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Hole-spin qubits in Ge nanowire quantum dots:
Interplay of orbital magnetic field, strain, and growth direction
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Hole-spin qubits in quasi-one-dimensional structures are a promising platform for quantum information
processing because of the strong spin-orbit interaction (SOI). We present analytical results and discuss device
designs that optimize the SOI in Ge semiconductors. We show that at the magnetic field values at which qubits
are operated, orbital effects of magnetic fields can strongly affect the response of the spin qubit. We study
one-dimensional hole systems in Ge under the influence of electric and magnetic fields applied perpendicular to
the device. In our theoretical description, we include these effects exactly. The orbital effects lead to a strong
renormalization of the g factor. We find a sweet spot of the nanowire (NW) g factor where charge noise is
strongly suppressed and present an effective low-energy model that captures the dependence of the SOI on
the electromagnetic fields. Moreover, we compare properties of NWs with square and circular cross sections
with ones of gate-defined one-dimensional channels in two-dimensional Ge heterostructures. Interestingly, the
effective model predicts a flat band ground state for fine-tuned electric and magnetic fields. By considering a
quantum dot (QD) harmonically confined by gates, we demonstrate that the NW g-factor sweet spot is retained
in the QD. Our calculations reveal that this sweet spot can be designed to coincide with the maximum of the SOI,
yielding highly coherent qubits with large Rabi frequencies. We also study the effective g factor of NWs grown
along different high-symmetry axes and find that our model derived for isotropic semiconductors is valid for the
most relevant growth directions of nonisotropic Ge NWs. Moreover, a NW grown along one of the three main
crystallographic axes shows the largest SOI. Our results show that the isotropic approximation is not justified in
Ge in all cases.
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I. INTRODUCTION

Important challenges of the scalability of spin qubits de-
fined in quantum dots (QDs) [1] can be overcome by making
qubits electrically controllable. In the case of electrons, one
can take advantage of the small intrinsic spin-orbit inter-
action (SOI) [2] or gradients of magnetic field [3–8]. The
physics of hole spins in semiconductors such as germanium
[9] and silicon [10] has attracted much attention recently
because it naturally enables stronger SOI than in electron
systems [11–21], which allows for the realization of electri-
cally controlled single- [18–20,22] and two-qubit [21] gates.
Furthermore, strong natural SOI or artificial SOI due to mi-
cromagnets enables strong light-matter coupling to resonators
[23–31]. Recent progress with Ge/SiGe heterostructures was
made by demonstrating singlet-triplet encoding [32] and
a four-qubit quantum processor [9]. While we focus on
nanowires (NWs) in this work, our approach also holds for
planar heterostructures with electrostatically defined chan-
nels. Another great advantage of hole spins is their tunable
response to the hyperfine interactions [33–38], a major deco-
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herence channel in spin qubits [39–44], which can be made
far weaker than in electron QDs [45,46]. Furthermore, in Si
and Ge, the hyperfine interactions can also be minimized
by isotopically purifying the material [47,48]. The effective
low-dimensional physics of hole systems depends strongly
on the details of the confinement, the material strain,
and the applied electromagnetic fields [11,12,46,49–54].
In particular, the strongest SOI, enabling the fastest and
most power-efficient operations, is reached in quasi-one-
dimensional structures, which can be fabricated in different
ways [11,19,52].

To define spin qubits, a magnetic field is necessary to
energetically split different spin states. When a magnetic field
is applied perpendicular to the axis of a one-dimensional NW,
the magnetic orbital effects can strongly influence the perfor-
mance of the qubit. In two-dimensional heterostructures with
a magnetic field applied in plane, the influence of these orbital
effects strongly depends on the width of the two-dimensional
electron or hole gas. In this case one can observe a correction
of the g factor [55] and a renormalization of the effective mass
[56] depending on the design of the dot.

In this work we analyze the SOI, the effective g factor,
and the effective mass of the lowest-energy states in NWs
with a rectangular or circular cross section and in squeezed
planar heterostructures. We compare different designs and
fully account for the orbital effects in moderate magnetic and
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electric fields. In contrast to Ref. [11], we use here a different
basis which allows us to treat these orbital effects exactly
in our analytical calculations. Interestingly, we predict that,
where the SOI is maximal, the g factor can be fine-tuned to
be in a sweet spot at which the charge noise is negligible.
Similar sweet spots have been predicted in Ref. [57] in hole
systems possessing a SOI that is cubic in momentum. In these
systems, because of the cubic SOI, the Rabi frequency in
electric-dipole-induced spin resonance (EDSR) experiments
is predicted to be two orders of magnitude smaller than in
elongated QDs [52]. Furthermore, we find that the effective
masses of the low-energy holes depend strongly on both
electric and magnetic fields and become spin dependent at
finite magnetic fields. Interestingly, in an extreme case, the
lowest-energy band can be tuned to be flat. We envision that
this flatness potentially could promote hole NWs as a new
playground for simulating strongly correlated matter. Also, by
extending our analysis to include the cubic anisotropies of the
valence band, we find that these corrections can strongly affect
the g factor for certain growth directions of the NW, especially
in the presence of strain.

