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Band structures of edge magnetoplasmon crystals
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A two-dimensional electron gas in a static external magnetic field exhibits two distinct collective excitation
modes. The lower frequency mode propagates along the periphery of the domain almost freely with an extended
lifetime, which is referred to as edge magnetoplasmons. Peculiar phenomena caused by a capacitive interaction
between nearest-neighbor domains are known, such as the emergence of Tomonaga-Luttinger liquid and charge-
density fractionalization. Meanwhile, the number of coupled domains investigated in the past has been limited
to a small number. Here, we performed calculations using a continuum model of edge magnetoplasmons, the
band structures of planar crystals composed of an arbitrary number of domains, including a chain, ladder,
and honeycomb network, with the general interaction strength. We explain the band structures in terms of the
fundamental collective modes of a molecule composed of two equivalent domains. These are the extended chiral
propagation modes that yield a linear dispersion band and the standing wave modes localized in the coupled
regions that cause a flat band. The chain’s band structures resemble the miniband structures calculated from
the Kronig-Penney model for the electron in a semiconductor superlattice. We point out that a geometrical
deformation of the chain does not change the band structures as it can be expressed as a gauge degree of freedom
that only causes a shift in the wave number.
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I. INTRODUCTION

Many physical systems have collective excited states,
known as plasmons, in which the electrons and electromag-
netic field are dynamically coupled to form a self-sustainable
motion of the composites. When plasmons exist in each com-
ponent (or domain), they can interact with each other through
electromagnetic fields if the domains are close enough to
each other. In this paper, we examine the characteristics of
the plasmons of the entire system with regard to the basic
plasmons localizing and propagating along the edge of each
planar domain, which are referred to as the edge magneto-
plasmons (EMPs) [1–3]. EMPs are the low-energy excited
states of a planar system of a two-dimensional electron gas in
a stationary external magnetic field applied perpendicular to
the plane, and they exhibit a chiral propagation that moves in
a direction determined by the orientation of the magnetic field.
It is known that EMPs exhibit peculiar phenomena caused by
a capacitive interaction between nearest-neighbor domains,
such as the emergence of Tomonaga-Luttinger liquid and
charge-density fractionalization [4]. There is also a theoreti-
cal proposal that EMPs are potential candidates for quantum
energy teleportation, in which energy transportation can be
realized by classical information without energy carriers, and
the interaction between EMPs plays an essential role in it [5].

Besides the fact that experiments are scheduled and the-
oretical consideration is called for, we have other motivation
for addressing the subject of EMPs in a domain network. First,
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if we regard a single planar domain, at the edge of which
EMPs exist, as a fictitious atom, our objective is to find the
energy spectrum of a plasmonic crystal, or more specifically,
an EMP crystal or EMP molecule. Naturally, since a plasmon
is a hybrid of electrons and photons (electromagnetic fields),
such a plasmonic crystal must have an essential relationship
to a photonic crystal. Indeed, we will show that there is a
close similarity between an EMP crystal and a semiconductor
superlattice, which is a periodic structure of layers of two
(or more) materials and the simplest example of a photonic
crystal. When discussing the interaction between adjacent do-
mains, the idea of static atomic orbitals, such as the bonding
and antibonding orbitals which are useful in discussing the
formation or stability of a lattice, may be extended to their
chiral and dynamical counterparts. Second, we seek to gain
a better understanding of the nature of EMPs in a network
of domains. For example, we would like to know the lowest
energy excited state of the whole system. Is it still an EMP
that propagates along the outer edge of the whole system?

We propose in this paper a general method to calculate the
energy spectrum of a planar EMP crystal. We first show the
results for the simplest EMP molecule consisting of the two
domains (Sec. III), which are applicable for any finite number
of domains and essential to understand the physics. Next, the
dispersion relation of the plasmons in the periodic system con-
sisting of N domains, namely the energy band structures of the
periodic EMP crystal, is analytically constructed for a chain,
ladder, and honeycomb network (Sec. IV). We will show that
the naive “EMP” of the EMP crystal, which has the same
chirality as the atomic EMP, is not the lowest energy state
of the entire system for the general interaction strength. We
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also discuss an extension of the planar EMP crystals toward
three-dimensional counterparts, which is useful in identifying
the topological aspect of a system.

II. BASIC KNOWLEDGE ABOUT AN EMP
IN A SINGLE DOMAIN

In this section, we review the two main properties of an
EMP in a single domain, and we introduce an effective model
used for our analysis.

A. Two main properties of an EMP

First, an EMP pulse propagates almost freely along the
edge of a two-dimensional electron gas in the direction de-
termined by the magnetic-field orientation [6]. This suggests
that the dispersion relation of EMPs is approximately linear.
Indeed, when the boundary potential was sufficiently sharp
so that the electron density changed abruptly, Volkov and
Mikhailov solved an integral equation of the electric potential
with the Wiener-Hopf method under reasonable assumptions
and succeeded in getting the dispersion relation [7,8]

ω(qy) = 2qyσxy

κ

(
ln

2

|qy|�x
+ 1

)
, (1)

where qy is the wave vector along the edge, σxy is the static
Hall conductivity, κ is the relative dielectric constant, and
�x is the localization length of the charge density (in the
direction perpendicular to the edge), which is proportional to
the dynamical conductivity σxx(ω):

�x = 2π iσxx(ω)

ωκ
. (2)

Since �x may depend on ω, the EMP frequency is determined
by solving Eqs. (1) and (2) self-consistently. Practically, �x

is independent of ω as �x � e2ν
κ h̄ωc

(where ν is the filling fac-
tor, and ωc is the cyclotron frequency), because σxx(ω) �
−i ω

2π
e2ν
h̄ωc

holds and ω in the numerator of Eq. (2) is canceled
out by that in the denominator. The wavelength of interest
is usually much larger than �x, which makes the dispersion
relation of EMPs approximately linear. The linear chiral dis-
persion is in sharp contrast to the gapped spectrum of bulk
magnetoplasmons (MPs), which is written in terms of ωc and
two-dimensional plasmon frequency ωp as

√
ω2

p + ω2
c .

Second, the EMP damping is suppressed by the applied
magnetic field. If damping is significant, EMPs would not
be observed in a strong magnetic field, because σxy makes
the frequency lower and lower by increasing the magnetic
field, and the Drude peak may obscure the EMP signal. The
origin of the long EMP lifetime is a subtle problem. In a
previous paper [9], we argued that an internal magnetic field
was neglected in theoretical approaches [7] and that this sim-
plification prevented the EMP lifetime from being determined.
On the other hand, we found that the following approximate
relationship between the EMP lifetime and MPs exists:

τemp = ω2
c + ω2

p

ω2
p

τmp. (3)

This result is obtained by noticing that peculiar plasmons
whose frequencies are purely imaginary exist in the interior

of a two-dimensional electron gas described by the Drude
model [10]. When an external magnetic field is applied to
the system, these bulk plasmons are still nonoscillating and
are isolated from the MP. They are mainly in a transverse
magnetic mode and can combine with a transverse electronic
mode locally at an edge of the system to form EMPs. We note
that although Eq. (3) provides a reasonable explanation for
the experimental results [11], the derivation is classical, and it
is unknown whether it can be extended to the quantum Hall
regime.

