-spin qubit
manipulation and offer design principles to boost the gate speed.
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I. INTRODUCTION

After demonstrating the all-electrical manipulation of a
single hole-spin qubit in gate-defined planar quantum dots
(QDs) in germanium (Ge) quantum wells (QWs) [1], re-
markably rapid progress has been made in increasing the
number of coupled qubits—doubled every year [2,3]. These
developments leverage the compelling properties of holes in
Ge QWs [4–6] such as the following: Suppressed hyperfine
interaction with nuclear sites [7,8] resulting in much longer
spin coherence times [9]; free from the valley degeneracy that
is a crucial challenge for the use of silicon electrons as qubits
[10]; low hole effective mass that benefits the desired high
tunnel rates for coupled qubits [11]; and a strong spin-orbit
interaction that is an inherent relativistic effect of the heavy
atom [12]. Among these properties, the strong spin-orbit inter-
action is most striking since it allows for electric-dipole spin
resonance (EDSR) controlled by alternating electric fields
[13–16], bringing about faster spin manipulation in a scal-
able way [2,3,5] as opposed to magnetically driven electron
spin resonance (ESR) used extensively for manipulation of Si
electron spin qubits [17–21].

Although EDSR mediated by intrinsic spin-orbit coupling
(SOC) has been demonstrated experimentally to coherent
manipulate hole spins in planar Ge QDs with driving frequen-
cies exceeding 100 MHz [2,3,5], the underlying microscopic
mechanism remains ambiguous [13,22–24]. Regarding that an
alternating current (AC) electric field could induce electric-
dipole transitions (�n = ±1,�s = 0), we can utilize it to
drive spin-flip transitions between spin-up and spin-down
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states of the lowest spin doublet if and only if they are
admixtures of the n = 0 orbital and n = 1 orbital with op-
posite spins. Linear-in-k SOC usually offers such �n = ±1
interorbital spin admixture (see Appendix A for a detailed ex-
planation). The k-linear Rashba and Dresselhaus SOC usually
provide required �n = ±1 coupling for electrons confined in
gate-defined planar QDs [25]. However, in common sense,
these k-linear SOC terms are absent in two-dimensional (2D)
holes [26–28] since they are in the heavy-hole (HH) sub-
bands. The original EDSR proposal for their hole counterparts
[13–15] thus has to rely on the k-cubic Dresselhaus SOC,
considering that it can also couple the ground HH (n = 0)
to the excited HH (n = 1) states as a result of in-plane
wave-vector quantization in planar QDs. Unfortunately, such
inversion-asymmetry-induced Dresselhaus SOC is nonexis-
tent in centrosymmetric solids, including Si and Ge. Others
have suggested that the manipulation of hole-spin qubits in
Ge can be achieved based on a cubic-symmetric component
of the k-cubic Rashba SOC of 2D holes using a large param-
eter α3, which is deduced from a variational analysis starting
from the bulk 4 × 4 Luttinger Hamiltonian [23,29,30]. Under
the in-plane quantum confinement in the planar QDs, this
cubic-symmetric component will act as a linear term due
to in-plane wave-vector quantization and thus couples the
n = 0 ground state to the n = 1 first excited states. However,
we should note that Refs. [23,30] all considered the out-of-
plane magnetic fields instead of an in-plane magnetic field
utilized in the most successful experiments [2,3]. Particularly,
Ref. [30] predicts theoretically a maximum Rabi frequency
of 8.4 MHz generated by the cubic component of the k-cubic
Rashba SOC, which is one order of magnitude smaller than
the experimentally realized 108-MHz Rabi frequency [2],
while Rabi frequencies in the order of several hundred MHz in
Ref. [23] require a large driving AC electric field. Meanwhile,
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our atomistic calculations predict that the Rashba parameter
of the total k-cubic terms is 3547 meV Å3 at an operating
electric field of 30 kV/cm, indicating the cubic-symmetric
component α3 being only 452 meV Å3, which is two orders
of magnitude smaller than the α3 = 3.7 × 104 meV Å3 pre-
sented in Ref. [30]. Therefore, we expect the k-cubic Rashba
SOC to have a negligible contribution to the EDSR, and the
experimentally accessible rapid EDSR is not yet understood.