This work is structured as follows. In Sec. II we introduce
the model of low-energy holes. In Sec. III we focus on a NW
with a rectangular cross section and calculate the SOI that
is linear in momentum and of the direct Rashba type due
to strong heavy-hole (HH)–light-hole (LH) mixing [11,12].
First, we derive analytic expressions for the dependence of
the SOI on external electric fields with and without magnetic
orbital effects and compare them with numerical results. The
complete low-energy model, the effective g factor, and the
effective masses are analyzed in Sec. IV.

We show from a numerical analysis that the g factor is
strongly renormalized by orbital effects. Moreover, we find a
spin-dependent effective mass term that strongly depends on
magnetic and electric fields. In Sec. V we compare NWs with
square and circular cross sections to squeezed dots in Ge/SiGe
planar heterostructures, also including strain. In Sec. VI we
analyze the g factor of a QD formed by gate confinement along
the NW. In these systems, we predict fast Rabi frequencies at
low power at electric field values compatible with ones needed
for a g-factor sweet spot, thus enhancing the performance
of the qubit. We conclude this section by showing that the
effective model breaks down for certain fine-tuned electric and
magnetic fields, where the lowest band in the NW spectrum
becomes flat. In Sec. VII we study NWs grown along different
typical growth directions and in particular we focus on the
interplay of cubic anisotropies and orbital effects. In Sec. VIII
we summarize our results. Details of our calculations are
given in the Appendixes.

II. MODEL OF THE NANOWIRE

The general Hamiltonian describing properties of low-
energy holes in diamond-lattice semiconductors is written as

H = HLK + HBP + HZ + HE + V, (1)

where HLK is the Luttinger-Kohn (LK) Hamiltonian [58,59]
describing the spin- 3

2 holes near the � point. In addition, HBP

is the Bir-Pikus (BP) Hamiltonian [60] capturing the strain of
the lattice and HZ is the Zeeman Hamiltonian describing the

FIG. 1. (a) Sketch of a rectangular Ge NW with side lengths Lx

and Lz. The NW can be covered by a Si shell which induces strain in
the Ge core. The NW including shell has total side lengths LS,x and
LS,z. The gates (gray) can be used to apply electric fields and to define
an elongated QD. (b) Sketch of a planar Ge/SiGe heterostructure with
a gate-defined one-dimensional channel. The height of the Ge layer
in the center is L and the channel is electrostatically confined in the
x direction with a harmonic confinement length lx .

coupling of the spin to an external magnetic field. The term HE

includes the electric field generated by an externally applied
gate potential. In order to define a quasi-one-dimensional
channel, we consider a confinement potential V that models
the cross section as depicted in Fig. 1(a) or the harmonic
confinement in the x direction produced by gates in a planar
Ge/SiGe heterostructure [see Fig. 1(b)].

In Ge, the material-dependent LK parameters are γ1 =
13.35, γ2 = 4.25, and γ3 = 5.69 [61]. Since (γ3 − γ2)/γ1 ≈
10.8% is rather small, the isotropic LK Hamiltonian is
commonly employed in the literature [11,12,52,62–64].
The isotropic LK Hamiltonian enables analytical calcula-
tions that provide results generally applicable for any NW.
Corrections due to anisotropies are analyzed in detail in
Sec. VII. The isotropic LK Hamiltonian HLK is written as
[11,58,59,61,62,65,66]

HLK = h̄2

2m

[
γkk2 − 2γs(k · J)2

]+ Horb, (2)

where the orbital effects of the magnetic field are given by

Horb = h̄e

2m

{
γk

(
e

h̄
A2 + 2k · A

)
− 2γse

h̄
(A · J)2

− 4γs
[
kxAxJ2

x + ({kx, Ay} + {ky, Ax}){Jx, Jy} + c.p.
]}

,

(3)

where γ2 and γ3 have been replaced by the effective param-
eter1 γs ≈ 4.84 and γk = γ1 + 5γs/2. Here J is the vector
of standard spin- 3

2 matrices, {A, B} = (AB + BA)/2 is the
symmetrized anticommutator, and by “c.p.” we mean cyclic

1By trying to solve the LK Hamiltonian for arbitrary growth direc-
tions of the NW and averaging over the rotation angle, we find that

the choice γs = 4.25
√

1 − 3
8 [1 − ( γ3

γ2
)2] = 4.84 is most natural. The

exact choice of γs is however irrelevant for the qualitative behavior
of our results.
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permutations. The orbital effects come from the kinematic
momentum operator [59]

π = k + e

h̄
A, (4)

with the canonical momentum operator h̄k j = −ih̄∂ j , j =
x, y, z, the positive elementary charge e, and the vector poten-
tial A, which is related to the magnetic field by B = ∇ × A.
In the isotropic approximation, the LK Hamiltonian does not
depend on the orientation of the crystallographic axes. We
point out that although in this work our analysis is explicitly
restricted to Ge, our analytical results are valid more generally
also for holes in GaAs, InAs, and InSb where the isotropic
approximation is applicable [67].