The quantum Hall effect (QHE) is not the necessary con-
dition for the existence of EMPs, but the EMP lifetime is
elongated by the QHE. The QH state is characterized by an
electronic ground state whose excitation spectrum is gapful,
an incompressible liquid state in the bulk, but is gapless at
the edge. The energy spectrum of the QHE is similar to that
of MPs, namely an MP is gapful but an EMP is gapless. The
dynamical aspect of the edge states in fractional QHEs, where
interactions between electrons contribute to an incompressible
state, has been explored by many authors [12–18].

B. One-dimensional effective model

The results for a single domain presented above, which
are based on the classical field theory of electrodynamics,
are essential and very useful in understanding experimental
results. However, they are difficult to extend to more com-
plicated physical circumstances in which EMPs interact with
each other. The presence of κ in Eq. (1) already suggests
that the propagation velocity of EMPs depends on the sys-
tem parameters, including their environments [19]. Hashisaka
et al. [20] proposed a distributed-element circuit model of
interacting EMPs, which introduces a geometrical capacitance
cx for mutual interactions in addition to a channel capacitance
that simulates the propagation velocity of an isolated EMP as

v = σxy

cch
. (4)

This model is plausible and capable of describing the capaci-
tive interactions between counter-propagating EMPs [20,21],
as well as those between copropagating EMPs [4,22]. In the
coupled region of the two domains, the chiral nature of the
EMPs in each domain is disturbed by cx, and the mixed mode
is formed as a nonchiral standing wave. The model can be
extended to include the effect of a general type of gate needed
to control the carrier density or the velocity [19]. We therefore
adopt the model in calculating the energy spectrum of coupled
domains.

III. TWO DOMAINS

We assume that when the interaction between the two
domains is negligibly small, the EMP pulses [expressed by
humps in Fig. 1(a)] can propagates independently along the
edge of each domain with velocity v and without any dissi-
pation. We will neglect the complicated EMP profile in the
direction perpendicular to the edge and focus on the dynamics
along the edge. The EMP dynamics of the first domain is
expressed by the normal modes of the current and charge den-
sities, j1(x, t ) = avei ω

v
(x−vt ) and ρ1(x, t ) = aei ω

v
(x−vt ), which

are a function of x − vt that represents the chiral character
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FIG. 1. Geometries of the two domains. (a) When the two domains are independent, EMPs are freely propagating along each edge.
(b) When the two domains are close enough to each other, they interact with each other in the shaded part through interedge capacitive
coupling. (c) The spatial coordinate x may be shared by the two domains through the procedure discussed in the main text.

of EMPs. The charge density (at x = vt) can be positive or
negative depending on the sign of a. A positive and neg-
ative current density means a positive and negative charge
density, respectively, that propagates in the same direction
determined by the chirality. The continuity equation express-
ing charge conservation in the first domain is given by
∂tρ1(x, t ) + ∂x j1(x, t ) = 0. Likewise, we define the normal
modes of current and charge densities for the second do-
main as j2(x, t ) = bvei ω

v
(x−vt ) and ρ2(x, t ) = bei ω

v
(x−vt ). The

eigenfrequencies are quantized by the periodic boundary con-
dition as ω1 = (2πv/L1)n and ω2 = (2πv/L2)n with integer
n, where L1 and L2 are the circumference of the first and
second domains, respectively.

The direction of spatial coordinate x is not necessarily
the same (for example, anticlockwise) for the two domains.
Rather, when we consider the effects of coupling between
the two domains, it turns out to be convenient to define the
coordinate for the second domain in the direction opposite to
that for the first domain. In this new coordinate system, we
have j2(x, t ) = −bve−i ω

v
(x+vt ) and ρ2(x, t ) = be−i ω

v
(x+vt ), by

the replacement v → −v. The minus sign is added to j2 only
(not in front of b of ρ2), which is necessary for them to satisfy
the continuity equation ∂tρ2(x, t ) + ∂x j2(x, t ) = 0. Note that
j2(x, t ) and ρ2(x, t ) become a function of x + vt , showing the
same chirality as the EMPs in the first domain.

The sign difference between j1 and j2 (in front of b) may
be explained by a fictitious procedure in three dimensions,
in which the second domain is turned inside out and placed
below (or above) the first domain, as shown in Fig. 1(c). Note
that the orientation of the second domain is reversed and that
the direction of a magnetic field normal to the second domain
plane is reversed too. As a result, we can regard the total
system as if the Hall conductivities for the two domains have
different signs,

(
j1(x)
j2(x)

)
= σxy

(
1 0
0 −1

)(
V1(x)
V2(x)

)
, (5)

where Vi(x) is the EMP potential given by Vi(x) = ρi (x)
cch

. In-
deed, using Eq. (4), we show that j1(x, t ) = vρ1(x, t ) and

j2(x, t ) = −vρ2(x, t ), which are consistent with the normal
modes. The fictitious procedure in three dimensions makes
us notice that this system is topologically not equivalent to a
capacitor in an external magnetic field (rather it is equivalent
to a capacitor containing a magnetic monopole). Meanwhile,
there is an EMP molecule with a staggered magnetic field
that corresponds to a capacitor in a magnetic field, which is
discussed in Appendix A.

When the two domains are sufficiently close, they couple
with each other through a capacitive coupling cx in the region
x ∈ [0, �] represented by the shaded part between the two
domains in Fig. 1(b). We assume that cx is a constant in the
coupled region and vanishes outside. The capacitive coupling
modifies charge densities through a difference between the
EMP potentials of the two domains as ρ1(x) = cchV1(x) +
cx[V1(x) − V2(x)] and ρ2(x) = cchV2(x) + cx[V2(x) − V1(x)].
These are expressed with a 2 × 2 matrix as(

V1(x)
V2(x)

)
= 1

cch

(
1 − δ δ

δ 1 − δ

)(
ρ1(x)
ρ2(x)

)
(6)

by defining a coupling constant

δ ≡ cx

cch + 2cx
. (7)

By combing Eqs. (6) and (5), we have(
j1(x)
j2(x)

)
= v

(
1 − δ δ

−δ −(1 − δ)

)(
ρ1(x)
ρ2(x)

)
. (8)

Because of the continuity equation expressing independent
charge conservation in each domain ∂tρi(x, t ) + ∂x ji(x, t ) =
0, Eq. (8) becomes the following dynamical equation of the
current density:

∂t

(
j1(x, t )
j2(x, t )

)
= −v

(
1 − δ δ

−δ −(1 − δ)

)
∂x

(
j1(x, t )
j2(x, t )

)
. (9)

