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Corner states, hinge states, and Majorana modes in SnTe nanowires
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SnTe materials are one of the most flexible material platforms for exploring the interplay of topology and
different types of symmetry breaking. We study symmetry-protected topological states in SnTe nanowires in the
presence of various combinations of Zeeman field, s-wave superconductivity and inversion-symmetry-breaking
field. We uncover the origin of robust corner states and hinge states in the normal state. In the presence of
superconductivity, we find inversion-symmetry-protected gapless bulk Majorana modes, which give rise to
quantized thermal conductance in ballistic wires. By introducing an inversion-symmetry-breaking field, the bulk
Majorana modes become gapped and topologically protected localized Majorana zero modes appear at the ends
of the wire.
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I. INTRODUCTION

SnTe materials (Sn1−xPbxTe1−ySey) have already estab-
lished themselves as paradigmatic systems for studying
three-dimensional (3D) topological crystalline insulators and
topological phase transitions, because the band inversion can
be controlled with the Sn content [1–4], but they may have
a much bigger role to play in the future investigations of
topological effects. Robust 1D modes were experimentally
observed at the surface atomic steps [5] and interpreted as
topological flat bands using a model obeying a chiral sym-
metry [6]. Furthermore, the experiments indicate that these
flat bands may lead to correlated states and an appearance of
a robust zero-bias peak in the tunneling conductance at low
temperatures [7]. Although, there has been a temptation to
interpret the zero-bias anomaly as an evidence of topological
superconductivity, all the observed phenomenology can be ex-
plained without superconductivity or Majorana modes [7–9].
On the other hand, the standard picture of competing phases in
flat-band systems [10,11] indicates that in thin films of SnTe
materials the tunability of the density with gate voltages may
allow for the realization of both magnetism and superconduc-
tivity at the step defects.

The improvement of the fabrication of low-dimensional
SnTe systems with a controllable carrier density has become
increasingly pressing also because the theoretical calculations
indicate that thin SnTe multilayer systems would support a
plethora of 2D topological phases, including quantum spin
Hall [12,13] and 2D topological crystalline insulator phases
[8,14]. The realization of a 2D topological crystalline in-
sulator phase would be particularly interesting, because in
these systems a tunable breaking of the mirror symmetries
would open a path for new device functionalities [14]. In-
deed, the recent experiments in thin films of SnTe materials
indicate that the transport properties of these systems can be

controlled by intentionally breaking the mirror symmetry
[15]. Furthermore, SnTe materials are promising candidate
systems for studying the higher order topology [16,17]. Thus,
it is an outstanding challenge to develop approaches for prob-
ing the hinge and corner states in these systems.

In addition to the rich topological properties, SnTe materi-
als are also one of the most flexible platforms for studying
the interplay of various types of symmetry breaking fields.
The superconductivity can be induced via the proximity effect
or by In-doping, and both theory and experiments indicate
rich physics emerging as a consequence [18–25]. Interesting
topological phases are predicted to arise also in the presence
of a Zeeman field [26], which breaks the time-reversal sym-
metry. In experiments, the Zeeman field can be efficiently
applied with the help of external magnetic field by utilizing
the huge g factor g ∼ 50 [27,28], or it can be introduced with
the help of magnetic dopants [29–31]. While the magnetism
and superconductivity are part of the standard toolbox for
designing topologically nontrivial phases, the SnTe materials
offer also unique opportunities for controlling the topological
properties by breaking the crystalline symmetries. In particu-
lar, it is possible to break the inversion symmetry by utilizing
ferroelectricity or a structure inversion asymmetry [32–37].
This has already enabled the realization of a giant Rashba
effect, and it may be important also for the topology.

So far the topological properties of SnTe nanowires have
received little attention experimentally, but this may soon
change due to the continuous progress in their fabrication
[38,39]. In this paper, we systematically study the symmetries
and topological invariants in SnTe nanowires and propose
to utilize the tunable symmetry-breaking fields for realiz-
ing different types of topological states. After describing the
system (Sec. II), we consider Zeeman field parallel to the
wire and show that depending on the Zeeman field magni-
tude and the wire thickness there exists four qualitatively
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different behaviors around the charge neutrality point: triv-
ial insulator regime, one-dimensional Weyl semimetal phase,
band-inverted insulator regime and indirect semimetal phase
(Sec. III). We show that the band-inverted insulator regime is
characterized by a pseudospin texture and an appearance of
low-energy states localized at the corners of the wire, whereas
the Weyl semimetal phase is protected by a nonsymmorphic
screw-axis rotation symmetry (fourfold rotational symmetry)
in the case of even (odd) thicknesses, and the low-energy
states are localized at the hinges of the wire. We uncover
how these hinge states are related to the topological corner
states appearing in two-dimensional Hamiltonians belong-
ing to the Altland-Zirnbauer class DIII [40] in the presence
of a rotoinversion symmetry, and we explicitly construct an
analytical formula for a Z2 topological invariant describing
their existence (Sec. IV). In the presence of superconductivity
(Sec. V), we find inversion-symmetry-protected gapless topo-
logical bulk Majorana modes, which give rise to quantized
thermal conductance in ballistic wires. Finally, we show that
by introducing an inversion-symmetry-breaking field, the bulk
Majorana modes become gapped and topologically protected
localized Majorana zero modes appear at the ends of the wire.

II. HAMILTONIAN AND ITS SYMMETRIES

Our starting is the p-orbital tight-binding Hamiltonian

H(k) = m12⊗13⊗� + t12

∑
α=x,y,z

12⊗
(
13 − L2

α

)⊗hα (kα )

+ t11

∑
α �=β

12⊗
[
13 − 1

2
(Lα + εαβLβ )2

]

⊗ hα,β (kα, kβ )� +
∑

α=x,y,z

λα σα⊗Lα⊗18, (1)

which has been used for describing the bulk topological crys-
talline insulator phase in the SnTe materials [1] and various
topological phases in lower dimensional systems [5,8]. Here
we have chosen a cubic unit cell containing eight lattice sites
(Fig. 1), � is a diagonal 8 × 8 matrix with entries �i,i = ∓1
at the two sublattices (Sn and Te atoms), εαβ is Levi-Civita
symbol, Lα = −iεαβγ are the 3 × 3 angular momentum L = 1
matrices, σα are Pauli matrices, and hα (kα ) and hα,β (kα, kβ )
are 8 × 8 matrices describing hopping between the nearest-
neighbors and next-nearest-neighbor sites, respectively (see
Appendix A). In investigations of topological properties it
is useful to allow the spin-orbit coupling to be anisotropic,
hence λα , although the reference physical case is λα ≡ λ.
When not otherwise stated we use m = 1.65 eV, t12 = 0.9 eV,
t11 = 0.5 eV, and λ = 0.3 eV.

We first consider an infinite nanowire along the z direction
with Nx = Ny unit cells in x and y directions. The Hamiltonian
for the nanowire H1D(kz ) can be constructed using Hamilto-
nian (1) and it satisfies a fourfold screw-axis symmetry (see
Appendix A)

Sc(kz ) = Pz ⊗ e−i π
4 σz ⊗ e−i π

2 Lz ⊗ sc(kz ), (2)

where Pz and sc(kz ) realize a transformation of the lattice sites,
consisting of a translation by a half lattice vector and π/2
rotation with respect to the z axis (Fig. 1), between the unit

FIG. 1. Schematic view of the system. The blue arrow indicates
the screw-axis operation, including a π/2 rotation with respect to the
z axis and a half-lattice vector translation. The red arrows depict the
nearest-neighbor (t12) and the next-nearest-neighbor (t11) hopping
terms in Hamiltonian (1). The two sublattices, corresponding to Sn
and Te atoms, have opposite on-site energies.

cells and inside the unit cell, respectively (see Appendix A).
Additionally, there exists also glide plane symmetries Mx(kz )
(My(kz )) consisting of a mirror reflection with respect to the
x̂ (ŷ) plane and a half-lattice translation along the z axis
and diagonal mirror symmetries Mxy (Myx) with respect to
the x̂ + ŷ (x̂ − ŷ) planes. The product of Mx(kz ) with My(kz )
or Mxy with Myx yields a twofold rotation symmetry with
respect to the z axis. All these symmetry act at any kz can
be used to block diagonalize the 1D Hamiltonian. The mir-
ror symmetry Mz(kz ) with respect to the z plane acts on
the Hamiltonian as Mz(kz )H1D(kz )Mz(kz )† = H1D(−kz ) and
the inversion symmetry operator can be constructed as I ∝
Mx(kz )My(kz )Mz(kz ).