In Ge/Si core/shell NWs, the BP Hamiltonian is well ap-
proximated by [11,60]

HNW
BP = |b|εsJ

2
y , (5)

where b = −2.5 eV [60] is the material-dependent deforma-
tion potential and εs = ε⊥ − εyy. The strain tensor elements
ε⊥ and εyy arising from the lattice mismatch between Si and
Ge can be estimated following Ref. [51] by assuming a homo-
geneous strain in the core of the NW. With this assumption,
the strain tensor elements depend only on the relative shell
thickness [51,68], and in a Ge core with a Si shell of relative
shell thickness γ = (LS,x − Lx )/Lx = 0.1, they are given by
ε⊥ = −2.1×10−3 and εyy = −8.3×10−3. In this case, the to-
tal strain energy is 0.62% × |b| = 15.5 meV > 0. In contrast,
in a gate-defined one-dimensional channel [see Fig. 1(b)],
the strain induced in the Ge layer by the lattice mismatch
to the SiGe top and bottom layers is described by the BP
Hamiltonian [16,57]

H ch
BP = |b|εsJ

2
z . (6)

Note that, in contrast to the NW, where the strain tends to
favor LHs aligned parallel to the NW axis, here |b|εs < 0,
meaning that the ground state tends to comprise HHs aligned
perpendicular to the substrate. For our strain analysis we
choose |εs| = 0.62% as in the NW setup, a value measured
in typical Ge heterostructures [69].

In addition to the vector potential entering the momentum
operators in Eq. (4), an external magnetic field B cou-
ples directly to the spin degree of freedom via the Zeeman
Hamiltonian

HZ = 2κμBB · J, (7)

where κ is a material-dependent parameter (for Ge κ = 3.41).
We neglect here the anisotropic Zeeman term, which is less
relevant in NWs [59,61].

Finally, we include a homogeneous electric field via the
Hamiltonian

HE = −eE · r. (8)

When the hole wave function is strongly confined in two di-
rections and there is an inversion-symmetry-breaking electric
field, the system presents a strong so-called direct Rashba SOI
[11,12] that is linear in momentum and is important for fast
all-electric manipulation of spin qubits via EDSR.

III. DIRECT RASHBA SPIN-ORBIT COUPLING

In this section we calculate the strength of the effective
direct Rashba SOI induced by an electric field applied parallel
to the magnetic field (in our case, in the z direction) and
perpendicular to the NW or quasi-one-dimensional structure,
which extends in the y direction (see Fig. 1). Here we first con-
sider an infinitely long NW and later, in Sec. VI, we confine
a QD by a harmonic potential. Since we choose the Landau
gauge A = (0, x, 0)B for B ‖ z, the translational invariance in
the y direction is preserved and the canonical momentum ky is
a good quantum number.

A. Model

First, we assume hard-wall (HW) confinement

V (x, z) =
{

0 for |x| < Lx/2, |z| < Lz/2

∞ otherwise,
(9)

which describes well a rectangular NW of the width Lz (Lx) in
the z (x) direction [see Fig. 1(a)]. We divide the isotropic LK
Hamiltonian in Eq. (2) into three parts,

Hs
LK = Hzz + Hmix + Hxy, (10)

where the addends are defined as

Hzz = h̄2

2m

⎛
⎜⎜⎝

γ H
z π2

z 0 0 0

0 γ L
z π2

z 0 0
0 0 γ L

z π2
z 0

0 0 0 γ H
z π2

z

⎞
⎟⎟⎠, (11)

Hmix = h̄2
√

3γs

m

⎡
⎢⎣
⎛
⎜⎝

0 −{πz, πx} 0 0
−{πz, πx} 0 0 0

0 0 0 {πz, πx}
0 0 {πz, πx} 0

⎞
⎟⎠+ i

⎛
⎜⎝

0 {πz, πy} 0 0
−{πz, πy} 0 0 0

0 0 0 −{πz, πy}
0 0 {πz, πy} 0

⎞
⎟⎠
⎤
⎥⎦,

(12)

Hxy = h̄2

2m

⎛
⎜⎜⎝

γ+{π+, π−} 0 −√
3γsπ

2
− 0

0 γ−{π+, π−} 0 −√
3γsπ

2
−

−√
3γsπ

2
+ 0 γ−{π+, π−} 0

0 −√
3γsπ

2
+ 0 γ+{π+, π−}

⎞
⎟⎟⎠, (13)

with γ H,L
z = γ1 ∓ 2γs, γ± = γ1 ± γs, and π± = πx ± iπy. Here πx, πy, and πz are the components of the kinematic momentum

as defined in Eq. (4). The term Hzz is diagonal in the chosen spin basis {+ 3
2 ,+ 1

2 ,− 1
2 ,− 3

2 }, whereas Hxy couples the spins ± 3
2

075308-3



CHRISTOPH ADELSBERGER et al. PHYSICAL REVIEW B 105, 075308 (2022)

to the spins ∓ 1
2 and Hmix spin ± 3

2 to spin ± 1
2 . In addition, we include the Zeeman term HZ defined in Eq. (7) and the electric

field term HE defined in Eq. (8). We assume that the electric field E is applied along the z axis (parallel to the B field) and, for
convenience, express HE in terms of the electric length lE = (h̄2/2meE )1/3.