The eigenvalues of the 2 × 2 matrix are ±vc, where vc ≡
v
√

1 − 2δ corresponds to the propagation velocity in the cou-
pled region, which is slower than that in the uncoupled region
(v = σxy/cch) since δ � 0. The EMP in the coupled region
is not chiral; there are modes propagating in the forward (or
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right) and backward (or left) directions along the x axis. By
expanding current density using eigenspinors of the 2 × 2
matrix, we have for x ∈ [0, �](

j1(x)
j2(x)

)
= αR

(
1

−r

)
e+i ω

vc
x − αL

(−r
1

)
e−i ω

vc
x, (10)

where

r ≡ 1 − δ − √
1 − 2δ

δ
,

(
vc = 1 − r

1 + r
v

)
. (11)

Because δ is an increasing function of cx with upper bound
1/2, we define the weak- and strong-coupling limit as δ → 0
and 1/2 (or r → 0 and 1), respectively. The first term on the
right-hand side of Eq. (10) represents the mode propagating
with the positive velocity in the coordinate x with amplitude
αR. Using the continuity equation, or by substituting Eq. (10)
into Eq. (8), we obtain the charge density

(
ρ1(x)
ρ2(x)

)
= 1

vc

{
αR

(
1

−r

)
e+i ω

vc
x + αL

(−r
1

)
e−i ω

vc
x

}
. (12)

Next, we examine the boundary conditions to be satisfied
for the boundaries of the coupled region at x = 0 and �.
By the spatial integration of the continuity equation over an
infinitesimal region including the boundary, it is shown that
the current must be continuous there,

lim
ε→0

∫ x′+ε

x′−ε

dx ∂x j1(x, t ) = −∂t

∫ x′+ε

x′−ε

dx ρ1(x, t )

→ ji(x
′ + 0) = ji(x

′ − 0). (13)

Therefore, by setting j1(0) = a, j1(�) = ã, j2(0) = −b̃, and
j2(�) = −b, we obtain from Eq. (10)

a = αR + rαL, −b̃ = −rαR − αL,

ã = αRei ω
vc

� + rαLe−i ω
vc

�, −b = −rαRei ω
vc

� − αLe−i ω
vc

�.

(14)

We note that the charge density is not continuous at the bound-
aries. Such a discontinuity is easy to recognize by considering
a square wave of width �x as an incident wave prepared in
the uncoupled region. When it enters the coupled region, the
width must decrease to vc

v
�x and the charge density must

increase because of the charge conservation. Even though the
discontinuity of the charge density, by itself, does not result
in any serious error, it might represent poor modeling on the
boundary. Indeed, according to Volkov’s theory, �x actually
depends on κ , so �x may be changed at the boundary. There is
a possibility that a charge flow in the direction perpendicular
to the edge may exist at the boundary. In this paper, we
ignored the possible effect due to the discontinuous change
in the charge density.

By eliminating αR and αL from the above equations, we get
a 2 × 2 symplectic (transfer) matrix with a unit determinant
that relates the current density of one domain to that of the
other domain as (

a
ã

)
= T (ω)

(
b̃
b

)
, (15)

where

T (ω) ≡
(

1 1
ei ω

vc
� e−i ω

vc
�

)(
1
r 0
0 r

)(
1 1

ei ω
vc

� e−i ω
vc

�

)−1

= 1

−2ir sin
(

ω�
vc

)
(

tω −t0
t0 −t∗

ω

)
, (16)

and tω ≡ e−i ω
vc

� − r2e+i ω
vc

� (and therefore t0 = 1 − r2). Be-
cause an EMP propagates freely in the uncoupled region of
each domain, we have a phase relationship between a (b) and
ã (b̃) as follows:

e+i ω(L1−�)
v ã = a, e+i ω(L2−�)

v b̃ = b. (17)

Substituting Eq. (17) into Eq. (15), we obtain(
1

e−i ω(L1−�)
v

)
a = T (ω)

(
e−i ω(L2−�)

v

1

)
b. (18)

By multiplying (1,−ei ω(L1−�)
v ) with both sides of Eq. (18), we

obtain the equation written as

Re
[
e−i ω

v ( L1+L2
2 −�)tω

] = t0 cos
( ω

2v
(L1 − L2)

)
, (19)

which determines the possible eigenfrequencies. This is sim-
plified when the two domains are geometrically equivalent,
i.e., L1 = L2 ≡ L, as

r2 sin2

(
ω(L − �)

2v
− ω�

2vc

)
= sin2

(
ω(L − �)

2v
+ ω�

2vc

)
.

(20)

This equation can be solved numerically in general and ana-
lytically in a certain limit.

Figure 2(a) shows the numerical solution of Eq. (20) for
L = 6� as a function of the coupling strength (r). The inter-
action always decreases the frequency. In the weak-coupling
limit, there are two fundamental modes with equal angular
frequency ω = 2πv/L. The energies of the originally de-
generate states are split and cross again (at r � 0.66) by
increasing capacitive coupling. The possible crossing points
and behavior in a strong-coupling regime can be understood
on physical grounds by introducing the following two modes.
One physically expected mode has the fundamental frequency

ωe = πv

L − �
, (21)

which corresponds to a new EMP mode moving around the
periphery of the two coupled domains [see Fig. 2(b)]. The
eigenfrequency of the other mode is a multiple of

ωs = πvc

�
, (22)

which represents a standing wave localized in the coupled
region [see Fig. 2(c)]. This becomes the lowest frequency
mode in the strong-coupling limit, while it is a high-frequency
mode in weak coupling. Please note that the T (ω) matrix
is ill-defined exactly when ω = nωs and that Eq. (14) gives
ã = a(−1)n and b̃ = b(−1)n, which are inconsistent with the
phase condition of Eq. (17). Thus, even for a strong-coupling
case, the calculated frequencies in Fig. 2(a) are very slightly
displaced from nωs.
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FIG. 2. Low-energy spectrum of a simplest EMP molecule. (a) The calculated frequency is plotted as dots in units of the fundamental
frequency of an isolated domain without the interaction ( 2πv

L ). This result is for L = 6�. The dashed lines represent new EMP modes (ωe, 2ωe,
3ωe, and 4ωe) that propagate along the outer edge (b), and the solid curves represent the localized standing wave modes (ωs, 2ωs, 3ωs, 4ωs,
and 5ωs) in the coupled region (c).

The level crossing between ωs and ωe occurs when r =
1 − 2�

L (≡ rc). The critical coupling strength is determined by
the geometrical parameters � and L only. The spectrum at
the critical point exhibits a special feature that the possible
frequencies are exact multiples of the fundamental frequency.