If the wire has odd number of atoms in x and y directions,
it cannot be constructed from full unit cells, and this influ-
ences the symmetries of the system. In particular, for odd
thicknesses the screw-axis rotation symmetry is replaced by
an ordinary fourfold rotation symmetry.

III. TOPOLOGICAL STATES IN THE PRESENCE
OF ZEEMAN FIELD

In this section, we study the properties of the system in the
presence of Zeeman field HZ = B · �σ applied along the wire
B = (0, 0, Bz ). This field breaks the time-reversal symmetry
T and the mirror symmetries Mx(kz ), My(kz ), Mxy and Myx,
but it preserves the inversion symmetry I , the mirror sym-
metry Mz(kz ) and the screw-axis symmetry Sc(kz ). We find
that as a function of Zeeman field magnitude and the wire
thickness there exists four qualitatively different behaviors
around the charge neutrality point: trivial insulator regime,
1D Weyl semimetal phase, band-inverted insulator regime and
indirect semimetal phase (Fig. 2). The differences between
these phases are summarized in Figs. 3–5.
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FIG. 2. Phase diagram as function of the nanowire thickness
(dimensions of the square cross section) and Zeeman field Bz. The
different phases are: insulator phase (blue), Weyl semimetal phase
(red) and indirect semimetal phase (grey). In the regime of large
Zeeman field the insulator phase supports a pseudospin texture due to
band inversion, resulting in the appearance of localized corner states
(see Fig. 5). Dots show the actually computed phase boundaries at
discrete values of the wire thickness.

In the case of small Zeeman field Bz we find a trivial
insulating phase or an indirect semimetal phase depending on
the wire thickness. Neither of these phases supports in-gap
states localized at the ends of the wire. By increasing Bz we
find that there appears a Weyl semimetal phase for a range of
wire thicknesses and Zeeman field magnitudes (Figs. 2 and
4). For even thicknesses of the wire the band crossings (Weyl
points) are protected by the non-symmorphic screw-axis ro-
tation symmetry Sc(kz ), which allows us to decompose the
Hamiltonian into four diagonal blocks, so that the energies
of eigenstates belonging to different blocks (indicated with

(a) (b)

(c) (d)

|ψ
|2

FIG. 3. (a) Low-energy band structure in the trivial insulator
phase. The different colors indicate the various Sc eigenvalue sub-
spaces. (b) The sublattice pseudospin texture for a pair of bands
with the same Sc eigenvalue. The texture is in-plane because 〈τy〉
is negligible. (c) Energy spectrum of 200 atoms long wire showing
no end states. (d) LDOS for the bulk state highlighted in plot (c). The
thickness of the wire is 4 atoms and Bz = 0.1t12.

(a) (b)

(c) (d)

x

y

FIG. 4. (a) Low-energy band structure in the Weyl semimetal
phase for a four-atoms-thick nanowire and Bz = 0.3t12. The different
colors indicate various Sc eigenvalue subspaces. (b) Band cross-
ings around kz = π . (c) Energy spectrum of 200-atoms long wire.
(d) Band structure of 26-atoms-thick nanowire at Bz = 0.012t12. At
the band-crossing point (red dot) the states are localized in the hinges
of the wire. Inset: LDOS (normalized with the maximum value)
projected to the square cross section of the wire.

different colors in Fig. 4) can cross. Due to this reason a
change in the number of eigenstates belonging to specific
eigenvalues of the screw-axis rotation symmetry below the
Fermi level as a function of kz can be used as a topological
invariant for the Weyl semimetal phase. In the case of odd
thicknesses the screw-axis rotation symmetry is replaced by
an ordinary fourfold rotational symmetry, but also this sym-
metry can be utilized to block diagonalize the Hamiltonian at
any kz, and therefore it can protect the Weyl semimetal phase

(a) (b)

(c) (d)

x|ψ
|2

x

y

x

FIG. 5. (a) Low-energy band structure in the band-inverted in-
sulator phase for the four-atoms-thick nanowire and Bz = 0.4t12.
(b) The sublattice pseudospin texture for a pair of bands with the
same Sc eigenvalue. (c) Energy spectrum for 200 atoms long wire.
The red points indicate eight corner states and black points are bulk
states. (d) LDOS as a function of z for the corner states (red line) and
a bulk state (black line). Inset: LDOS (normalized with the maximum
value) as a function of x and y for the corner states in a 6 atoms thick
nanowire.
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in a analogous way. Note that due to non-symmorphic char-
acter of Sc(kz ) the Sc subblocks of H1D(kz ) are 4π -periodic
and they transform into each other in 2π rotations. Because
symmetries guarantee that the spectrum is symmetric around
kz = π , this elongated period leads to forced band crossings at
kz = π , see Figs. 3–5(a). However, the forced band crossings
typically appear away from the zero energy (Figs. 3 and 5)
and therefore they do not guarantee the existence of Weyl
semimetal phase at the charge neutrality point. In the Weyl
semimetal phase shown in Fig. 4 the crossings occur between
an electronlike band and a holelike band carrying different Sc

eigenvalues so that there necessarily exists states at all ener-
gies. As demonstrated by calculating the local density of states
(LDOS) in Fig. 4(d) the states connecting the conduction and
valence bands are often found to be localized at the hinges of
the nanowire. We discuss the origin of these hinge states in
Sec. IV.

By increasing Bz further we find another insulating phase
for a wide range of wire thicknesses and Zeeman field mag-
nitudes. In this case, the band dispersions have the camel’s
back shape [Fig. 5(a)] which typically appears in topologically
nontrivial materials, but we have checked that these band
structures can be adiabatically connected to the trivial insu-
lator phase, and therefore the topological nature may only be
related to an approximate symmetry of the system. Neverthe-
less, the bands support a nontrivial pseudospin texture 〈�τ 〉p =
〈ψp(k)|�τ |ψp(k)〉, where the pseudospin operators τα are the
Pauli matrices acting in the sublattice space. In the high-field
insulating phase the pseudospin component 〈τy〉p is negligi-
ble and the pseudospin direction rotates in two-dimensional
(〈τx〉p, 〈τz〉p) space so that its direction is inverted around
kz = π [see Fig. 5(b)], whereas in the low-field insulator
phase the sublattice pseudospin texture is trivial [Fig. 3(b)].
Therefore we call the insulating phases band-inverted and triv-
ial insulators, respectively. The band-inverted insulator phase
also supports subgap end states localized at the corners of the
wire [Figs. 5(c) and 5(d)], whereas no subgap end states can
be found in the trivial insulator phase [Figs. 3(c) and 3(d)].

We emphasize that the thin nanowires are used here only
for illustration purposes because in these cases the strengths
of the Zeeman fields required for realizing the different
behaviors of the system are not experimentally feasible. How-
ever, with increasing thickness of the nanowires the Weyl
semimetal and band-inverted phases occur at smaller values
of Bz, so that in the case of a realistic thickness they can be
accessed with feasible magnitudes of the Zeeman field. The
inset of Fig. 2 shows a zoom into the experimentally most
relevant regime of the phase diagram.