This standing puzzle may be resolved by our recently
uncovered finite k-linear Rashba SOC of 2D holes in Ge/Si
QWs [31]. The Rashba SOC of 2D holes in semiconduc-
tor heterostructures and QWs was commonly believed to be
the k-cubic term as the lowest order due to the 3/2 spin
angular momentum nature of the HH and the isotropic kp
coupling between �v

8 and �c
6 [26,32]. However, we recently

uncovered a linear Rashba SOC originating from a direct,
first-order dipolar coupling of the 2D HH subbands to the
applied electric field [31]. This so-called direct Rashba SOC
was originally discovered in 1D holes of quantum wires,
with its strength proportional to the magnitude of heavy-hole-
light-hole (HH-LH) mixing at the zone center [12,33,34].
Because the zone-center HH-LH mixing is usually thought
to be forbidden by symmetry, direct Rashba SOC was hence
expected to be absent in [001]-oriented QWs. However, ample
experimental and theoretical evidence suggests finite HH-LH
mixing occurred in [001]-oriented QWs, which was argued to
be originating from the local C2v interface [35–38]. We indeed
found linear direct Rashba SOC in [001]-oriented Ge/Si QWs
by performing atomistic pseudopotential method calculations
[31]. Here, relying on this emergent k-linear Rashba SOC
supplying the required coupling between �n = 1 HH states,
we develop the EDSR technique for planar QD confined hole
spins following Ref. [13]. Using a set of experimental device
parameters with input Rashba parameter obtained from the
atomistic pseudopotential method calculation without ad hoc
assumptions, we predict a 100-MHz Rabi frequency in excel-
lent agreement with the experimental result of 108 MHz [2].
We also reproduce the experimentally measured electric-field
dependencies of Rabi frequency under two investigated mag-
netic fields of 0.5 and 1.65 T. Consequently, we have solved
the puzzle by identifying the emergent linear Rashba SOC
contributing to EDSR for rapid control of hole spins confined
in planar Ge QDs.

II. THEORETICAL MODEL

The experimental setup of gate-defined planar Ge QD
formed in a [001]-oriented Ge/SiGe quantum well [2,3,5] is
shown schematically in Fig. 1(a) with an applied static mag-
netic field B = (Bx, By, Bz ). Following Ref. [13], the effective
Hamiltonian describing the pure HH whose effective spin is
parallel or antiparallel to the magnetic field direction reads

HQD = π2
x + π2

y

2m‖
+ U (x, y) + HSO + 1

2
gμBB · σ, (1)

where π = p + eA is the usual Peierls substitution with the
vector potential A, m‖ is the in-plane HH effective mass, g
is the Lande g-factor tensor of HH, σ is the Pauli vector,
and μB is the Bohr magneton. The harmonic lateral confining
potential is U (x, y) = 1

2 m‖ω2
0(x2 + y2), where ω0 = h̄/m‖r2

0

FIG. 1. (a) Schematic illustration of hole state occupying a pla-
nar QD, defined by voltage-biased gates on top of the Ge/SiGe QW.
The magnetic field B and AC electric field EAC exert on the hole
state for EDSR control. (b) The k-linear Rashba SOC mixes the HH
ground n = 0 states with the HH excited n = 1 states, thus making
the EDSR possible. Rabi oscillations can be achieved if the in-plane
AC electric field EAC frequency resonates with the Zeeman splitting
EZ of the lowest SOC-hybridized spin doublet.

is the energy scale that characterizes the lateral confine-
ment for an effective QD lateral size r0. Here, we take a
gauge A = Bz(−y/2, x/2, 0), considering negligible orbital
effect induced by in-plane components Bx and By due to
the strong quantization of motion along z [22,25]. In the
absence of SOC (HSO = 0), we can label the eigenstates
of Eq. (1) as the product of Fock-Darwin and spin states
|n, l, s〉 = |n, l〉|s〉, where n, l are the principle and azimuthal
quantum numbers, respectively, and s = ±3/2. Figure 1(b)
shows that each level is a Kramer’s doublet that splits into
two spin states in a magnetic field: En,l,s = h̄�(n + 1) +
h̄ωLl + h̄ωZs/3 (� =

√
ω2

0 + ω2
L , ωZ = μBg · B/h̄, and ωL =

eBz/2m‖ is the Larmor frequency). A qubit can be encoded
into the lowest spin doublet. When applying an in-plane
AC electric field EAC(t ) = EAC(sinωt, cosωt, 0) created by
driving gates, electric-dipole transitions (�n = ±1, �s = 0)
occur between the lowest and higher excited doublets rather
than within the lowest Zeeman-split spin doublet to yield spin
flip.