B. One-dimensional basis states

Let us now neglect orbital effects of the magnetic field by assuming A = 0, hence π j = k j , j = x, y, z. We first focus on the
x direction and as in our model there are no fields in this direction, we only consider

H
ky=0
xy = h̄2

2m

⎛
⎜⎜⎝

γ+k2
x 0 −√

3γsk2
x 0

0 γ−k2
x 0 −√

3γsk2
x

−√
3γsk2

x 0 γ−k2
x 0

0 −√
3γsk2

x 0 γ+k2
x

⎞
⎟⎟⎠ (14)

in this direction and we choose the basis states

φ0
nx

(x) =
√

2√
Lx

sin

[
πnx

Lx

(
x + Lx

2

)]
, (15)

which respect the HW boundary conditions in the x direction
given in Eq. (9). We introduce the quantum number nx =
1, 2, . . . . The off-diagonal matrix elements of the Hamiltonian
in Eq. (14) lead in this basis to superpositions between spin
± 3

2 and ∓ 1
2 .

Next we consider the z direction and obtain the eigenstates
of the Hamiltonian Hzz + HZ + HE . In the absence of electric
fields the eigenfunctions are

φ0
nz

(z) =
√

2√
Lz

sin

[
πnz

Lz

(
z + Lz

2

)]
, (16)

which again respect the HW boundary conditions along z
given in Eq. (9). Here we also introduce the quantum number
nz = 1, 2, . . . . The corresponding energy levels, including the
Zeeman energy coming from the magnetic field B ‖ z, are
given by

ε0,±3/2
z (nz ) = h̄2γ H

z

2m

(
πnz

Lz

)2

± 3κμBB, (17)

ε0,±1/2
z (nz ) = h̄2γ L

z

2m

(
πnz

Lz

)2

± κμBB. (18)

In contrast, when an electric field E is applied along the
z axis, the eigenfunctions can be written in terms of Airy
functions,

φH(L)(z) = a Ai[gH(L)(z)] + b Bi[gH(L)(z)], (19)

with

gH(L)(z) = (γ H(L)
z

)−1/3
(

− z

lE
− 2m

h̄2 εH(L)l2
E

)
. (20)

The values of εH(L)(nz ) and the coefficients a and b are
found numerically by imposing the HW boundary conditions.
The lowest-energy solutions εH(L)(nz ), obtained by solving
the equation φH(L)(0) = φH(L)(Lz ) numerically, are shown in
Fig. 2(a).

As a result, the total low-energy spectrum of Hzz + HZ +
HE reads

ε±3/2
z (nz ) = εH(nz ) ± 3κμBB, (21)

ε±1/2
z (nz ) = εL(nz ) ± κμBB. (22)

The index nz labels the solutions (from low to high energy).
Importantly, in this case the wave function for spin ± 3

2 is not
the same as for spin ± 1

2 [note the factor γ H(L)
z in Eq. (20)].

This implies, as it will become clear below, that the total wave
function cannot be factorized into z and x, y components.
However, for low electric fields 〈φH

n′
z 
=nz

|φL
nz
〉 � 〈φH

nz
|φL

nz
〉 and

thus this factorization is a good approximation [see Figs. 2(b)
and 2(c) below].

1. Weak electric field approximation

To estimate the weak electric field condition, for simplicity,
we use variational solutions instead of the numerically exact
Airy function solutions. We correct the wave functions corre-
sponding to zero electric field with an exponential factor to
write down the ansatz [57]

φH(L)
nz

(z) ∝ φ0
nz

(z) exp

[
− ρH(L)

nz

(
z

Lz
+ 1

2

)]
, (23)

where the variational parameters ρH(L)
nz

minimize the energy
of the subsequently orthogonalized states.

If the electric field is weak, meaning Lz/π � γ
1/3
1 lE , the

minimal ground-state energy (nz = 1) is found at

ρ
H(L)
1 = (Lz/lE )3

12π2
(
γ

H(L)
z
)2 (π2 − 6) (24)

and the corresponding energy is

εH(L)(1) ≈ h̄2

m

[
γ H(L)

z π2

2L2
z

− L4
z (π2 − 6)2

288π4γ
H(L)
z l6

E

+ O
(

L10
z

l12
E

)]
.

(25)

We also give the expression for the overlap

〈
φH

1

∣∣φL
1

〉 ≈ 1 − (Lz/lE )6(π2 − 6)3γ 2
s

216π6
(
γ 2

1 − 4γ 2
s

)2 + O
(

L12
z

l12
E

)
. (26)

and for the matrix elements of kz,〈
φH

1

∣∣kz

∣∣φL
1

〉 ≈ −i
L2

z (π2 − 6)γs

6l3
Eπ2
(
γ 2

1 − 4γ 2
s

) + O
(

L8
z

l9
E

)
. (27)