By multiplying (1, ei ω(L−�)
v ) with both sides of Eq. (18), we

know that

a

b
= 1 + r2

2r
cos

(
ω(L − �)

v

)

+ 1 − r2

2r
sin

(
ω(L − �)

v

)
cot

(
ω�

vc

)
(23)

holds for the general value of ω. Meanwhile, solutions of
Eq. (20) satisfy either

−r sin

(
ω(L − �)

2v
− ω�

2vc

)
= sin

(
ω(L − �)

2v
+ ω�

2vc

)
(24)

or

r sin

(
ω(L − �)

2v
− ω�

2vc

)
= sin

(
ω(L − �)

2v
+ ω�

2vc

)
.

(25)

It is shown by combining Eqs. (23) and (24) or (25) that
a/b must be +1 or −1 in order that the solutions exist for
the general coupling strength. In the weak-coupling limit,
the higher (lower) frequency state has a/b = +1 (−1). The
higher or lower frequency characteristics change when the two
modes cross each other with increasing r.

Putting a/b = +1 (−1) into Eq. (14), we obtain αR =
e−i ω

vc
�αL (αR = −e−i ω

vc
�αL), by which Eqs. (10) and (12) are

determined with the exception of αL. The current and charge
densities for a/b = +1 are

(
j1(x)
j2(x)

)
+1

= αLe−i ω�
2vc

(
(1 + r) cos

(
ω
vc

(
x − �

2

)) + i(1 − r) sin
(

ω
vc

(
x − �

2

))
−(1 + r) cos

(
ω
vc

(
x − �

2

)) + i(1 − r) sin
(

ω
vc

(
x − �

2

))
)

, (26)

(
ρ1(x)
ρ2(x)

)
+1

= αLe−i ω�
2vc

vc

(
(1 − r) cos

(
ω
vc

(
x − �

2

)) + i(1 + r) sin
(

ω
vc

(
x − �

2

))
(1 − r) cos

(
ω
vc

(
x − �

2

)) − i(1 + r) sin
(

ω
vc

(
x − �

2

))
)

. (27)

The current and charge densities for a/b = −1 are given by
exchanging current with charge for a/b = +1 as(

j1(x)
j2(x)

)
−1

=−vc

(
ρ1(x)
ρ2(x)

)
+1

,

(
ρ1(x)
ρ2(x)

)
−1

=− 1

vc

(
j1(x)
j2(x)

)
+1

.

(28)

Since sine terms vanish at the center of the coupled region
(x = �/2) for any ω, we first assume the convention that
αLe−i ω�

2vc is a real number. Then the signs of a/b represent dif-
ferent configurations of the dipole moments. For a/b = +1,
the charge densities at the two domains in the coupled region
have the same sign (like “antibonding orbital”). The direction
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of the dipole moment in each domain points in the opposite
direction, and a net dipole moment of the two domains van-
ishes in total. Meanwhile, for a/b = −1, the charge densities
at the two domains in the coupled region have different signs
(like “bonding orbital”). The direction of the dipole moment
of each domain points in the same direction, and the two
domains constructively make a large dipole moment as a
whole. These configurations of the dipole moments are invalid
unless αLe−i ω�

2vc is a real number, which is a complex number
in general. For xample, in a strong-coupling region, ω = nωs

and αL(−i)n may take a pure imaginary number if αL is a real
number. In this case, the configurations of the dipole moments
will be changed. That is the reason why the dipole moment
characteristics change as r increases. Generally, we cannot
specify the phase of αL for a given ω unless the value of ρi(x)
at some position is known.

We consider a geometrical case of L 	 � in which an
incident steady current flows in the first domain towards the
coupled region. This situation is expressed by setting a = 1 in
Eq. (15). Because the EMP of the second domain propagates
in the counterclockwise direction as shown in Fig. 1(b), it
takes a very long time to arrive at x = � from x = 0. We
therefore may assume that b = 0 in Eq. (15). From these
conditions, we obtain the reflectance and transmittance as

R ≡ |ã|2 =
∣∣∣∣∣
(1 − r2)ei ω�

vc

1 − r2e2i ω�
vc

∣∣∣∣∣
2

, T ≡ |b̃|2 =
∣∣∣∣∣
r
(
1 − e2i ω�

vc

)
1 − r2e2i ω�

vc

∣∣∣∣∣
2

.

(29)
This result coincides with the result known for the reflection
and transmission of light by thin films [23,24]. The coupled
region can be expressed as a nonabsorbing medium with the
refractive index of n ≡ v/vc or n = (1 + r)/(1 − r). When
the frequency of an incident wave matches the frequency of
a standing wave (i.e., when ω is a multiple of ωs), perfect
reflection with R = 1 and T = 0 is realized. In the strong-
coupling limit, nearly perfect transmission is expected when
ω = (n + 1

2 )ωs, where n = 0, 1, . . . .

IV. PERIODIC DOMAINS

In this section, we apply the formulation presented for the
simplest EMP molecule in the preceding sections to periodic
structures of planar EMP crystals, including a chain, ladder,
and honeycomb network composed of N domains. To simplify
the analysis, we introduce the following vector notation for the
two-component column matrix:

ai ≡
(

ãi

ai

)
, ãi ≡

(
ai

ãi

)
. (30)

Note that a tilde rule is adopted, namely the amplitude with a
tilde is located in the first (second) component of ai (ãi).

A. Chain

A straight chain is formed when N domains are aligned
along a line. Figure 3(a) shows the constituents of the chain,
where the amplitudes of the vertices are related to each other
by the boundary condition of the coupled region as ã =
T (ω)b and by a phase relationship of the uncoupled region
as c = R L

2 −�(ω)ã. Here, R L
2 −�(ω) originates from the phase

accumulation caused by free propagation of EMPs with a

(a) (b) (c)

FIG. 3. Geometries of a chain. (a) The basic unit of a chain con-
sists of a domain and a coupled region. Note that the domain shape is
arbitrary and that we assume it to be a circle here. The circumference
of a domain is L, and the length of a coupled region is �. (b) When
the circumferential distance on a domain between the two vertices c̃
and a is equal to that between ã and c (c̃a = ãc = L

2 − �), the chain
is straight. Otherwise (c̃a = L

2 − � − Rj and ãc = L
2 − � + Rj for a

jth domain), the chain is deformed, as shown in (c).

fixed chirality from c̃ to a and from ã to c, whose circular
distance is L

2 − �:

R L
2 −�(ω) =

(
e−i ω

v ( L
2 −�) 0

0 e+i ω
v ( L

2 −�)

)
. (31)

The elimination of ã gives c = R L
2 −�(ω)T (ω)b. Because

det (R L
2 −�(ω)T (ω)) = 1 holds for any ω, we know from

Bloch’s theorem the existence of a unitary matrix U and phase
θ (∈ [0, π ]) that satisfy

UR L
2 −�(ω)T (ω)U † =

(
e−iθ 0

0 e+iθ

)
. (32)

This is consistent with the characteristic equation λ2 −
tr(R L

2 −�(ω)T (ω))λ + 1 = 0, and one may assume that the

eigenvalues of R L
2 −�(ω)T (ω) are e±iθ . Equation (32) leads to

the relation tr(R L
2 −�(ω)T (ω)) = 2 cos θ , which is

cos θ = 1 + r2

2r
cos

(
ω

v

(
L

2
− �

))

+ 1 − r2

2r
sin

(
ω

v

(
L

2
− �

))
cot

(
ω�

vc

)
. (33)

θ may be determined from Eq. (33) as a function of ω, which
also specifies the dispersion relation of a chain. Because
the periodicity of N domains is characterized by the bound-
ary condition [R(ω)T (ω)]N = I , this condition discretizes θ

through a constraint Nθ = 2πn, where n is the wave number,
and θ may be regarded as a continuum when N → ∞.