The Weyl points are protected by the screw-axis symme-
try (or fourfold rotation symmetry) which is broken if the
Zeeman field is rotated away from the z axis. However, if
we utilize an approximation λz = 0 and λx = λy = λ, there
exists also a nonsymmorphic chiral symmetry Sz(kz ), and it
is possible to combine it with Mz(kz ) and time-reversal T
to construct an antiunitary operator that anticommutes with
H1D(kz ) for any kz. This operator squares to +1 and gives
rise to a Pfaffian-protected Weyl semimetal phase also when
the Zeeman field is not along the z axis (Appendix B). We
also point out that if the screw-axis symmetry (or fourfold
rotational symmetry) is broken so that the system supports

FIG. 6. Low-energy band structure and the LDOS (normalized
with the maximum value) demonstrating the existence of hinge states
in the absence of Zeeman field B = 0 for 50 atoms thick nanowire.

only a twofold rotational symmetry (e.g., due to anisotropic
spin-orbit coupling or rectangular nanowires with Nx �= Ny),
the twofold rotational symmetry can still protect the existence
of the Weyl points (Appendix C).

IV. HINGE STATES

We find that in addition to the Weyl semimetal phase at
Bz �= 0 [Fig. 4(d)], the hinge states appear also in the absence
of Zeeman field [Fig. 6], and they resemble the protected
states appearing in higher-order topological phases [16,41–
43]. SnTe materials have been acknowledged as promising
candidates for higher-order topological insulators but the gap-
less surface Dirac cones appearing at the mirror-symmetric
surfaces make the experimental realization difficult [16]. This
problem can be avoided if the system supports a 2D higher-
order topological invariant for a specific high-symmetry plane
in the k space where the surface states are gapped; this
plane is shown in Fig. 7. To explore this possibility, we
study the bulk Hamiltonian H(k1, k2, k3) describing a system
with inequivalent atoms at positions (0, 0,±1/2) and lattice
vectors a1 = (1, 0, 1), a2 = (0, 1, 1) and a3 = (0, 0, 2) (see
Appendix D1). We find that the 2D Hamiltonian H(k1, k2, π )
with B = 0 supports edge states [red lines in Figs. 8(a) and
8(b)], but a small energy gap is opened due to λx = λy = λ

spin-orbit coupling terms. The spectrum is similar both for
λz = 0 [Fig. 8(a)] and λz = λ [Fig. 8(b)] so that neglecting
λz is a good approximation. Moreover, the numerics indicates
that two adjacent edges of the system are topologically distinct
leading to appearance of zero-energy corner states at their
intersection [Figs. 8(c) and 8(d)].

We find that the presence of the corner states is described
by a Z2 topological invariant. To construct the invariant, we
note that H(k1, k2, π ) with λz = 0 obeys a chiral symmetry
Sz = σz ⊗ 13 ⊗ τx, where σz refers to spin, 13 to orbitals and
τx to sublattice degrees of freedom. The Hamiltonian also
obeys the time-reversal symmetry T = σy ⊗ 13 ⊗ 12, which
anticommutes with Sz, so that the Hamiltonian belongs to
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FIG. 7. Brillouin zone of the rocksalt crystals. The shaded planes
form a k3 = π plane. The blue balls (L points) are the high-symmetry
points k1,2 = 0, π within the k3 = π plane. The yellow balls are the
fourfold rotation R4 centers at (k1, k2) = (π, π )/2 and (k1, k2) =
(3π, 3π )/2. The red and green balls are the rotoinversion cen-
ters (W points) at (k1, k2) = (π, 3π )/2 and (k1, k2) = (3π, π )/2,
respectively.

class DIII. In the eigenbasis of Sz the Hamiltonian and time-
reversal operator have block-off-diagonal forms

H(k1, k2, π ) =
(

0 u(k1, k2)
u†(k1, k2) 0

)
(3)

and

T =
(

0 −i16

i16 0

)
. (4)
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FIG. 8. (a) Low-energy spectrum of the Hamiltonian
H(k1, k2, k3 = π ) for λz = 0 in the case of open boundary
conditions in the a2 direction. The width of the system is 50 unit
cells. (b) The low-energy spectrum in the case of uniform spin-orbit
coupling λα = λ (α = x, y, z). (c) Spectrum for λz = 0 in the case of
open boundary conditions in both a1 and a2 directions. The red dots
show the eight zero-energy corner states. The system size is 50 × 50
unit cells. (d) LDOS of the corner states. Here, n1 and n2 label the
unit cells in the directions of a1 and a2, respectively.

Thus, u(k1, k2)T = −u(−k1,−k2) and therefore we can define
a Pfaffian at the time-reversal invariant points K

p = Pf u(K ) (5)

By utilizing inversion symmetry I = 12 ⊗ 13 ⊗ τz we get that
p is a real number (see Appendix D2). In our model p can be
evaluated explicitly and it takes the form

p = (m − 4t11)(m + 2t11)2 − 2mλ2. (6)

Notice that p is the same for all time-reversal invariant points
K in the (k1,k2) plane due to the symmetries of the model (see
Appendix D1). In the usual notation of the 3D Brillouin zone
of the rocksalt crystals, the time-reversal invariant points K in
the (k1,k2) plane correspond to the L points (see Fig. 7).

Interestingly, we find that p does not give a complete de-
scription of the presence of the corner states, because we also
need to consider the high-symmetry point K ′ = (π/2, 3π/2).
This point is a rotoinversion center, so that in the eigenbasis
of the rotoinversion operator the Hamiltonian takes a block-
diagonal form

H(K ′) =

⎛
⎜⎝

h1 0 0 0
0 h2 0 0
0 0 h3 0
0 0 0 h4

⎞
⎟⎠. (7)

By utilizing the chiral symmetry, inversion symmetry and
time-reversal symmetry we find that (see Appendix D3)

det[H(K ′)] = d4, (8)

where d ≡ det h1 = det h4 = − det h2 = − det h3, and there-
fore d changes sign at the zero-energy gap closing occurring
at the momentum K ′. In our model d can be evaluated analyt-
ically and it takes the form

d = det v1 = m
(
(m − 2t11)2 + 4t2

12

) − 2(m − 2t11)λ2. (9)

In the usual notation of the 3D Brillouin zone of the rocksalt
crystals, the rotoinversion centers K ′ are the W points (see
Fig. 7).

The Z2 invariant ν can be determined using d and p as

ν = (1 − sgn(pd ))/2. (10)

The topological phase diagram in the m—λ plane is given in
Fig. 9(a). By comparing to the corner state spectrum shown
in Fig. 9(b), we find that ν describes the appearance of the
corner states perfectly in our model. In the nontrivial phase
ν = 1, there are two localized states at every corner. They
are Kramers partners and carry opposite chirality eigenvalues.
We emphasized that the topological invariant (10) is not di-
rectly related to topological crystalline insulator invariant of
the SnTe materials (see Fig. 10). Therefore, we expect that
it is possible to find material compositions supporting the
higher-order topological phase outside the topological crys-
talline insulator phase and vice versa.

V. MAJORANA MODES IN THE PRESENCE
OF SUPERCONDUCTIVITY

Majorana zero modes are intensively searched non-
Abelian quasiparticles which hold a promise for topological
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FIG. 9. (a) Topological invariant ν [Eq. (10)] of the 2D Hamil-
tonian H(k1, k2, π ) in the chiral limit λz = 0 and λx = λy = λ as
function of m and λ. The shaded region is the non-trivial phase ν = 1
supporting corner states. (b) Energy of a state being closest to the
zero energy in the system with all edges open, as function of m and
λ. The red lines are phase boundaries from (a). The system size is
50 × 50 unit cells.

quantum computing [44–46]. The key ingredients for re-
alizing Majorana zero modes are usually thought to be
spin-orbit coupling (spin-rotation-symmetry breaking field),
magnetic field (time-reversal-symmetry breaking field), and
superconductivity [47], and there exists a number of candidate
platforms for studying Majorana zero modes including chains
of adatoms [48–50] and various strong spin-orbit coupling
materials in the presence of superconductivity and magnetism
[51–54]. SnTe materials are particularly promising candidates
for this purpose because in addition to the strong spin-
orbit coupling they offer flexibility for introducing symmetry
breaking fields such as superconductivity, magnetism, and
inversion-symmetry breaking fields.