The situation might alter taking the SOC into account
(HSO �= 0) since it entangles the orbitals with the different
spins. Because of the absence of bulk inversion asymmetry
induced Dresselhaus SOC in centrosymmetric solids, struc-
tural inversion asymmetry induced Rashba effect (including
interface effect) becomes the only source for SOC in Ge/Si
QWs, in which a finite k-linear term instead of a (commonly
thought) k-cubic term has recently been recognized as the
leading order in Rashba SOC of 2D HH [31]. This k-linear
Rashba SOC arises from a combination of local interface-
induced HH-LH coupling and direct dipolar intersubband
coupling to the external electric field. Since the k-linear term
tends to overwhelm all other higher-order terms that are very
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weak in Ge [24,26], the effective SOC Hamiltonian reads

HSO = αR

h̄
(πxσy − πyσx ), (2)

where αR is the Rashba parameter obtained from the atomistic
pseudopotential calculations for Ge/Si QWs [31]. Taking HSO

into account as a perturbation to HQD, we obtain the Zeeman-
split ground spin doublet in the first-order perturbation theory
as follows:

|0±〉 = |0, 0,±3/2〉 + β±|1,±1,∓3/2〉, (3)

where β± = ∓αRm‖
ω±/h̄ω±
α , 
 = √

h̄/m‖�, ω± =
� ± ωL, ω−

α = ω− + ωZ , and ω+
α = sgn(ω+ −

ωZ )
√

(ω+ − ωZ )2 + [2αRm‖
ω+/h̄]2. From Eq. (3) we
learn that electric-dipole transitions between |0, 0,−3/2〉 and
|1,±1,−3/2〉 will bring |0−〉 (spin-down state |⇓〉) to |0+〉
(spin-up state |⇑〉), as shown in Fig. 1(b). When the frequency
of the electric field matches the spin resonance frequency of
the qubit, stable Rabi oscillation occurs [13].

We now turn to estimate the Rabi frequency based on
the effective Hamiltonians described above, following the
procedure for the electron counterpart [22,39]. The detailed
derivation is given in Appendix B. Considering that the Rabi
frequency is strongly dependent on the directions of static
magnetic and AC electric field, we study the case under in-
plane and out-of-plane magnetic fields, separately. For the
case under an in-plane magnetic field B = (Bx, 0, 0) (we set
the AC electric field along the x direction for simplicity), the
Rabi frequency is as follows:

f B‖
R = eEACαRg‖μBBx

2h̄
(
h̄2ω2

0 − g2
‖μ

2
BB2

x

) . (4)

For B = (0, 0, Bz ), we obtain the Rabi frequency

f B⊥
R = eEACαRg⊥μBBz

2h̄(h̄ω− + g⊥μBBz )(h̄ω+ − g⊥μBBz )
. (5)

The g factor is highly anisotropic in Ge: The in-plane g factor
is g‖ ∼ 0.3 measured in single-hole qubit experiments [1,2];
nevertheless, the out-of-plane g factor is g⊥ = 15.7 [40]. To
have the same Zeeman splitting and thus Rabi frequency, a
much smaller magnetic field magnitude is required for the out-
of-plane scenario than for the in-plane scenario.

III. RESULTS

In the following, we focus on the B = (Bx, 0, 0) scenario
that has been adopted in recent experiments with achieved
Rabi frequency exceeding 100 MHz for hole spin confined in
gate-defined QDs [1–3] in strained Ge/Si0.2Ge0.8 QW with a
16-nm-thick Ge layer [41]. Figure 2(a) shows the calculated
f B‖
R as a function of driving amplitude EAC for B = 1.65 T

and B = 0.5 T, respectively. To make a direct quantitative
comparison with experimental results, here we calculate Rabi
frequency f B‖

R according to Eq. (4) by employing experi-
mental parameters (taken r0 = 50 nm for dot lateral size
in the range 40–60 nm [1], m‖ = 0.09m0 for Ge under an
in-plane compressive strain of 0.63% [41]) except for the
Rashba parameter αR. As shown in Fig. 2(b), we predict αR =
2.01 meV Å by performing atomistic calculations for the cor-
responding Ge QW under an estimated biased electric field