The band structure depends strongly on the coupling
strength, as shown in Fig. 4(a) for coupling constants r = 0.2
(left), 0.4 (middle), and 0.8 (right). For a weak coupling (r =
0.2), a weak dispersive band appears near the fundamental
excitation mode of a domain (ω = 2πv

L ), and energy gaps are
formed between the subbands. When r = 0.4, the dispersive
nature (or the bandwidth) is almost doubled. There is a strong
similarity between the band structures shown in Fig. 4(a)
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0.2 0.80.4
(a)

(c)

(b)

FIG. 4. Band structures of a chain. (a) The dispersion is given as
a function of θ ∈ [0, π ] for different coupling strength r = 0.2, 0.4,
and 0.8. ω is normalized in units of 2πv

L with L = 6�. Red dashed
lines are the chiral dispersion of the original EMP of an isolated
domain, which is the eigenmode at the strong-coupling limit. We
note that there is an energy gap at θ = 0 that vanishes at the strong-

coupling limit as ω
2πv

L
= 1

π

√
(1−r)2

rr2
c (1−rc )

. Parts (b) and (c) illustrate the

eigenmodes of a flat band and linear dispersion, respectively.

and miniband structures calculated from the Kronig-Penney
model for periodic semiconductor superlattices [25–27]. In-
deed, as we will show in Appendix B, the T (ω) matrix in
Eq. (32) can be constructed from physical variables of a binary
superlattice.

In a strong coupling (r = 0.8), the bandwidth of each
subband is suppressed. An overlap between the calculated
dispersion and a linear dispersion of ω = v

L/2−�
θ [as expressed

by red dashed lines in Fig. 4(a)] can be found at intervals.
Since L/2 − � is the effective unit-cell length along a chain,
the linear dispersion may be expressed as ω = vk, where k
is the wave vector along the chain and Eq. (32) shows that
ω = vk becomes exact in the strong-coupling limit because
T (ω) becomes a unit matrix. In fact, because the right-hand
side of Eq. (33) is singular at a multiple of ωs, the subbands
are separated by energy gaps formed at around nωs. In the
gaps, θ is an imaginary number giving localized states. The
linear dispersion continuously changes into a flat band that
represents the standing waves. A flat band is mostly composed
of the localized standing waves and is associated with a small
component of a chiral wave in the uncoupled regions. These
dispersionless modes do not propagate along the chain. A
linear dispersion is mostly composed of the chiral wave in
the uncoupled regions and is associated with a small compo-
nent of the standing waves. These dispersive modes propagate
along the chain. The panels in Figs. 4(b) and 4(c) show these
eigenmodes.

Since an ideal chain with a perfect periodicity does not
exist in nature, we shall discuss a geometrical deformation
of a chain. When a straight chain is geometrically deformed
locally by Rj , as shown in Fig. 4(c), the matrix R(ω) acquires
a U (1) phase. The periodic boundary condition is modified as

N∏
j=1

[
e+i ω

v
Rj

(
e−i ω

v
( L

2 −�) 0
0 e+i ω

v
( L

2 −�)

)
T (ω)

]
= I. (34)

(a) (b)

FIG. 5. Geometry of ladder. (a) The basic unit of a ladder
consists of the two domains and three coupled regions. The circum-
ference of a domain is L, and the length of a coupled region is �.

The circumferential distance between a1 and b̃2 (a1b̃2) is equal to

a2b̃3, b2c̃1, and ã2c2, which is given by s ≡ L
4 − �. (b) The domain

structure of a straight ladder.

When R ≡ ∑N
j=1 Rj = 0, the effect of the local deformation is

removed, which is similar to the pure gauge degree of freedom
in gauge theories. When R �= 0, a chain is not a straight line
but a closed curve. Such a change in global topology does
not alter the band structure but may cause a physical effect,
namely a shift in the wave number

θ = 2π

N

(
n − ωR

2πv

)
. (35)

We apply this result to understand the effect of a geometrical
change from a straight line to a square. Suppose eight domains
(N = 8) with L = 8� are aligned to form a straight line. It
can be deformed into a square by setting R = 8�. In the
weak-coupling limit, we may assume ω = 2πv

L . By putting it
into Eq. (35), we have θ = 2π

N (n − 1). However, a shift in θ

would be difficult to validate experimentally because a planar
periodic crystal must be modified to obtain an output signal.
A U (1) phase can be irrelevant to physical observables like
the reflectance or transmittance, because they are given by the
amplitude absolute square.

The results for the two coupled domains, such as in
Fig. 2(a) in Sec. III, are approximately embedded into the
band structure in Fig. 4(a) at θ = 0 and π . Specifically, for
the weak coupling, we may rewrite Eq. (23) as a/b = − cos θ

by using Eq. (33). This is shown by replacing L in Eq. (23)
with L

2 , and the remaining L
2 is used to obtain the minus

sign in a/b = − cos θ , where the phase relationship between
a and b is reversed for the case in which ω � 2πv

L because
tan(x + π ) = tan(x) and cos(x + π ) = − cos(x).

B. Ladder

We obtain a straight ladder by interconnecting the two
basic units of a chain as shown in Fig. 5(a) and by identifying
c2 and c1 with a3 and b1, respectively, as shown in Fig. 5(b).
Due to the chirality, a ladder includes two input channels (say
c̃1 and c̃2). Thus, a ladder corresponds to a device that can
reflect or transmit the two wave signals.
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(a) (b) (c)0.40.2 0.75

FIG. 6. Band structures of a ladder. (a) Dispersion is plotted as a function of θ ∈ [0, π ]. ω is in units of 2πv

L , where L = 8� is assumed.
(b),(c) Eigenmodes of a flat band and linear dispersion, respectively.

To calculate its band structure, we need to construct a 4 × 4
matrix that satisfies (

c2

c1

)
= M(ω)

(
a3

b1

)
. (36)

In addition to the T matrix satisfying b̃3 = T (ω)a3 and ã1 =
T (ω)b1, let us introduce a 2 × 2 matrix for the interconnected
region between the two domains,

(
ã2

b2

)
= S(ω)

(
a2

b̃2

)
. (37)

This S(ω) matrix is known from the boundary condition
Eq. (14) as

S(ω) ≡ URc(ω)U −1 = cos

(
ω�

vc

)
I + i sin

(
ω�

vc

)
W, (38)

where

U ≡
(

1 r
r 1

)
, Rc(ω) ≡

(
e+i ω�

vc 0

0 e−i ω�
vc

)
,

W = 1 + r2

1 − r2

(
1 − 2r

1+r2

2r
1+r2 −1

)
. (39)

We note that because W 2 = I , S(ω) = ei( ω�
vc

)W . This expres-
sion may be used to simplify some calculation.