In the presence of induced s−wave superconductivity the
Bogoliubov–de Gennes Hamiltonian for the nanowires has the
form

Hsc(kz ) =
(
H1D(kz ) − μ iσ y�

−iσ y� −(H1D(−kz )T − μ)

)
, (11)

C+=2

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m t12

t 1
2

C+=2

C+==2

C+=0C+=0

C+=0

C+=0

C+=0
C+=-2

C+=-2

C+=-4C+=0

C+=0

FIG. 10. Topological phase diagram of Hamiltonian
H(k1, k2, k3) in the m—λ plane. Colors indicate different mirror Mxy

Chern numbers C+ defined in the k1—k3 plane (with k2 = k1). Areas
bounded by the dashed line and filled with checkerboard pattern
are nontrivial in the sense of ν invariant of Eq. (10), also shown in
Fig. 9. The chiral limit is assumed with λz = 0 and λx = λy = λ.

where σy acts in the spin space. This Hamiltonian obeys a
particle-hole symmetry

CscHsc(−kz )T Csc = −Hsc(kz ), (12)

where

Csc =
(

0 1

1 0

)
. (13)

We can utilize Csc to perform a unitary transformation on the
Hamiltonian so that in the new basis the Hamiltonian Hsc

U (kz )
is antisymmetric at kz = 0, π and PfHsc

U (kz = 0, π ) ∈ R (see
Appendix E1). Since iHsc

U (0, π ) ∈ R we use real Schur de-
composition to evaluate the Pfaffian in a numerically stable
way, as suggested in Ref. [55]. Therefore, we can define a Z2

topological invariant as

νsc = (
1 − sgn

[
PfHsc

U (0)PfHsc
U (π )

])
/2. (14)

This is the strong topological invariant of 1D superconductors
belonging to the class D. In fully gapped 1D superconductors
the νsc = 1 phase supports unpaired Majorana zero modes
localized at the end of the wire.

The Hamiltonian (11) also satisfies an inversion symmetry

Isc(kz ) =
(

I (kz ) 0
0 I (kz )

)
. (15)

The product of Csc and Isc(kz ) is an antiunitary chiral operator,
which allows to perform another unitary transformation on the
Hamiltonian, so that in the new basis the Hamiltonian Hsc

V (kz )
is antisymmetric at all values of kz and PfHsc

V (kz ) ∈ R (see
Appendix E2). Therefore, consistently with classification of
gapless topological phases [56], we can define an inversion-
symmetry protected Z2 topological invariant for all values of
kz as

νI (kz ) = (
1 − sgn

[
PfHsc

V (kz )
])

/2. (16)
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If this invariant changes as a function of kz there must nec-
essarily be a gap closing. Thus, it enables the possibility of
a topological phase supporting inversion-symmetry protected
gapless bulk Majorana modes. Here, we use the term Majo-
rana in the same way as it is standardly used in the physics
literature, such as Refs. [57], so that it can be used to refer
to all Bogoliubov quasiparticles in superconductors. In the
presence of inversion symmetry the protection of the gapless
Majorana bulk modes is similar to the Weyl points in Weyl
semimetals: They can only be destroyed by merging them in a
pairwise manner. The experimental signature of the Majorana
bulk modes in ballistic wires is quantized thermal conduc-
tance Gth = (G0/2)

∑
n Tn in units of thermal conductance

quantum G0 = π2k2
BT/(3h), because for ballistic wires with

length larger than the decay length of the gapped modes the
transmission eigenvalues for the gapless (gapped) modes are
Tn = 1 (Tn = 0) and the number of gapless Majorana bulk
modes (apart from phase transitions) is always even. Such a
type of quantized thermal conductance is generically expected
in ballistic wires in the normal state, but the appearance of
quantized thermal conductance in superconducting wires is
an exceptional property of this topological phase and it is not
accompanied by quantized electric conductance.

It turns out that (see Appendix E3)

PfHsc
U (kz = 0, π ) = PfHsc

V (kz = 0, π ). (17)

This means that in the presence of inversion symmetry the
nontrivial topological invariant νsc = 1 always leads to a
change of νI (kz ) between kz = 0 and kz = π . Thus, in the
presence of inversion symmetry there cannot exist a fully
gapped topologically nontrivial superconducting phase sup-
porting Majorana end modes, but instead νsc = 1 guarantees
the existence of a topologically nontrivial phase supporting
gapless Majorana bulk modes. To get localized zero-energy
Majorana end modes it is necessary to break the inversion
symmetry.

The inversion symmetry can be broken in SnTe nanowires
by utilizing ferroelectricity or a structure inversion asymmetry
[32–37]. For the results obtained in this paper the explicit
mechanism of the inversion symmetry breaking is not impor-
tant. Therefore, for simplicity we consider a Rashba coupling
term

HR(k) = λR · sin k × σ. (18)

The magnitude of the Rashba coupling λR can be considered
as the inversion-symmetry breaking field. For λR = 0 the
inversion symmetry is obeyed and only the gapless topolog-
ical phase can be realized, whereas for λR �= 0 the gapless
Majorana bulk modes are not protected and the opening of
an energy gap can transform the system into a fully gapped
topologically nontrivial superconductor supporting localized
Majorana end modes.

In Fig. 11 we illustrate the dependence of the topological
phase diagrams on the nanowire thickness. For very small
thicknesses there exists a large insulating gap at the charge
neutrality point in the normal state spectrum (Fig. 3), and
therefore the topologically nontrivial phase can be reached
only by having either a reasonably large chemical potential
μ or Zeeman field Bz. However, with increasing thickness of
the nanowire the insulating gap decreases and the nontrivial

0 0.2 0.4 0.6 0.8 1.0
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Bz t12

t 12

Bz t12 Bz t12

(a) (b) (c)

Majorana

Trivial

FIG. 11. Topological phase diagrams for SnTe nanowires in pres-
ence of induced superconductivity. The thicknesses of the nanowires
are (a) 8, (b) 10, and (c) 18 atoms. The blue regions indicate param-
eter regimes where νsc = 1. In the presence of inversion symmetry
they correspond to a topological phase supporting gapless Majorana
bulk modes. If the inversion symmetry is broken they correspond
to fully gapped topological superconducting phase supporting Ma-
jorana end modes. In the numerical calculations we have used � =
0.01 eV. The topological region always starts for Bz > � and the
main effect of increasing (decreasing) � is to shift the nontrivial
phases right (left) along Bz axis.

phases are distributed more uniformly in the parameter space.
Similarly as in the case of the normal state phase diagram
(Fig. 2), we expect that for realistic nanowire thicknesses the
topologically nontrivial phase is accessible with experimen-
tally feasible values of the chemical potential and Zeeman
field. The structure of the topological phase diagram is quite
complicated and it is not easy to extract simple conditions for
the existence of the nontrivial phase. It is worth mentioning
that the topological region always starts for Bz > � and the
main effect of increasing (decreasing) � is to shift the non-
trivial phases right (left) along Bz axis.

As discussed above, in the presence of inversion sym-
metry the νsc = 1 regions in Fig. 11 correspond to the
gapless topological phase. This is indeed the case as demon-
strated with explicit calculation in Fig. 12(a). Moreover, if
inversion-symmetry breaking field is introduced our numer-
ical calculations confirm the opening of an energy gap in
the bulk spectrum and the appearance of the zero-energy
Majorana modes localized at the end of the superconducting
nanowire [Figs. 12(b) and 12(c)].