The dashed lines in Fig. 2(a), only shown for low electric
field, correspond to Eq. (25). In analogy, we show the low-
field approximation for the overlap amplitude between the HH
and LH wave functions in Fig. 2(b). This overlap is important
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FIG. 2. Solutions of Hzz + HE for the one-dimensional problem in the z direction. In all plots the solid lines are the numerically exact
Airy function solutions. The dash-dotted cyan line at E = 2 V μm−1 marks the transition from the weak to strong electric field regime.
(a) Lowest-energy solutions for εH(L)(nz ) (independent of B) as a function of electric field E applied in the z direction (perpendicular to the
NW axis). The dashed lines correspond to the analytical solution defined by Eq. (25) (weak electric field) and the dotted lines to the one defined
by Eq. (28) (strong electric field). (b) Overlap between wave functions of HH and LH states. The dashed line corresponds to the analytical
solution given by Eq. (26) (weak electric field). The dotted lines represent the result obtained using the wave functions defined in Eq. (29).
For weak electric field 〈φH

n′
z 
=nz

|φL
nz

〉 � 〈φH
nz

|φL
nz

〉. (c) Matrix elements of kz (in dimensionless units) between the lowest-energy HH and LH
states. The dashed line (weak electric field) corresponds to the analytical solution given by Eq. (27) and the dotted line (strong electric field)
represents the result obtained using the wave functions in Eq. (29). In all plots we use Lz = 22 nm. Generally, we find that both analytical
approximations agree well with exact numerical results shown by the solid lines. These results are used in Sec. III C to estimate the g factor in
Eq. (38) and the SOI in Eq. (43) in the weak electric field case.

to estimate the SOI. Finally, the matrix elements of kz between
HH and LH states are also relevant [see Fig. 2(c)] and we show
that the linear approximation used to derive Eq. (27) works
well for weak electric field.

2. Strong electric field approximation

In the opposite limit of strong electric field, the wave func-
tion is strongly compressed to the edge. Thus, we approximate
the solution by just one Airy function Ai(z). In this case, the
energy spectrum reads

εH(L)(nz ) ≈ − h̄2

m

(
Lz

4l3
E

+ [γ H(L)]1/3

2l2
E

Ai0(nz )

)
(28)

and is shown by a dotted line in Fig. 2(a). The corresponding
wave functions is

φH(L)
nz

=
Ai
[ Lz−2z

2lE (γ H(L) )1/3 + Ai0(nz )
]

√
lE (γ H(L))1/3Ai′[Ai0(nz )]

, (29)

with the nth
z zero of the Airy function denoted by Ai0(nz ).

The overlap between wave functions of HH and LH states as
well as matrix elements of kz are shown with dotted lines in
Figs. 2(b) and 2(c). Again, we find excellent agreement with
numerical results in the strong electric field regime.

C. Solution without orbital effects

In the following we use the one-dimensional wave func-
tions derived above to study the SOI. At low magnetic fields,
the orbital effects are not expected to give a large contribution
to the SOI [52]. Thus, in this section we neglect them and
calculate a simple formula for the SOI amplitude. First, we

extend the solution of the Hamiltonian H
ky=0
xy at ky = 0 [see

Eq. (14)] by including the parity-mixing term

H
ky=0
mix√
3γs

= h̄2

m

⎛
⎜⎝

0 −kx 0 0
−kx 0 0 0

0 0 0 kx

0 0 kx 0

⎞
⎟⎠kz. (30)

Later we will use perturbation theory to include the terms
linear in ky:

Hky√
3γs

= h̄2

m

⎛
⎜⎝

0 ikz ikx 0
−ikz 0 0 ikx

−ikx 0 0 −ikz

0 −ikx ikz 0

⎞
⎟⎠ky. (31)

A good basis of wave functions is given by

ψH(L)
nx,nz

(x, z) = φH(L)
nz

(z)φ0
nx

(x), (32)

where the functions φH(L)
nz

(z) and φ0
nx

(x) are introduced in
Eqs. (19) and (15), respectively.

As a starting point for the following perturbation theory,
we choose the Hamiltonian

H0 = Hzz + HZ + HE + H
ky=0
xy . (33)

Its eigenstates can be approximated in position space by

〈x, z|nx, nz,↑〉 =

⎛
⎜⎜⎝

sin
(
θ↑

nx,nz
/2
)
φH

nz
(z)

0
cos
(
θ↑

nx,nz
/2
)
φL

nz
(z)

0

⎞
⎟⎟⎠φ0

nx
(x) (34)
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for the { 3
2 ,− 1

2 } subspace, denoted by S =↑ in the following,
and by

〈x, z|nx, nz,↓〉 =

⎛
⎜⎜⎜⎝

0

cos
(
θ↓

nx,nz
/2
)
φL

nz
(z)

0

sin
(
θ↓

nx,nz
/2
)
φH

nz
(z)

⎞
⎟⎟⎟⎠φ0

nx
(x) (35)

for the { 1
2 ,− 3

2 } subspace, denoted by S =↓. Here we have
introduced the angle

θ↑,↓
nx,nz

= arctan

( √
3γsπ

2n2
x

〈
φH

nz

∣∣φL
nz

〉
h̄2
/(

L2
x m
)

π2n2
xγsh̄

2
/(

L2
x m
)± 4κμBB + εH(nz ) − εL(nz )

)
.