For the free propagation of the EMP in the uncoupled
regions, we have

(
a2

b̃2

)
= Rs(ω)

(
b̃3

a1

)
, Rs(ω) ≡

(
e+i ωs

v 0
0 e−i ωs

v

)
. (40)

Therefore, we obtain
(

c2

c̃1

)
= Rs(ω)S(ω)Rs(ω)

(
b̃3

a1

)
, (41)

(
c̃2

c1

)
=

(
e−i ω

v
( L

2 −�) 0
0 e+i ω

v
( L

2 −�)

)(
b3

ã1

)
. (42)

Finally, the explicit form of the 4 × 4 matrix M(ω) is given by

M(ω) =
⎛
⎝e−i ω

v
( L

2 −�) 0 0
0 Rs(ω)S(ω)Rs(ω) 0
0 0 e+i ω

v
( L

2 −�)

⎞
⎠

(
T (ω) 0

0 T (ω)

)
. (43)

The characteristic equation of M(ω) is written as a symmetric
form λ4 + A(ω)λ3 + B(ω)λ2 + A(ω)λ + 1 = 0, with func-
tions A(ω) = −tr(M(ω)) and B(ω) = 1

2 [A(ω)2 − tr(M(ω)2)].
By setting λ = eiθ , we rewrite this as

(
cos θ + A(ω)

4

)2

= 8 + A(ω)2 − 4B(ω)

16
. (44)

By solving it with respect to θ , we plot the dispersion rela-
tion in Fig. 6(a) for coupling constants [r = 0.2 (left), 0.4
(middle), and 0.75 (right)]. For a weak coupling (r = 0.2),
the dispersion appears near ω = 2πv

L , which is the funda-
mental excitation mode of a domain. According to the two
domains in the unit cell of a ladder, two dispersion curves
appear as a pair in the weak coupling. For a strong coupling
(r = 0.75), the standing wave modes (ωs) appear as flat bands
between 0.5 and 0.6. These modes are also localizing at an
interconnected region between the two domains of a unit cell.
They are nearly degenerate because S(nωs) = (−1)nI holds
and therefore Eq. (43) consists of the same 2 × 2 matrix in a
diagonal form.

In the strong-coupling limit, since T (ω) → 1, we can
expect that the possible modes of the system are divided
into counterpropagating (outer) edge modes and other inner
modes. The latter—EMPs rotating around each hole of the
system—have a higher energy ω = πv

2s , which is visible as an
almost flat band.

C. Honeycomb

As shown in Figs. 7(a) and 7(b), a honeycomb network can
be obtained by slightly modifying the basic unit of a ladder.
The circumferential distance between all nearest-neighbor

075312-8



BAND STRUCTURES OF EDGE MAGNETOPLASMON … PHYSICAL REVIEW B 105, 075312 (2022)

(a) (b)

FIG. 7. Geometry of a honeycomb lattice. (a),(b) The basic unit of a honeycomb network is given by changing the vertex positions of the
basic unit of a ladder.

vertices in the uncoupled regions must be the same; the cir-

cumferential distance a1b̃2 is equal to c1ã1, b2c̃1, a2b̃3, b3c̃2,
and c2ã2.

The corresponding matrix is given by replacing L
2 − � of

e±i ω
v

( L
2 −�) in Eq. (43) with s, where s = L

3 − �, as

M(ω) =
⎛
⎝e−i ωs

v 0 0
0 Rs(ω)S(ω)Rs(ω) 0
0 0 e+i ωs

v

⎞
⎠

(
T (ω) 0

0 T (ω)

)
. (45)

Two adjacent units can be connected by a twisted boundary
condition: (

c2

c1

)
=

(
0 eiθ1 I

eiθ2 I 0

)(
a3

b1

)
, (46)

where θ1 ≡ θ + φ and θ2 ≡ θ − φ. Therefore, we need to
diagonalize the following 4 × 4 matrix:

Mh(ω; φ) =
(

0 e+iφ

e−iφ 0

)
M(ω). (47)

The characteristic equation of Mh is written as λ4 +
2λ3 cos φ + B̃(ω; φ)λ2 + 2λ cos φ + 1 = 0, where B̃(ω; φ) =
2 cos2(φ) − 1

2 tr(Mh(ω; φ)2). Setting λ = eiθ leads to
(

cos θ + cos φ

2

)2

= cos2 φ + 2 − B̃(ω; φ)

4
. (48)

By solving it with respect to θ with φ = 0, we can obtain the
dispersion relation along �K .

Figure 8(a) shows the band structures for coupling con-
stants [r = 0.2 (left), 0.4 (middle), and 0.75 (right)]. For the
weak coupling (r = 0.2), the energy band has a small energy
gap at the K point (θ = 2π

3 ) for the lowest two energy sub-
bands. It is difficult to see due to the resolution, but a small gap
opens for the higher subbands. The gap of the fundamental
subbands increases with increasing coupling strength.

We discuss the result using two possible modes of the sys-
tem. One is the mode rotating around each hexagonal hole (or
the inner edge of a hexagonal ring) [see Fig. 8(b)]. This mode
has energy similar to that of the fundamental mode ω = 2πv

L
and appears as the second subband at θ = 0 in the weak-
coupling regime. The other is the mode rotating around the
outer edge of a hexagonal ring, which has a larger perimeter

than the mode rotating around a hexagonal hole. This appears
as the lowest energy subband at θ = 0 in the weak-coupling
regime. These two modes are coupled together to form real
eigenmodes. In the strong coupling, the flat-band nature of
the subband with the second lowest energy is noticed. The
standing waves of the coupled regions are weakly interacting
with each other and form a nearly flat band.

The energy band structure of honeycomb networks is not as
well understood as it is for the chain. For example, the energy
positions of the Dirac cone are not identified as a function of
ωs. The clarification of such a problem requires more study.
Note also that our honeycomb network differs greatly from a
chain and ladder in the sense that it does not have an outer
boundary. It is not evident for the general coupling strength
whether a finite honeycomb network can support EMPs at
the periphery. Introducing an outer edge to the honeycomb
network would require some additional effort, which is be-
yond the scope of this paper. The matrix formulation we have
developed for the EMP molecule and crystals is amenable
to a transfer matrix method, with which we can calculate
physical observables of finite periodic systems composed of N
domains, which we will show in detail in a subsequent paper.