As illustrated in Fig. 11 the topological phase becomes
fragmented into smaller and smaller regions in the parame-
ter space upon increasing the wire thickness. Therefore, one
might be concerned about the experimental feasibility to ob-
serve the topological superconductivity in these systems. The
systematic analysis of the dependence of the topological gap
on the wire thickness goes beyond the scope of this paper,
but in Fig. 13 we have focused on one of the fragmented
topological regions in the case of 18 atoms thick nanowires.
Our results show that also in this case it is possible to achieve
a topological gap on the order of 1 K and to realize Majorana
zero modes at the end of the wire by breaking the inversion
symmetry. Therefore, at least in 18 atoms thick nanowires the
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FIG. 12. Band structures for eight-atoms-thick superconducting
nanowires (a) in the presence of inversion symmetry λR = 0 and
(b) in the absence of inversion symmetry λR = (0, 0.05, 0) eV.
(c) The spectrum for 400-atoms-long superconducting nanowire, for
λR = (0, 0.05, 0) eV, demonstrating the existence of zero-energy
Majorana modes localized at the end of the wire (red dots). For
illustration purposes, we have computed the spectra for very thin
nanowires with Bz = 0.16 eV, μ = 0.91 eV and � = 0.1 eV. How-
ever, due to the general arguments presented in the text, qualitatively
similar results are expected also for experimentally feasible values of
Bz, μ and � in thicker nanowires.

observation of the Majorana zero modes is still experimentally
feasible.

VI. DISCUSSION AND CONCLUSIONS

We have shown that SnTe materials support robust corner
states and hinge states in the normal state. The topological
nature of these states is related to the approximate symmetries
of the SnTe nanowires. Some of the approximations, such as
the introduction of anisotropic spin-orbit coupling, are quite
abstract technical tricks, but they are extremely useful because
they allow us to construct well-defined topological invari-
ants. Moreover, we have checked that our approximations are
well-controlled and our results are applicable for realistic mul-
tivalley nanowires. We have also shown that the higher-order
topological invariant, describing the existence of hinge states,
is not directly related to the topological crystalline insulator
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0
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(d)
max

e
n
d

max

(E
)

b
u
lk

FIG. 13. Low-energy band structures for eighteen-atoms-thick
superconducting nanowires (a) in the presence of inversion sym-
metry λR = 0 and (b) in the absence of inversion symmetry λR =
(0.02, 0.03, 0) eV. (c) Zoom into the relevant regime of the phase
diagram. We have chosen Bz = 0.02 eV, μ = 0.5913 eV and � =
0.01 eV (indicated by the red dot in the phase diagram). (d) Local
density of states in the bulk ρbulk (E ) and at the end ρend(E ) (normal-
ized with the maximum value ρmax) of the wire calculated using the
Green’s function method described in Ref. [58].

invariant. Therefore, the nontrivial crystalline insulator and
higher-order topologies can appear either separately or to-
gether. If they appear together the surface states appearing due
to topological crystalline insulator phase can coexist with the
hinge states appearing due to higher-order topological phase.
The higher-order topological invariant is a 2D invariant related
to a high-symmetry plane in the momentum space. This plane
corresponds to a fixed value of kz and we have found that
both the 2D bulk and the 1D edge are gapped within this
plane, so that only the corner states appear. From the practical
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point of view this means that the surface states arising from
the topological crystalline insulator phase and the hinge states
arising from the higher-order topological phase are separated
in the momentum kz so that they can coexist in ballistic wires
where kz is a good quantum number.

We have concentrated on relatively thin nanowires. Since
the wave functions of the transverse modes transform as a
function of the momentum kz and energy from hinge states to
surface states and bulk states, the transverse mode energies do
not obey simple parametric dependencies as a function of the
nanowire thickness and the Zeeman field. This means that the
SnTe nanowires cannot be described by using a low-energy
effective k · p theory. This is illustrated in the complicated
phase diagram of nanowires, which we have discovered. Nev-
ertheless, from the general trends in the thickness dependence
we can extrapolate that for realistic nanowire thicknesses the
topologically nontrivial phases can be reached with experi-
mentally feasible values of the Zeeman field.

Finally, we have found that the superconducting SnTe
nanowires support gapless bulk Majorana modes in the
presence of inversion symmetry, and by introducing inversion-
symmetry-breaking field, the bulk Majorana modes become
gapped and topologically protected localized Majorana zero
modes appear at the ends of the wire. This finding opens up
new possibilities to control and create Majorana zero modes
by controlling the inversion-symmetry breaking fields.

There exists various possibilities to experimentally probe
the corner states, hinge states, and Majorana modes. High-
quality transport studies are definitely the best way to study
these systems. Ideally, the SnTe bulk materials would be insu-
lators where the Fermi level is inside the insulating gap. The
interesting physics, including the topological surface states,
hinge states, and corner states all appear in this range of
energies in the nanowires. Unfortunately, in reality the SnTe
bulk materials typically have a large residual carrier den-
sity due to defects, which poses a significant obstacle for
the studies of topological transport effects. Therefore it is
of crucial importance to improve the control of the carrier
density in SnTe materials. In comparison to the bulk systems
the nanowires have the advantage that the carrier density can
be more efficiently controlled with gate voltages. Tunneling
measurements are possible also in the presence of a large
carrier density because one can probe the local density of
states as a function of energy by voltage-biasing the tip. One
may also try to observe the hinge states and corner states
using nano-angle-resolved photoemission spectroscopy but
obtaining simultaneously both high-spatial and high-energy
resolution is a difficult experimental challenge. The topo-
logically protected gapless Majorana bulk modes could be
probed via thermal conductance measurements, and they may
also be detectable by measuring electrical shot-noise power
or magnetoconductance oscillations in a ring geometry [59].
The Majorana zero modes give rise to various effects, such
as a robust zero-bias peak in the conductance [60] and 4π

Josephson effect [52,61], but the ultimate goal in the physics
of Majorana zero modes is of course to observe effects directly
related to the non-Abelian Majorana statistics [45–47]. The
Majorana zero modes can be realized even if a significant

residual carrier density is present as illustrated in our phase
diagrams. However, the new experimental challenge in this
case is that the topologically nontrivial phase becomes more
and more fragmented in thick wires.

ACKNOWLEDGMENTS

The work is supported by the Foundation for Polish Sci-
ence through the IRA Programme cofinanced by EU within
SG OP. W.B. also acknowledges support by Narodowe Cen-
trum Nauki (NCN, National Science Centre, Poland) Project
No. 2019/34/E/ST3/00404.

APPENDIX A: CONSTRUCTION OF THE NANOWIRE
HAMILTONIAN AND THE SYMMETRY OPERATIONS

In this section we give explicit expressions for the different
symmetry operators of the nanowire Hamiltonian. Our start-
ing point is the bulk Hamiltonian (1). The nearest-neighbor
hopping matrices are

hx(kx ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 γ −
kx

0 0 0
0 0 0 0 0 γ +

kx
0 0

0 0 0 0 0 0 γ −
kx

0
0 0 0 0 0 0 0 γ +

kx

γ +
kx

0 0 0 0 0 0 0
0 γ −

kx
0 0 0 0 0 0

0 0 γ +
kx

0 0 0 0 0
0 0 0 γ −

kx
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

hy(ky) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 γ −
ky

0 0
0 0 0 0 γ +

ky
0 0 0

0 0 0 0 0 0 0 γ +
ky

0 0 0 0 0 0 γ −
ky

0
0 γ −

ky
0 0 0 0 0 0

γ +
ky

0 0 0 0 0 0 0
0 0 0 γ +

ky
0 0 0 0

0 0 γ −
ky

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A2)

and

hz(kz ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 γ +
kz

0 0 0 0 0 0 γ +
kz

0
0 0 0 0 0 γ −

kz
0 0

0 0 0 0 γ −
kz

0 0 0
0 0 0 γ +

kz
0 0 0 0

0 0 γ +
kz

0 0 0 0 0
0 γ −

kz
0 0 0 0 0 0

γ −
kz

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A3)
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where γ +
kα

= 1 + eikα and γ −
kα

= 1 + e−ikα . The next-nearest-
neighbor hopping matrices are

hxy(kx, ky)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 φ−x,−y 0 0 0 0 0 0
φx,y 0 0 0 0 0 0 0
0 0 0 θ−x,y 0 0 0 0
0 0 θx,−y 0 0 0 0 0
0 0 0 0 0 θx,−y 0 0
0 0 0 0 θ−x,y 0 0 0
0 0 0 0 0 0 0 φx,y