(36)

The corresponding low-energy spectrum ES
nx,nz

is given by

E↑,↓
nx,nz

= h̄2π2n2
xγ1

2mL2
x

± κμBB + εH(nz )

2
+ εL(nz )

2

− 1

2

√√√√(π2n2
xγsh̄

2

L2
x m

± 4κμBB + εH(nz ) − εL(nz )

)2

+ 3γ 2
s π4n4

x

∣∣〈φH
nz

∣∣φL
nz

〉∣∣2h̄4

L4
x m2

(37)

and is shown in Fig. 3 for a NW with square cross section
(dashed lines). Expanding E↑,↓

nx,nz
in the regime of weak electric

fields Lz/π � γ
1/3
1 lE , we obtain (for a square cross section)

an effective g factor in the z direction, given by the equation

E↑
1,1 − E↓

1,1

μBB

=
[

4κ − 3L4
z m2μ2

BB2κ3

h̄4π4γ 2
s

+ O(B4)

][
1 + O

(
L6

z

l6
E

)]
. (38)

0 2 4 6 8 10
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nx = 1, nz = 2

FIG. 3. Energy levels E↑,↓
nx ,nz

of H0, defined in Eq. (33), of a Ge
NW as a function of the perpendicular magnetic field B in the z di-
rection. Here the parity-mixing term [see Eq. (30)] is neglected. The
dashed lines correspond to Eq. (37), in which we also neglect orbital
effects. The solid lines are obtained by the approach developed in
Sec. III D, where we include orbital effects. The Zeeman splitting
is large (≈ 1 meV) at B = 1 T. The strong renormalization of the g
factor due to orbital effects can be observed by comparing the solid
and dashed lines. Here Lx = Lz = 22 nm and E = 1 V μm−1. We
also note that because Lx = Lz the states shown with red and green
lines are close in energy at B = 0. This quasidegeneracy is a result of
the small value of E used here and is lifted in the strong E field limit.

From Eq. (38) we observe that the effective g factor depends
on the magnetic field even without accounting for magnetic
orbital effects.

The states with nx = 2 and nz = 1 and with nx = 1 and
nz = 2 are almost degenerate at B = 0 in Fig. 3. This is due to
the fact that Lx = Lz and that here we use E = 1 V μm−1,
which is in the weak field limit defined in Sec. III B 1. At
larger electric fields the quasi-degeneracy is lifted, as expected
from Eq. (28).

Finally, the parity-mixing term H
ky=0
mix couples states with

different parity in x (i.e., states with even and odd quantum
numbers nx) and different pseudospin S = ↑,↓. More explic-
itly, the states depicted in blue in Fig. 3 couple to the ones in
green, and we define the perturbed states

|1, 1, S〉′ = |1, 1, S〉 + 〈2, 1, S̄|Hky=0
mix |1, 1, S〉

ES
1,1 − ES̄

2,1

|2, 1, S̄〉, (39)

where S̄ is the opposite pseudospin to S and the overlap

〈2, 1, S̄|Hky=0
mix |1, 1, S〉

= ± − i
8h̄3

3Lxm

√
3γs sin

(
θS

1,1 + θ S̄
2,1

2

)〈
φH

1

∣∣kz

∣∣φL
1

〉
. (40)

In the absence of electric fields, the leading correction to the
states |1, 1, S〉 comes from couplings to the states with nx = 2
and nz = 2.

From the Hamiltonian term linear in ky [see Eq. (31)], we
obtain a direct SOI term because the eigenstates defined in
Eqs. (34) and (35) (for nx = nz = 1) are directly connected
via the terms proportional to kzky,

H (1)
αso

= i
h̄2

m

√
3γs sin

(
θ

↑
1,1 + θ

↓
1,1

2

)〈
φH

1

∣∣kz

∣∣φL
1

〉
kyσx, (41)

where the Pauli matrix σx acts in the pseudospin space
S =↑,↓.

There is however another sizable SOI term that is induced
by the linear term proportional to kxky and is assisted by the
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FIG. 4. (a) Color code and contour plot of the SOI strength αso obtained from Eqs. (41) and (42) as a function of the perpendicular electric
field E and the confinement length Lx/Lz. We fix Lz = 22 nm and B = 1 T. The red dots mark the maximal SOI and the solid orange line
shows the fitting function discussed in the text. With the dotted cyan line we mark the case Lx = Lz, where the cross section is a square. The
plot shows a strong dependence on the geometry of the cross section, where the SOI increases for decreasing ratio Lx/Lz and increasing E .
(b) Cuts of the plot in (a) for specific side length ratios Lx/Lz. The solid lines show the SOI strength according to Eqs. (41) and (42) and the
dashed lines depict the small electric field approximation according to Eq. (43). The approximation captures very well the linear dependence
on E at low field and yields the correct slope for all the considered ratios of side lengths.

parity-mixing Hamiltonian H
ky=0
mix . This term is given by

H (2)
αso

= −i
64h̄6

3m2L2
x

γ 2
s

〈
φH

1 |φL
1

〉〈
φH

1

∣∣kz

∣∣φL
1

〉
kyσx

×
[

sin
θ

↑
1,1+θ

↓
2,1

2 sin
θ

↓
1,1−θ

↓
2,1

2

E↑
1,1 − E↓

2,1

+ sin
θ

↓
1,1+θ

↑
2,1

2 sin
θ

↑
1,1−θ

↑
2,1

2

E↓
1,1 − E↑

2,1

]
.