FIG. 2. (a) The theoretically predicted Rabi frequency as a func-
tion of the amplitude of the AC electric field upon application of
in-plane magnetic fields of B = 1.65 T and B = 0.5 T, respectively,
compared to corresponding experimental results [2] for planar Ge
QD formed in a strained Ge/Si QW with Ge layer thickness of
L = 16.7 nm. We take an effective dot radius r0 = 50 nm for 40–60-
nm dot lateral size in the experiment [11,41]. For comparison, we
have mapped the experimental microwave power given in Ref. [2] to
EAC regarding the maximum microwave power was estimated corre-
sponding to EAC = 2 × 10−3 V/μm [42]. (b) The predicted k-linear
Rashba parameter αR and HH in-plane effective mass m|| of strained
Ge QW as a function of in-plane strain ε by carrying out atomistic
pseudopotential method calculations. Because the strain of the Ge
layer is induced by the SixGe1−x alloy barrier, we can relate ε to the Si
content x in the SixGe1−x alloy barrier by Vegard’s law ε = −0.04x
[43]. Here, we theoretically obtain ε = −0.8% for Si0.2Ge0.8 alloy
barrier, but we still adopt experimentally determined ε = −0.63%
[41] for calculations of αR and m||.

of 30 kV/cm for the commonly used gate voltages [42]. One
can see from Fig. 2(a) that the theoretically predicted Rabi
frequency is in excellent agreement with experimental results
over a wide range of driving amplitude for both magnetic
fields. Specifically, the fastest Rabi frequency of 108 MHz [2]
was reached experimentally at B = 1.65 T, under which our
theoretically predicted value is 100 MHz. The high agreement
illustrates that the emergent k-linear Rashba SOC via EDSR
provides the fast hole-spin control in planar Ge QDs.

Raising the Si content x in the SixGe1−x barrier will lin-
early enhance the compressive strain in the Ge layer [41,43]
because Si has a lattice constant 4.3% smaller than that of
Ge. Figure 2(b) shows that the enhanced compressive strain,
in turn, causes a reduction in both Rashba parameter αR

and in-plane HH effective mass m‖, which is consistent with
the experimental observations [44]. The reduction in m‖ will
benefit the enhancement of hole mobility. However, it also
yields a detriment in the Rabi frequency combining with the
reduction of αR, as shown in Fig. 3(b). Hence, a low Si content
in the SixGe1−x barrier is demanded to achieve a high Rabi fre-
quency. It is worth noting that our atomistic pseudopotential
method predicts the HH effective mass of bulk Ge to be about
0.074m0, in good agreement with the first-principles calcula-
tion using the mBJ functional [23]. However, different from
bulk effective mass, the hole effective mass of the quantum
well is predicted to be around 0.09m0, which is close to some
experimental values [27,45–47] but deviates from the recently
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FIG. 3. (a) The predicted Rabi frequency (and k-linear Rashba
parameter αR) as a function of gate electric field for r0 = 50 nm, B =
1.65 T, and EAC = 2 × 10−3 V/μm. The red dashed line indicates
the maximum Rabi frequency of 108 MHz achieved experimentally
[2]. (b) The corresponding Rabi frequency as a function of biaxial
strain in the Ge layer.

reported value, namely (0.048 ± 0.006)m0 at zero hole density
[11]. A similar discrepancy also occurs in the well-established
2D GaAs/AlGaAs heterostructures. The Princeton group [48]
found that for holes in a 20-nm quantum well, the cyclotron
mass decreases from 0.48m0 at high hole density to 0.29m0 at
low density. However, the cyclotron mass for holes confined
at a heterojunction is fairly insensitive to the density and has a
value of approximately 0.5m0. This quantitative discrepancy
is not yet understood and may be caused by the complex
energy band structure of the valence bands [49].

The strength of the Rashba SOC is usually electrically
tunable by biased gates, which provides a feasible way to
enhance the Rabi frequency further. We examine the Rabi
frequency by varying gate electric field Egate applied to Ge/Si
QW whose αR is obtained from the atomistic calculations.
Figure 3(a) exhibits that the Rabi frequency grows up linearly
as we amplify the gate electric field due to the enhancement
of Rashba SOC strength αR. The Rabi frequency boosts to
500 MHz at a 200-kV/cm gate electric field compared with
the reported 108 MHz at 30 kV/cm [2].