0 0 0 0 0 0 φ−x,−y 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A4)

hyx(kx, ky)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 θ−x,−y 0 0 0 0 0 0
θx,y 0 0 0 0 0 0 0
0 0 0 φ−x,y 0 0 0 0
0 0 φx,−y 0 0 0 0 0
0 0 0 0 0 φx,−y 0 0
0 0 0 0 φ−x,y 0 0 0
0 0 0 0 0 0 0 θx,y

0 0 0 0 0 0 θ−x,−y 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A5)

hyz(ky, kz )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 θ−y,z 0 0 0 0 0
0 0 0 φy,z 0 0 0 0

θy,−z 0 0 0 0 0 0 0
0 φ−y,−z 0 0 0 0 0 0
0 0 0 0 0 0 θ−y,z 0
0 0 0 0 0 0 0 φy,z

0 0 0 0 θy,−z 0 0 0
0 0 0 0 0 φ−y,−z 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A6)

hzy(ky, kz )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 φ−y,z 0 0 0 0 0
0 0 0 θy,z 0 0 0 0

φy,−z 0 0 0 0 0 0 0
0 θ−y,−z 0 0 0 0 0 0
0 0 0 0 0 0 φ−y,z 0
0 0 0 0 0 0 0 θy,z

0 0 0 0 φy,−z 0 0 0
0 0 0 0 0 θ−y,−z 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A7)

hzx (kx, kz )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 θ−x,z 0 0 0 0
0 0 φx,z 0 0 0 0 0
0 φ−x,−z 0 0 0 0 0 0

θx,−z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 φx,z

0 0 0 0 0 0 θ−x,z 0
0 0 0 0 0 θx,−z 0 0
0 0 0 0 φ−x,−z 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A8)

and

hxz(kx, kz )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 φ−x,z 0 0 0 0
0 0 θx,z 0 0 0 0 0
0 θ−x,−z 0 0 0 0 0 0

φx,−z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 θx,z

0 0 0 0 0 0 φ−x,z 0
0 0 0 0 0 φx,−z 0 0
0 0 0 0 θ−x,−z 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A9)

where θ±α,±β = e±ikα + e±ikβ and φ±α,±β = 1 + ei(±kα±kβ ).
To obtain the lower dimensional Hamiltonians, we can first

expand the Hamiltonian as

H(k) = H0(ky, kz ) + e−ikx H1(ky, kz ) + eikx H†
1 (ky, kz ).

Then the 2D Hamiltonian obtained by assuming a finite thick-
ness Nx in the x direction is given by a 48Nx × 48Nx matrix

H2D(ky, kz ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0 H †
1 0 0 0 · · · 0

H1 H0 H †
1 0 0 · · · 0

0 H1 H0 H †
1 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · · · · 0 0 H0 H †
1

0 · · · · · · 0 0 H1 H0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A10)

Similarly, we can decompose this 2D Hamiltonian as

H2D(ky, kz ) = H ′
0(kz ) + e−iky H ′

1(kz ) + eiky H ′
1

†(kz ), (A11)

where H ′
0(1) are 48Nx × 48Nx matrices. The Hamiltonian for

the nanowire with a finite thickness Nx (Ny) in x (y) direction
is given by 48NxNy × 48NxNy matrix

H1D(kz ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H ′
0 H ′

1
† 0 0 0 · · · 0

H ′
1 H ′

0 H ′
1

† 0 0 · · · 0
0 H ′

1 H ′
0 H ′

1
† 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · · · · 0 0 H ′
0 H ′

1
†

0 · · · · · · 0 0 H ′
1 H ′

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A12)
Assuming that Nx = Ny, the nanowire has a screw-axis
symmetry, which is described by an operator

Sc(kz ) = Pz ⊗ exp

(
− i

π

4
σz

)
⊗ exp

(
− i

π

2
Lz

)
⊗ sc(kz ).

(A13)

Here Pz is a NxNy × NxNy matrix that realizes the fourfold
rotation of the unit cells. For general Nx = Ny we
have Pz such that (Pz )i, j = 1 for i = q + (p − 1)Nx and
j = p + (Nx − q)Nx (p, q = 1, . . . , Nx) and (Pz )i, j = 0
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otherwise. sc(kz ) is the 8 × 8 matrix acting inside the unit cell

sc(kz ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 e−ikz 0 0 0 0 0 0

e−ikz 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 e−ikz 0 0 0
0 0 0 0 0 e−ikz 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A14)
The mirror symmetry operators corresponding to the mirror
planes perpendicular to x, y and z are

Mx(kz ) = 1Ny ⊗ mx ⊗ σx ⊗ (
2L2

x − 13
) ⊗ g(−kz )PzPx,

My(kz ) = my ⊗ 1Nx ⊗ σy ⊗ (
2L2

y − 13
) ⊗ g(−kz )PzPy,

Mz(kz ) = 1Ny ⊗ 1Nx ⊗ σz ⊗ (
2L2

z − 13
) ⊗ g(kz ), (A15)

where g(kz ) = diag(e−ikz , e−ikz , 1, 1, e−ikz , e−ikz , 1, 1),

Px =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A16)

Py =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A17)

Pz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A18)

and

mx = my =

⎛
⎜⎜⎝

0 . . . 0 1
... 1 0
... . .

. ...

1 . . . 0 0

⎞
⎟⎟⎠. (A19)

APPENDIX B: WEYL SEMIMETAL PHASE FOR λz = 0

Setting λz = 0 is a good approximation in thin nanowires.
In this case, there exists a nonsymmorphic chiral symmetry
Sz(kz ) given by,

Sz(kz ) = 1Ny ⊗ 1Nx ⊗ σz ⊗ 13 ⊗ �Pzg(kz ), (B1)

and it is possible to combine it with Mz(kz ) and time-reversal
T to construct an antiunitary operator that anticommutes with
H1D(kz ) for any kz. This operator squares to +1 and therefore
it can give rise to a Pfaffian-protected Weyl semimetal phase
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FIG. 14. The direct band gap � as function of By and Bz for 4
atoms thick nanowire and λz = 0. In the black region � = 0 and the
system is in a 1D Weyl semimetal phase.

also when the Zeeman field is not along the z axis. Figure 14
shows that there exists a Weyl semimetal phase for a range of
Zeeman field magnitudes for all Zeeman field directions in the
yz plane.

APPENDIX C: EFFECTS OF ANISOTROPIC
SPIN-ORBIT COUPLING

We can study the effects of breaking spatial symmetries
by considering anisotropic spin-orbit couplings. In Fig. 15(a)
we show the phase diagram of eight atoms thick nanowire as
function of λz and Bz for λx = λy = λ. In this case the system
still obeys the screw-axis symmetry so that the phase diagram
contains the Weyl semimetal phase in addition to the insulator

B
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0.0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) (b)

FIG. 15. Phase diagram as function of (a) λz and Bz for λx =
λy = λ and (b) λx and Bz for λy = λz = λ. The different phases
are: insulator phase (blue), Weyl semimetal phase (red) and indirect
semimetal phase (grey). The thickness of the nanowire is eight atoms.
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and indirect semimetal phases. The phase boundaries depend
on λz.

On the other hand, the screw-axis symmetry is broken if
λx �= λy = λz. Nevertheless, the system still obeys a twofold
rotational symmetry, which can protect the existence of Weyl
points. Indeed, the phase diagram as a function of λx and Bz

for λy = λz = λ also contains the Weyl semimetal phase as
shown in Fig. 15(b).