(42)

The full SOI amplitude is given by Hαso = H (1)
αso

+ H (2)
αso

=
αsoσxky.

To lowest order in the electric field and while the Zeeman
term is small compared to the difference of confinement en-
ergies, 4κμBB � π2γsh̄

2/L2
x m, the SOI strength is effectively

described by

αso ≈ h̄2

m

L2
z (π2 − 6)γ 2

s

4l3
Eπ2
(
γ 2

1 − 4γ 2
s

)
r1

×
[

1 + 128γs
[
r2 − 4r1 + 2(r1 − r2)L2

x/L2
z

]
9π2r2[2γs(−r1 + r2) − 3γ1]

]
, (43)

where we define r1 = √1 + L4
x/L4

z − L2
x/L2

z and r2 =√
16 + L4

x/L4
z − 4L2

x/L2
z . In particular, in a Ge NW with a

square cross section, we find αso ≈ 0.094eEL2
z .

In Fig. 4(a) we fix the side length Lz = 22 nm and show a
contour plot of the SOI strength αso as a function of the side
length Lx and the perpendicular electric field E . We see that
the square cross section is not maximizing the SOI strength.
In fact, in the figure, the maximal SOI is marked by red dots

and lies on the curve Lm
x = 2.74lEγ

1/3
1

√
erf (0.10L2

z /γ
2/3
1 l2

E )
(orange solid line). This fitting function is similar to the one

used in Ref. [52] for the gate-defined Ge one-dimensional
(1D) channel shown in Fig. 1(b), where the optimal length is

found to be (Lm
x )1D = 0.81lEγ

1/3
1

√
erf (0.12L2

z /γ
2/3
1 l2

E ) [52].

Note that for strong electric field (E > 3 V μm−1) we can
neglect the error function and Lm

x = 2.74lEγ
1/3
1 has a simple

E−1/3 dependence. We interpret this dependence as follows.
The electric field gives rise to the new length scale lE which
determines the optimal side length of the cross section in the x
direction. Only for weak electric field, this simple dependence
is corrected by the square root of the error function. We also
find that in the range of parameters considered, our analytical
results for the SOI are in good agreement with the more gen-
eral numerical calculation explained in Sec. IV, also including
magnetic orbital effects.

Moreover, in Fig. 4(b) we show cuts of the contour plot in
Fig. 4(a) at certain ratios of the NW side lengths. We compare
the result for the SOI strength αso given by Eqs. (41) and (42)
to the low field approximation in Eq. (43) and we observe
excellent agreement at low electric fields. In this case, the SOI
strength increases linearly and the approximation yields the
correct slope.

D. Solution with orbital effects

In this section we account for the orbital effects of the
magnetic field. As stated before, we work in the Landau
gauge, resulting in π̃x = k̃x, π̃y = k̃y + x̃, and π̃z = k̃z. To
simplify the notation in the following, we express the lengths
in units of the magnetic length lB = √

h̄/eB, i.e., z̃ = z/lB
and k̃ = lBk, and we introduce the cyclotron energy h̄ωc =
eh̄B/m. Orbital effects renormalize the SOI at large values
of B, when the side length of the cross section is compara-
ble to the magnetic length. Here we discuss a procedure to
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treat these orbital effects exactly, in contrast to perturbative
approaches in other works such as Ref. [54], where a slab
geometry is analyzed, or Refs. [63,64], where a cylindrical
NW is analyzed. Our results reproduce the effects captured
in these works and extend them to the limits examined
here.

First, we introduce the ladder operators

a = k̃x − ix̃√
2

, (44)

which satisfy the canonical commutation relation [a, a†] = 1.
The Hamiltonian H

ky=0
xy [see Eq. (14)] can be rewritten as

H
ky=0
xy = h̄ωc

⎛
⎜⎜⎜⎜⎝

γ+
(
a†a + 1

2

)
0 −√

3γsa2 0

0 γ−
(
a†a + 1

2

)
0 −√

3γsa2

−√
3γs(a†)2 0 γ−

(
a†a + 1

2

)
0

0 −√
3γs(a†)2 0 γ+

(
a†a + 1

2

)

⎞
⎟⎟⎟⎟⎠, (45)

H
ky=0
mix =

√
3γsh̄ωc

⎛
⎜⎜⎜⎜⎝

0 −√
2a 0 0

−√
2a† 0 0 0

0 0 0
√

2a

0 0
√

2a† 0

⎞
⎟⎟⎟⎟⎠k̃z. (46)

In analogy with the preceding section, we now find the
eigenstates of H0 [see Eq. (33)] and then analyze the effect
of Hmix and calculate the SOI strength. In the Landau gauge,
the operator

a†a = 1
2

(−∂2
x̃ + x̃2 − 1

)
(47)

has two eigenfunctions, one even and one odd, with real-
valued eigenvalue η,

ψe
η (x̃) = e−x̃2/2

1F1

(
−η

2
;