IV. DISCUSSION

So far, we have demonstrated that the emergent k-linear
Rashba SOC drives the fast Rabi frequency achieved exper-
imentally. However, this k-linear Rashba SOC is relatively
weak (αR < 10 meV Å) in [001]-oriented Ge QWs com-
pared with [110]-oriented counterparts where αR exceeds
120 meV Å [50] and Ge nanowires where αR is predicted
over 400 meV Å [12]. We thus expect that Rabi frequency
can reach multiple GHz for gate-defined QDs formed in
[110]-oriented Ge/Si QWs and Ge nanowires. In addition,
the asymmetry in the lateral confinement potential of QDs has
also been suggested to enhance Rabi frequency [42]. Besides
SOC-driven EDSR, there is another mechanism contribut-
ing to EDSR. It is known as g-tensor magnetic resonance
(g-TMR), which utilizes the gate-voltage modulation of a g

matrix [51,52]. Crippa et al. have discriminated the contri-
butions of these two mechanisms to Rabi frequency for a Si
hole-spin qubit in the nanowire and found the SOC mecha-
nism to be the main contributor to the Rabi frequency [51].
Specifically, the g-TMR mechanism is negligible when the
magnetic field is applied in plane along the nanowire direction
[51] in the same configure as investigated here.

On the other hand, we note that our predicted α3 differs
significantly from that obtained by others [23,29,30] using
the variational method starting from the bulk 4 × 4 Luttinger
Hamiltonian [29] with the need to judge at the outset which
selected 3D bands will couple in 2D systems. Their calcu-
lations are based on a traditional approach, where hole or
electron spin physics in low-dimensional nanostructures is
described by an expansion in a rather small basis of 3D
bulk envelope functions [53–55]. When a basis set is re-
stricted, the resolution of the expansion is limited and can
be “farsighted” due to, e.g., the actual atomistic symmetry
of the low-dimensional nanostructures being replaced by a
fictitious higher symmetry [56]. In the standard model for spin
splitting (SS) of nanostructures [9,26,54], this farsightedness
is reflected in the use of a phenomenological Hamiltonian
that requires deciding at the outset which 3D bands cou-
ple in two dimensions and, therefore, may miss important
interactions that are not selected in the model Hamiltonian
[28,56]. It has been demonstrated that some important prop-
erties such as zone-center HH-LH coupling [28,31], linear
Dresselhaus SOC [28], and direct Rashba SOC [31] will be
missed in this farsighted method due to the complex band
structure of valence bands. However, the missed zone-center
HH-LH coupling is essential for the emergence of the direct
Rashba SOC in low-dimensional structures [12,31,34]. In the
[001]-oriented QWs, the zone-center HH-LH coupling was
commonly believed to be absent since it is forbidden by the
QW D2d symmetry [35]. But, both experiments and atomistic
calculations have frequently observed the zone-center HH-LH
coupling, which has now been identified as induced by the
local interface C2v symmetry [35,36]. In contrast, we treat the
2D nanostructure as a system in its own right and calculate the
2D band structure using the microscopic potential of the 2D
system explicitly, thus freeing us from the need to judge at the
outset which selected 3D bands (e.g., 4 × 4 Luttinger Hamil-
tonian in Refs. [9,23,29,30]) will couple in two dimensions.
Our method has revealed a hitherto unsuspected Dresselhaus
k-linear term for holes in two dimensions, which implied a
different understanding of hole physics in low dimensions
[28]. It thus explains why the linear direct Rashba SOC
can be predicted by the atomistic pseudopotential method
rather than the farsighted model Hamiltonian employed in
Refs. [23,29,30]. On the other hand, the ignored remote
bands in the model Hamiltonian, especially for the low-
dimensional nanostructures, can also contribute to the SOC-
induced splitting, thereby affecting the estimation of the
strength of the k-cubic Rashba parameter. It reflects the over-
estimation of α3 in Refs. [29,30] since it may be significantly
canceled out considering a complete basis by including more
bands.