APPENDIX D: HIGHER-ORDER TOPOLOGICAL
INVARIANT

1. Hamiltonian and symmetries in the k3 = π plane

In this section we consider the Hamiltonian for a system
with atoms at positions (0, 0,±1/2) and translation vectors
a1 = (1, 0, 1), a2 = (0, 1, 1) and (0, 0, 2). For this unit cell
the hopping matrices in the bulk Hamiltonian H(k) of Eq. (1)
are

hx(k) =
(

0 eik1 + ei(k3−k1 )

e−ik1 + ei(k1−k3 ) 0

)
, (D1)

hy(k) =
(

0 eik2 + ei(k3−k2 )

e−ik2 + ei(k2−k3 ) 0

)
, (D2)

hz(k) =
(

0 1 + eik3

1 + e−ik3 0

)
, (D3)

and

hxy(k) = 2 cos(k1 + k2 − k3)12,

hyx(k) = 2 cos(k1 − k2)12,

hxz(k) = 2 cos(k1)12,

hzx(k) = 2 cos(k1 − k3)12,

hyz(k) = 2 cos(k2)12,

hzy(k) = 2 cos(k2 − k3)12, (D4)

and the symmetries discussed above are

I = 12 ⊗ 13 ⊗ exp

(
−i

k3

2
τz

)
,

Mα = σα ⊗ (2L2
α − 13) ⊗ 12, α = x, y,

Mz = σz ⊗ (2L2
z − 13) ⊗ exp

(
−i

k3

2
τz

)
,

Mxy = σx − σy√
2

⊗
(

2

(
Lx − Ly√

2

)2

− 13

)
⊗ 12.

Moreover, we also have a fourfold rotation

R4 = exp

(
i
π

2

1

2
σz

)
⊗ exp

(
i
π

2
Lz

)
⊗ 12,

and the time-reversal symmetry

T = σy ⊗ 13 ⊗ 12.

These symmetries act on the Hamiltonian as

IH(k1, k2, k3)I† = H(−k1,−k2,−k3),

MxH(k1, k2, k3)M†
x = H(k3 − k1, k2, k3),

MyH(k1, k2, k3)M†
y = H(k1, k3 − k2, k3),

MzH(k1, k2, k3)M†
z = H(k1 − k3, k2 − k3,−k3),

MxyH(k1, k2, k3)M†
xy = H(k2, k1, k3),

R4H(k1, k2, k3)R†
4 = H(k3 − k2, k1, k3),

TH(k)T † = H(−k)T . (D5)

We concentrate on the k3 = π plane. In this case, the standard
high-symmetry points are related as

MxH(0, 0, π )M†
x = H(π, 0, π ),

MyH(0, 0, π )M†
y = H(0, π, π ),

MyMxH(0, 0, π )M†
x M†

y = H(π, π, π ). (D6)

Moreover, the k3 = π plane has four special points (k1, k2) =
(π/2 + n1π, π/2 + n2π ) (n1,2 = 0, 1) obeying[

Mx,H
(

π

2
+ n1π,

π

2
+ n2π

)]
= 0,

[
My,H

(
π

2
+ n1π,

π

2
+ n2π

)]
= 0. (D7)

Among these points we find two fourfold rotation centers[
R4,H

(
π

2
,
π

2
, π

)]
=

[
R4,H

(
3π

2
,

3π

2
, π

)]
= 0, (D8)

and two fourfold rotoinversion centers[
Q4,H

(
π

2
,

3π

2
, π

)]
=

[
Q4,H

(
3π

2
,
π

2
, π

)]
= 0, (D9)

where

Q4 = IR4. (D10)

The rotoinversion centers are mapped onto each other by the
fourfold rotation or diagonal mirror

R4H
(

π

2
,

3π

2
, π

)
R†

4 = H
(

3π

2
,
π

2
, π

)
,

MxyH
(

π

2
,

3π

2
, π

)
M†

xy = H
(

3π

2
,
π

2
, π

)
, (D11)

and the rotation centers are related by the inversion symmetry

IH
(

π

2
,
π

2
, π

)
I† = H

(
3π

2
,

3π

2
, π

)
. (D12)

Finally, the product of Mx and My yields a twofold rotation
R2 with respect to the z axis

R2 = iMxMy = σz ⊗ (
2L2

z − 13
) ⊗ 12, (D13)

and the rotation and rotoinversion centers are also twofold
rotation centers[

R2,H
(

π

2
+ n1π,

π

2
+ n2π

)]
= 0, n1,2 = 0, 1. (D14)

2. Pfaffian at the high-symmetry points in the k3 = π plane with
λz = 0 approximation

By assuming that λz = 0 and λx = λy = λ we find that
the Hamiltonian H(k1, k2, π ) satisfies a chiral symmetry
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SzH(k1, k2, π )S†
z = −H(k1, k2, π ), where

Sz = σz ⊗ 13 ⊗ τx. (D15)

Therefore, the symmetry class of H(k1, k2, π ) is DIII so that
we can find an eigenbasis of Sz in which the Hamiltonian takes
the form of

H(k1, k2, π ) =
(

0 u(k1, k2)
u†(k1, k2) 0

)
, (D16)

and the time-reversal symmetry operator is

T =
(

0 −i16

i16 0

)
. (D17)

Thus, the Hamiltonian satisfies a particle-hole symmetry

CH(k1, k2, π )C† = −H(−k1,−k2, π )T , (D18)

where

C = T Sz =
(

0 16

16 0

)
, (D19)

so that

u(k1, k2) = −u(−k1,−k2)T . (D20)

Therefore, at the high-symmery points K = (n1π, n2π )
(n1,2 = 0, 1)

u(K )T = −u(K ), (D21)

and we can define a Pfaffian

p = Pf u(K). (D22)

Note that all high-symmetry points K are equivalent. The
possible values of p are restricted because of the inversion
symmetry operator, which can be written in the present basis
as

I =
(

0 o
oT 0

)
, (D23)

where

o =
(

0 13

−13 0

)
(D24)

is an orthogonal matrix. By applying it to the Hamiltonian at
the K point we get

u(K) = ou(K)†o = ou(K)∗oT , (D25)

where we have used Eq. (D20) and oT = −o. Using the gen-
eral properties of the Pfaffian we get

p = Pf u(K ) = Pf[ou(K )∗oT ] = det o Pf u(K )∗ = p�.

(D26)
This means that p is a real number.

3. Determinant at the rotation points in the k3 = π plane
with λz = 0 approximation

At the fourfold rotation and rotoinversion points we can
use these symmetries to decompose the Hamiltonian into di-
agonal blocks. We first focus on the rotoinversion center K′ =

(π/2, 3π/2, π ) point. In the eigenbasis of Q4 the Hamiltonian
takes a block-diagonal form

H(K′) =

⎛
⎜⎝

h1 0 0 0
0 h2 0 0
0 0 h3 0
0 0 0 h4

⎞
⎟⎠, (D27)

where h1,...,4 are the 3 × 3 blocks. By ordering the eigenvalues
of Q4 in a suitable way, the chiral symmetry takes a block form

Sz =

⎛
⎜⎝

0 s1 0 0
s2 0 0 0
0 0 0 s3

0 0 s4 0

⎞
⎟⎠, (D28)

with si being 3 × 3 unitary block. This form follows from
the fact that Q4 and Sz anticommute. The spectrum of each
individual block hi is not symmetric around zero, but the
spectrum of h1 (h3) is opposite to the spectrum of h2 (h4).
Since the blocks also have an odd dimension, the determinants
satisfy det h1 = − det h2 and det h3 = − det h4. The spectrum
of the whole Hamiltonian H(K′) is twice degenerate because
of the presence of the symmetry Π = IT with the property
ΠΠ� = −1 that gives Kramer denegeracy at every k point.
This symmetry in the present basis takes a block form of

Π = IT =

⎛
⎜⎜⎝

0 0 0 k1

0 0 k2 0
0 k†

2 0 0
k†

1 0 0 0

⎞
⎟⎟⎠. (D29)

This implies that the blocks h1 and h4 (h2 and h3) have the
same spectrum. From this it follows that

det[H(K′)] = d4, (D30)

where d ≡ det h1 = det h4 = − det h2 = − det h3, and there-
fore d changes sign at the zero-energy gap closing occurring
at the momentum K′.