V. DISCUSSION

Strong coupling is intriguing from various points of view,
including a perfect transmission mode and a flat band.
Graphene has the advantage of realizing a strong coupling.
Brasseur et al. achieved r as large as 0.55 for two do-
mains separated by a narrow etched line (0.3 μm width) in
graphene [28]. This should be compared with r ∼ 0.04 ob-
tained for the edge channels defined by a metal gate (1 μm
width) in a GaAs/AlGaAs heterostructure [21]. The r values
differ partly because the interedge capacitive coupling is sup-
pressed by the screening effect of the metal gate and because
the sharp edge potential of graphene prevents formation of the
depletion layer (which increases virtually the width).

When two domains are positioned very close to each other
for strong coupling, the validity of the description on the
coupled region using a large coupling strength is not evident.
Suppose that two domains merge into a single domain. The
coupled region becomes the bulk region, where an EMP does
not exist. The absence of low-energy excitation in the bulk is
in sharp contrast to the result that many states are condensed
into zero-energy in the strong-coupling limit. Therefore, there
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(a) (b)0.40.2 0.75

in

out

in

out

FIG. 8. Band structure of a honeycomb lattice. (a) Dispersion (along �K) is shown as a function of θ ∈ [0, π ]. ω is in units of 2πv

L , where
L = 6�. (b) Two approximate eigenmodes of θ = 0 are illustrated by the dashed arrows.

may be a breakdown in describing the coupled region with a
very narrow interdomain distance in terms of a large r. We are
speculating that this problem is fundamentally related to the
interdomain charge transfer caused by electron tunneling.

Our description of an EMP crystal in this paper appears
to be unrelated to quantum mechanics; however, an essential
feature of quantum theory is partly built in. Suppose that for
an EMP molecule, an EMP pulse in the first domain enters
the coupled region. In the second domain, at the boundary
x = 0, a pair creation from the vacuum takes place. This is
a process of the creation of a particle and antiparticle, which
is a phenomenon handled by the quantum field theory. We also
note that for the diatomic EMP molecule discussed in Sec. III,
the energy density may be identified as a potential energy:

H (x) = ρ1(x)V1(x) + ρ2(x)V2(x). (49)

By Eq. (6), H (x) is rewritten as a quadratic form in the charge
density variables ρ1 and ρ2 (or current densities j1 and j2).
This is consistent with a quantum-mechanical Hamiltonian
density, by which a quantum-mechanical description of the
system is possible based on the U (1) current algebra [16].

There are some possible extensions of the work described
in this paper. One is to include the spin (current). For the QHE
with ν = 2, (dynamical) charge and spin currents coexist at
the edge of a single domain. Though it is not evident that the
formulation based on a capacitive interaction (between differ-
ent domains) holds for this case (of different edge channels
in the same domain), recent experiments show that this is
indeed valid [22]. It would also be interesting to include the
opposite chirality in the same domain, which is expected for a
quantum spin Hall effect. From a theoretical point of view, if
the spin degree of freedom is replaced with pseudospin, such
edge plasmon crystal without an external magnetic field is
relevant to the plasmons observed in doped carbon nanotubes
(albeit with a difference in spatial scales) [29–32]. Though this
appears to be an impossible geometry for EMPs, azimuthal
plasmons in doped carbon nanotubes (CNTs) can be treated
as a circular current in two dimensions, if the domain is
regarded as the cross section of a CNT. This is an issue to
which the results of this paper could be applied. We speculate
that some discrepancy between theory and experiments found

recently [33] may be partly resolved by a capacitive coupling
between the plasmons.

VI. SUMMARY

The band structures of EMP crystals (chain, ladder, and
honeycomb network) were calculated based on the continuity
of the current density with a transfer matrix method. The
calculated results are explained by the eigenmodes of an EMP
molecule composed of two equivalent atoms (domains). We
have discussed the effect of a geometrical deformation of a
chain on the wave number in terms of a gauge degree of
freedom. We pointed out an interesting similarity between
EMP crystals and layered materials (superlattices).
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APPENDIX A: DOMAINS WITH OPPOSITE
MAGNETIC-FIELD DIRECTIONS

We show a planar geometry composed of two capacitively
coupled domains having opposite magnetic-field directions
in Fig. 9(a). This configuration of the staggered magnetic
field appears to be a little unrealistic. However, as shown in
Fig. 9(b), the topologically equivalent configuration in three
dimensions corresponds to a uniform magnetic field, as op-
posed to that in Fig. 1(c), and thus it turns out to be a more
realistic. Indeed, when the two domains are merged into a sin-
gle domain in Fig. 9(b) by setting the interdomain distance to
zero and also � → L, this serves as a model for copropagating
spin-polarized edge channels in a single domain with ν = 2
QHE [4,22]. The situation is also relevant to a capacitor in
an external magnetic field, for which the following analysis
would have direct relevance.

The study of the two domains is rather straightforward. The
unique modification that we need to apply is(

j1(x)
j2(x)

)
= σxy

(
1 0
0 1

)(
V1(x)
V2(x)

)
, (A1)
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(a) (b) (c)

FIG. 9. Geometries of two domains with a staggered magnetic
field. The geometry in two dimensions (a) corresponds to (b) in three
dimensions. An example of a planar periodic crystals is shown in (c).

instead of Eq. (5). By repeating the same analysis, we have
for the coupled region x ∈ [0, �] two modes with the same
chirality. The current density is written as(

j1(x)
j2(x)

)
= αR

(
1
1

)
e+i ω

v
x + βR

(
1

−1

)
e+i ω

vs
x. (A2)

The velocities of the two modes are v and vs ≡ (1 − 2δ)v.
Note that the renormalized velocity vs differs from vc by

the multiplicative factor of
√

1 − 2δ. Due to the continuity
condition of the current density, the current amplitudes at the
vertices are related by(

ã
b

)
= V (ω)

(
a
b̃

)
, (A3)

where the matrix V is defined as

V (ω) ≡
(

1 1
1 −1

)(
ei ω�

v 0
0 ei ω�

vs

)(
1 1
1 −1

)−1

. (A4)

Applying the phase relations a = ei ω(L−�)
v ã and b̃ = ei ω(L−�)

v b to
Eq. (A3), we obtain the frequency of a nonbonding state as
ω = 2πv

L n and that of a bonding orbital as

ω = 2πn
L−�
v

+ �
vs

. (A5)

For the special case of � = L, ω = 2πvs
L n. More generally,

in order to make the coupled region a limited part of the
domain, it is necessary to prepare two domains with different
diameters, but such details are ignored here. The V matrix
is used to calculate the band structure of a ladder shown in
Fig. 9(c), which can be obtained by diagonalizing the matrix
M given by

M(ω) =
⎛
⎝e−i ω

v
( L

2 −�) 0 0
0 ei ωs

v V (ω)ei ωs
v 0

0 0 e−i ω
v

( L
2 −�)

⎞
⎠(

T (ω) 0
0 T ∗(ω)

)
. (A6)

It is also useful to define the matrix

Ts(ω) ≡
(

1 1
ei ω�

v ei ω�
vs

)(
1 0
0 −1

)(
1 1

ei ω�
v ei ω�

vs

)−1

(A7)

that relates the current density of one domain to that of the
other domain as (

a
ã

)
= Ts(ω)

(
b̃
b

)
. (A8)

The Ts matrix satisfies T −1
s = Ts and det(Ts) = −1.