From the above considerations, the variational method
used in Refs. [23,29,30] may not accurately describe the hole
states of the quantum wells, which are the platform of Ge hole
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quantum computation. Instead, we adopt an all-band full-zone
atomistic pseudopotential method to calculate the spin split-
ting of the valence subbands in semiconductor QWs, where
the real QW structures, including interfaces, are considered
[50]. Correspondingly, the obtained results are supposed to
be more accurate than those in Refs. [23,29,30] and hence are
powerful enough to describe the Rashba spin splitting in QWs.

V. CONCLUSION

In conclusion, we have resolved the standing puzzle by
identifying the emergent k-linear Rashba SOC in 2D holes
as the driver via EDSR for the rapid hole-spin manipulation
achieved experimentally. Because the k-linear Rashba SOC is
electrically tunable, we suggest using the applied gate electric
field to enhance the Rabi frequency exceeding 500 MHz.
We can further boost the Rabi frequency to multiple GHz if
we replace the [001]-oriented Ge QW by its [110]-oriented
counterpart.

ACKNOWLEDGMENTS

The work was supported by the National Science Fund for
Distinguished Young Scholars under Grant No. 11925407, the

Basic Science Center Program of the National Natural Science
Foundation of China (NSFC) under Grant No. 61888102, and
the Key Research Program of Frontier Sciences, CAS under
Grant No. ZDBS-LY-JSC019 and CAS Project for Young
Scientists in Basic Research under Grant No. YSBR-026. S.G.
was also supported by the NSFC under Grant No. 11904359.

APPENDIX A: FOCK-DARWIN STATES

The Fock-Darwin states are the eigenstates of the quasi-2D
quantum dot. For a gate-defined planar QD with an applied
static magnetic field B = (Bx, By, Bz ), without considering the
SOC, the effective Hamiltonian describing a HH reads

H0 = π2
x + π2

y

2m
+ 1

2
mω2

0(x2 + y2) + 1

2
gμBBσ. (A1)

The meaning of the symbols is the same as in the main text.
The eigenstates of this Hamiltonian are |n, l, s〉 ≡ |n, l 〉|s 〉,
where |n, l 〉 denote the Fock-Darwin states with the principal
(azimuthal) quantum number n (l).

Next, we give the derivation of the Fock-Darwin states. It
is convenient to introduce phase coordinates (q1, q2, p1, p2)
which are connected to the previous ones (x, y, px, py) by the
following formula:

⎛
⎜⎝

q1

q2

p1

p2

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
�

2ω+
0 0 1

m

√
1

2�ω+√
�

2ω−
0 0 − 1

m

√
1

2�ω−

0 −m
√

�ω+
2

√
ω+
2�

0

0 m
√

�ω−
2

√
ω−
2�

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

x
y
px

py

⎞
⎟⎠, (A2)

where, � =
√

ω2
0 + ω2

c/4 ≡
√

ω2
0 + ω2

L , ω1/2 ≡ ω± = � ±
ωL, ωL = eB

2m . In the new phase coordinates, H0 has the
canonical form

H0 = p2
1 + p2

2

2m
+ m

2

(
ω2

1q2
1 + ω2

2q2
2

) + 1

2
gμBBσ. (A3)

Within second quantization, we can write

H0 =
2∑

j=1

h̄ω j

(
a†

j a j + 1

2

)
+ 1

2
gμBBσ. (A4)

where the annihilation and creation operators read

a1 =
√

m�

4h̄

(
x + py

m�
− iy + i

px

m�

)
,

a2 =
√

m�

4h̄

(
x − py

m�
+ iy + i

px

m�

)
,

a†
1 =

√
m�

4h̄

(
x + py

m�
+ iy − i

px

m�

)
,

a†
2 =

√
m�

4h̄

(
x − py

m�
− iy − i

px

m�

)
,

(A5)

and the energy is given by

En1,n2,s = (n1 − n2)h̄ωL + (n1 + n2 + 1)h̄
√

ω2
0 + ω2

L

+ s

3
gμBB, (A6)

where n1 and n2 are the eigenvalues of the particle number
operators of the two harmonic oscillators. Introducing the
main quantum number n and azimuthal quantum number l ∈
{−n,−n + 2, . . . , n − 2, n} via n = n1 + n2 and l = n1 − n2,
we can label the eigenstates as |n, l 〉, which are the Fock-
Darwin states. Their representation in planar polar coordinates
(r, ϕ) reads

ψn,l (r, ϕ) =
√

n!