Finally, it is worth noticing that the above construction
does not work for the fourfold rotation points. In the eigen-
basis of R4 the Hamiltonian consists of four diagonal blocks
h1,...,4, where h1,2 (h3,4) are 2 × 2 (4 × 4) matrices. The rota-
tion R4 commutes with Sz, so that in this basis

Sz =

⎛
⎜⎝

s1 0 0 0
0 s2 0 0
0 0 s3 0
0 0 0 s4

⎞
⎟⎠. (D31)

From this structure it follows that {hi, si} = 0 so that spec-
trum of each block hi is symmetric around zero. Thus, the
determinants always satisfy det h1,2 � 0 and det h3,4 � 0, and
therefore they cannot change sign in a gap closing.

APPENDIX E: TOPOLOGICAL INVARIANTS IN THE
PRESENCE OF SUPERCONDUCTIVITY

1. Topological invariant of 1D superconductors
belonging to class D

In the presence of induced superconductivity the BdG
Hamiltonian Hsc(kz ) always satisfies a particle-hole symmetry
Csc(Hsc(−kz ))T Csc = −Hsc(kz ), where Csc can be written in
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the Nambu space as

Csc =
(

0 1

1 0

)
. (E1)

We can utilize Csc to perform a unitary transformation on the
Hamiltonian

Hsc
U (kz ) = U †Hsc(kz )U, U = β

√
�C

−1
, (E2)

where the columns of matrix β are the eigenvectors of Csc and
�C is a diagonal matrix containing the eigenvalues of Csc, so
that

Cscβ = β�C . (E3)

Because CscCsc∗ = 1, which follows from the D symmetry
class, and Csc is unitary we can choose the eigenvectors so
that they satisfy β = β∗. From this it follows that at k0 = 0, π(

Hsc
U (k0)

)T =
√

�C
−1

βT (Hsc(k0))T β
√

�C

=
√

�CβT Csc(Hsc(k0))T Cscβ
√

�C
−1

= −
√

�CβT Hsc(k0)β
√

�C
−1 = −Hsc

U (k0),

(E4)

and the particle-hole operator in the new basis becomes iden-
tity matrix

U T CscU =
√

�C
−1

βT Cscβ
√

�C
−1 = 1. (E5)

Since the Hamiltonian is antisymmetric at k0 = 0, π we
can define a Pfaffian, which is real because[

PfHsc
U (k0)

]∗ = PfHsc
U (k0)T = Pf

[
Hsc

U (k0)
]
. (E6)

Therefore we can define a Z2 topological invariant as

νsc = (
1 − sgn

[
PfHsc

U (0)PfHsc
U (π )

])/
2. (E7)

This is the strong topological invariant of 1D superconductors
belonging to the class D.

2. Topological invariant for inversion-symmetry protected
gapless Majorana bulk modes

We can also combine Csc with the inversion symmetry
Isc(kz ) to produce an operator

Asc(kz ) = CscIsc(kz ), (E8)

whose action on the Hamiltonian is

Asc†
kz

(Hsc(kz ))T Asc
kz

= −Hsc(kz ). (E9)

From the double application of the above equation it follows
that AscAsc∗ = ±1, where +1 and −1 define different symme-
try classes, in analogy to the particle hole symmetry. In our
case we get AscAsc∗ = +1, following from the D symmetry
class [Csc, Isc] = 0 and IscIsc∗ = 1.

Note that it is enough to know that Asc is unitary and
AscAsc∗ = +1 to prove that it can be diagonalized by an
orthogonal transformation. From unitarity we have Asc =
exp(iB) with B being Hermitian. From the latter property we
get exp(−iB) = exp(−iBT ), which gives BT = B + 2nπ . By
taking the trace of this equation we get that n = 0 so B must
be real symmetric. Then Asc can be diagonalized by by an

orthogonal transformation. Then we find the real eigenbasis
γ (kz ) of Asc(kz ), we have

Asc(kz )γ (kz ) = γ (kz )�A(kz ). (E10)

We define a unitary transformation

V (kz ) = γ (kz )
√

�A(kz )
−1

, (E11)

and following the same derivation as in Eq. (E4) we can prove
that the transformed Hamiltonian

Hsc
V (kz ) = V (kz )†Hsc(kz )V (kz ), (E12)

is antisymmetric for any kz. By utilizing the fact that the
Pfaffian of the Hamiltonian is real valued, we can now define
an inversion-symmetry protected Z2 topological invariant for
all values of kz as

νI (kz ) = (
1 − sgn

[
PfHsc

V (kz )
])/

2. (E13)

If this invariant changes as a function of kz there must
necessarily be a gap closing. Therefore, there exists a 1D
topological phase supporting inversion-symmetry protected
gapless bulk Majorana modes. In the presence of inversion
symmetry these gapless Majorana bulk modes can only be
destroyed by merging them in a pairwise manner.

3. Relationship between the two Pfaffians

We have two antisymmetric forms of Hamiltonian. Hsc
U (kz )

is antisymmetric at kz = 0, π and Hsc
V (kz ) is antisymmetric for

all values of kz. These antisymmetric Hamiltonians allow us
to define topological invariants with the help of their Pfaf-
fians, and thus it is important to know how these Pfaffians
are related to each other. Assume we have two antisymmetric
Hamiltonians H ′ and H related by a change of basis as H ′ =
Q†HQ. Then from antisymmetry of H ′ and H we have that
[H, QQT ] = 0. Then we have two options, either QQT = 1
and then PfH ′ = det Q PfH or QQT is equal to a symmetry
operator of H and then the Pfaffians of H and H ′ do not
have to be proportional. The latter case could lead to two
independent invariants.

Coming back to our case, we find that

V (kz = 0, π )V (kz = 0, π )T �= 1, (E14)

and this operator is indeed related to the inversion symmetry

V (kz = 0, π )V (kz = 0, π )T = Isc(kz = 0, π ), (E15)

but it turns out that also a stronger property holds, namely

(V (kz )V (kz )T )� = Isc(kz ). (E16)

From the last equation we obtain

V (kz )† = V (kz )T Isc(kz ). (E17)

Consequently,

Hsc
V (kz ) = V (kz )T Isc(kz )Hsc

U (kz )V (kz ). (E18)

Thus the Pfaffians can be related as

PfHsc
V (kz ) = det V (kz ) Pf

[
Isc(kz )Hsc

U (kz )
]
. (E19)

Both sides of the equations are well defined because Hsc
V (kz )

is antisymmetric for any kz and Isc(kz )Hsc
U (kz ) is also anti-

symmetric for any kz despite Hsc
U (kz ) alone being symmetric

075310-14



CORNER STATES, HINGE STATES, AND MAJORANA … PHYSICAL REVIEW B 105, 075310 (2022)

only at high-symmetry points. For the right-hand side we get
det V (kz ) = exp[24iNxNykz] so we always have det V (0) =
det V (π ) = 1. To calculate the Pfaffian on the right-hand side

at k0 = 0, π we can utilize the operator γ (k0) = γ (k0)∗, sat-
isfying det γ (k0) = 1 and γ (k0)T Isc(k0)γ (k0) is a diagonal
matrix, to obtain

PfHsc
V (k0) = Pf

[
γ (k0)T Isc(k0)γ (k0)γ (k0)T Hsc

U (k0)γ (k0)
] = Pf

[−γ−(k0)T Hsc
U (k0)γ−(k0)

]
Pf

[
γ+(k0)T Hsc

U (k0)γ+(k0)
]

= (−1)d−/2Pf
[
γ−(k0)T Hsc

U (k0)γ−(k0)
]
Pf

[
γ+(k0)T Hsc

U (k0)γ+(k0)
] = PfHsc

U (k0).

Here, γ (k0) = [γ+(k0), γ−(k0)], the columns of γ±(k0) are the
eigenvectors of Isc(k0) corresponding to eigenvalues ±1 and
we have utilized the fact that the dimension d− of the eigen-

value −1 subspace is always a multiple of 4. Therefore, the
two Pfaffians are always equal at the high-symmetry momenta
k0 = 0, π .
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