APPENDIX B: CORRESPONDENCE TO THE
KRONIG-PENNEY MODEL

The Kronig-Penney model is a model for an electron in
a one-dimensional periodic potential [34]. In this Appendix,
we show that an EMP chain bears a remarkable similarity to
the electron in a superlattice by studying the model using the
method developed for EMPs.

Suppose that the unit cell of the superlattice consists of two
layers (A and B) with a potential difference V due to band
discontinuity. In the unit cell from x = −b to a, the wave
function is written as a sum of left- and right-moving waves
as

ψ (x) =
{

Ae+ikAx + Ãe−ikAx (0 < x < a),
Be+ikBx + B̃e−ikBx (−b < x < 0),

(B1)

where the wave vector kA and kB are related to the energy
eigenvalue E by the Schrödinger equation for the nonrelativis-
tic electron with the effective mass m,

h̄2

2m
k2

A = E ,
h̄2

2m
k2

B + V = E . (B2)

Since the wave function and its first derivative with respect to
x must be continuous at the boundary between layers A and B,
we obtain the boundary condition at x = 0:

(
1 1
kA −kA

)(
A
Ã

)
=

(
1 1
kB −kB

)(
B
B̃

)
. (B3)

From this, we define two matrices TAB and TBA as follows:

TAB ≡
(

1 1
kA −kA

)−1(
1 1
kB −kB

)
, TBA ≡ T −1

AB (B4)

so that

(
A
Ã

)
= TAB

(
B
B̃

)
,

(
B
B̃

)
= TBA

(
A
Ã

)
. (B5)
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Using these equations, we construct the transfer matrix that
relates the wave function at layer A to that at the nearest
neighbor of layer A as [26]

(
A
Ã

)
j+1

= TAB

(
e+ikBb 0

0 e−ikBb

)
TBA

(
e+ikAa 0

0 e−ikAa

)(
A
Ã

)
j

.

(B6)

Finally, applying Bloch’s theorem to the diagonalized transfer
matrix, we obtain

U

[
TAB

(
e+ikBb 0

0 e−ikBb

)
TBA

(
e+ikAa 0

0 e−ikAa

)]
U †

=
(

e−ik(a+b) 0
0 e+ik(a+b)

)
, (B7)

which leads to

tr

[
TAB

(
e+ikBb 0

0 e−ikBb

)
TBA

(
e+ikAa 0

0 e−ikAa

)]

= 2 cos[k(a + b)]. (B8)

This may be rewritten as the compact form

cos[k(a + b)] = cos(kAa) cos(kBb)

− 1

2

(
kA

kB
+ kB

kA

)
sin(kAa) sin(kBb). (B9)

By putting Eq. (B2) into Eq. (B9), the possible energies that
the electron can occupy [or miniband structures En(k)] are
obtained as a function of the wave vector k.

The mathematical similarity between Eqs. (B7) and (32)
becomes more evident for the localized states at layer B with
kB = i/ξB, where ξ−1

B = √
2m(V − E )/h̄ (0 � E � V ) is the

inverse of the decay length. This stems from the fact that
the T (ω) matrix of Eq. (32) [or Eq. (16)] can be reproduced
from

TAB

(
e+ikBb 0

0 e−ikBb

)
TBA (B10)

by putting kB = i/ξB into it as

1

−2ir sin 2φ

(
e−2iφ − r2e+2iφ −(1 − r2)

1 − r2 −(e+2iφ − r2e−2iφ )

)
,

(B11)

where φ and r are defined by 1/kAξB ≡ tan φ (E = V cos2 φ)
and r ≡ e−b/ξB . Thus, if 2φ and r are identified with ωl/vc

and the EMP coupling strength, respectively, there is a close
correspondence between the two systems: for example, study-
ing the EMP which has approximately ωs (2ωs) is the same
thing as studying the electron with φ → π/2 (π ) near the
bottom (top) of the potential energy E → 0 (E → V ). More

explicitly, the above derivation of the T (ω) matrix originates
from the fact that TAB is rewritten as

TAB =
√

k2
A + ξ−2

B

2kA

(
e−iφ eiφ

eiφ e−iφ

)

=
√

k2
A + ξ−2

B

2kA

(
1 1

eiφ e−iφ

)(
e−iφ 0

0 eiφ

)
, (B12)

in terms of φ defined by kA + i/ξB =
√

k2
A + ξ−2

B eiφ [see
Eqs. (B10) and (16)]. This similarity is more than what is
naturally expected from the point of view of wave mechanics,
and it suggests that the physical phenomena observed in a
superlattice may manifest itself in EMP crystals.

By comparing Eq. (B9) with Eq. (33), we find that the su-
perlattice has direct relevance to the EMP chain if we assume
that

cosh(b/ξB) = 1 + r2

2r
, (B13)

1

kAξB
− kAξB = 2 cot

(
ω�

vc

)
. (B14)

The former equation confirms r = e−b/ξB , and a small de-
cay length (ξB 
 b) caused by a large V corresponds to
a weak coupling. Meanwhile, a large decay length (ξB 	
b) corresponds to a strong coupling, which seems to be
a reasonable correspondence. The latter equation leads to
1/kAξB = − tan( ω�

2vc
). The minus sign just appears as a re-

sult of the correspondence between Eqs. (B7) and (32) for
positive ω.

The correspondence r = e−b/ξB , where ξB is energy-
dependent while r is just a coupling constant, is not easy to
understand. Such an apparent disagreement may be hidden by
taking the limit of V → ∞ and b → 0 in such a way that V b
is a constant, namely the Dirac δ potential. Though b/ξ 2

B is a
nonzero constant, b/ξB → 0, and the potential corresponds to
the strong-coupling limit (r → 1) of an EMP chain. On the
other hand, it has been shown that e−b/ξB can be used as a
small parameter in perturbation theory to solve the Kronig-
Penney model (and to extract a tight-binding parameter, such
as hopping integrals) [35]. Thus, EMP chains may cover the
Kronig-Penney model with various unit-cell structures. We
note that the bound states caused by a negative Dirac δ po-
tential can be studied by taking the a → 0 limit and changing
the origin of the energy as E → E + V , for the localized
states in layer B (E < 0). For the bound states, k2

Aa is a
constant and kB = i/ξB, where ξ−1

B = √
2m|E |/h̄. In this case,

r ≡ e−b/ξB may take a general value. In a bipartite model, such
a bound state can be doubled in the unit cell, which has been
examined from the point of view of topologically protected
edge states [36]. Such a model is more relevant to an EMP
chain containing two domains with different domain sizes L1

and L2 (or different coupling strength r1 and r2) in the unit
cell.
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