π (n + |l|)!
eilϕ

b

( r

b

)|l|
L|l|

n

(
r2

b2

)
e−r2/2b2

,

(A7)

where L|l|
n (r2/b2) = (−1)|l|∂ |l|

r Ln+|l|(r2/2b2) denote the gen-
eralized Laguerre polynomials and b2 = h̄/m

√
ω2

0 + ω2
L with

Larmor frequency ωL = eB/2m.
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FIG. 4. The dependence of Rabi frequency on the driving electric field, the gate electric field, and the components in the presence of an
out-of-plane magnetic field of 0.04 T.

We can use the annihilation and creation operators to
present x, y, px, py,

x = 1

2

√
h̄

m�
(a1 + a2 + a†

1 + a†
2),

y = i

2

√
h̄

m�
(a1 − a2 − a†

1 + a†
2),

px = − i

2
m�

√
h̄

m�
(a1 + a2 − a†

1 − a†
2),

py = 1

2
m�

√
h̄

m�
(a1 − a2 + a†

1 − a†
2).

(A8)

Therefore, an applied alternating current (AC) electric field
along x couples to the hole via the dipole term Hed = −eExx.
The operator x in this term can only couple the states with
�n = 1 and the same spin orientations and hence cannot
achieve EDSR between the two lowest states |0, 0,±3/2 〉,
because 〈0, 0,+3/2| − eExx|0, 0,−3/2〉 = 0. But when we
consider the SOC, the situation will be different. The SOC
leads to coupling of the two lowest states |0, 0,±3/2 〉 to
the states with the opposite spin orientations and different n,
l , such as 〈1,−1,+3/2|HR|0, 0,−3/2〉 �= 0. Thus, the two
lowest states are the mixture of two opposite spin states, as
expressed in Eq. (3) in the main text. With the aid of spin-orbit
coupling, the electric field Ex can couple the two lowest states,
i.e., 〈0 + | − eExx|0−〉 �= 0 and EDSR occurs. It is worth
noting that only the SOC that couples the |0, 0,±3/2 〉 to
the n = 1 excited states can generate the EDSR, because the
electric field can only induce the coupling between the states
with �n = 1.

APPENDIX B: FORMULA OF RABI FREQUENCY

We now derive the formula for the Rabi frequency based on
the k-linear Rashba spin-orbit coupling (SOC), following the

standard procedure as done in 2D electron gases because of
the same form of SOC [22,39]. First, we perform a Schrieffer-
Wolff transformation to diagonalize the total QD Hamiltonian
containing SOC, i.e., HQD + HSO. This transformation re-
moves the spin-orbit interaction in the leading order. Second,
we apply the same transformation to the total Hamiltonian
including EAC. Third, by disregarding the spin-independent
part, we obtain an effective Rabi-type Hamiltonian in the
logical basis |0+〉, |0−〉,

HEDSR = 1
2 gμBB · σ + 1

2δB(t ) · σ. (B1)

Here δB(t ) is the effective magnetic field induced by the
combination of EAC and k-linear Rashba SOC and is
expressed by

δB(t ) = 2B × [�1(t ) + n × �2(t )], (B2)

where �1 = eαλ1(Ey, Ex, 0),�2 = eαλ2(−Ex,−Ey, 0), λ1 =
E2

Z −(h̄ω0 )2

(ω2+−E2
Z )(ω2−−E2

Z )
, λ2 = 2EZ h̄ωL

(ω2+−E2
Z )(ω2−−E2

z )
, ω± =

√
ω2

0 + ω2
L ± ωL,

ωL = eBz/2m, and EZ = μBg · B refers to the Zeeman
splitting with a spin quantization axis n = B/B. One
observes that the effective magnetic field δB(t ) is always
perpendicular to B. Finally, we obtain the Rabi frequency
fR = max[|δB(t )|]/4h̄.

APPENDIX C: RABI FREQUENCY FOR THE
OUT-OF-PLANE MAGNETIC FIELD

In this Appendix, we give the variation of Rabi frequency
with the driving electric field, the gate electric field, and the
components under the in-plane magnetic field (see Fig. 4). In
order to produce the same Zeeman splitting as the in-plane
magnetic field in the main text, the magnitude of the out-of-
plane magnetic field is set to 0.04 T. All other parameters are
the same.
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