1

2
; x̃2

)
, (48)

ψo
η (x̃) = i

√
2x̃e−x̃2/2

1F1

(
−η

2
+ 1

2
;

3

2
; x̃2

)
, (49)

given in terms of confluent hypergeometric functions
1F1(a, b, x̃). The annihilation and creation operators act on
these eigenfunctions as

aψe
η = ηψo

η−1, (50)

aψo
η = ψe

η−1, (51)

a†ψe
η = (η + 1)ψo

η+1, (52)

a†ψo
η = ψe

η+1. (53)

The parity quantum number λ = e, o is a good quantum num-
ber at ky = 0, when the parity-mixing term H

ky=0
mix is neglected.

In this case, we can express the general solutions for the wave
functions in a similar way to Eqs. (34) and (35) with the
hypergeometric functions from Eqs. (48) and (49) replacing
the trigonometric functions in the x direction. By using these
functions, we solve exactly the Schrödinger equation H0� =
ε�, with H0 = Hzz + HZ + HE + H

ky=0
xy and with the spinor

� being dependent on the general real-valued eigenvalue ε.

The energy of the system is then found by computing the
values of ε for which each component of the wave functions
satisfies HW boundary conditions, i.e., �λ

↑/↓,H/L(Lx/2) = 0.
For more technical details on this analysis and on the wave
functions, we refer to Appendix A.

We introduce the new notation |nx, nz, S〉 for these exact
solutions. The quantum number nx labels the possible solu-
tions and determines the parity and, as before, S =↑,↓ is the
pseudospin. In Fig. 3 the solid lines depict the energy levels at
ky = 0 obtained with this approach.

In analogy to the analysis in Sec. III C, the parity-mixing
term H

ky=0
mix couples states with different pseudospin and dif-

ferent parity. The corrected lowest-energy eigenstates are then

|1, 1, S〉′ = |1, 1, S〉 + 〈2, 1, S̄
∣∣Hky=0

mix

∣∣1, 1, S〉
ES

1,1 − ES̄
2,1

|2, 1, S̄〉, (54)

and the SOI can be estimated by treating the terms linear in
ky,

Horb
ky

= Hky + h̄ωc

⎛
⎜⎜⎝

γ+x̃ 0
√

3γsx̃ 0
0 γ−x̃ 0

√
3γsx̃√

3γsx̃ 0 γ−x̃ 0
0

√
3γsx̃ 0 γ+x̃

⎞
⎟⎟⎠k̃y,

(55)
perturbatively. Because the extra terms proportional to x̃ cou-
ple states within the same spin subspace states but with
different parity in x, they contribute to the term assisted by
parity mixing H (2)

αso
[see Eqs. (41) and (42)]. In this case, we

find the direct contribution to the SOI,

H (1)
αso

= 〈1, 1,↓ |Hky |1, 1,↑〉σx

= ih̄ωc

√
3γs
(〈
�e

↓,L

∣∣�e
↑,H

〉+ 〈�e
↓,H

∣∣�e
↑,L

〉)〈
φH

1

∣∣k̃z|φL
1

〉
k̃yσx,

(56)
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and the term assisted by parity mixing,

H (2)
αso

=
(

〈1, 1,↓ |Horb
ky

|2, 1,↓〉〈2, 1,↓ |Hky=0
mix |1, 1,↑〉

E↑
1,1 − E↓

2,1

+ 〈2, 1,↑ |Horb
ky

|1, 1,↑〉〈1, 1,↓ |Hky=0
mix |2, 1,↑〉

E↓
1,1 − E↑

2,1

)
σx

= i
√

3(h̄ωc)2γs

{ 〈
φH

1 |k̃z|φL
1

〉
E↑

1,1 − E↓
2,1

(〈
�o

↓,H

∣∣a†
∣∣�e

↑,L

〉+ 〈�o
↓,L

∣∣a†
∣∣�e

↑,H

〉)
× [γ+

〈
�e

↓,H

∣∣a − a†
∣∣�o

↓,H

〉+ γ−
〈
�e

↓,L

∣∣a − a†
∣∣�o

↓,L

〉+ 2
√

3γs
〈
φH

1

∣∣φL
1

〉(〈
�e

↓,L

∣∣a∣∣�o
↓,H

〉− 〈�e
↓,H

∣∣a†
∣∣�o

↓,L

〉)]
+
〈
φH

1

∣∣k̃z

∣∣φL
1

〉
E↓

1,1 − E↑
2,1

(〈
�e

↓,H

∣∣a†
∣∣�o

↑,L

〉+ 〈�e
↓,L

∣∣a†
∣∣�o

↑,H

〉)

× [γ+
〈
�o

↑,H

∣∣a − a†
∣∣�e

↑,H

〉+ γ−
〈
�o

↑,L

∣∣a − a†
∣∣�e

↑,L

〉+ 2
√

3γs
〈
φH

1

∣∣φL
1

〉(〈
�o

↑,H

∣∣a∣∣�e
↑,L

〉− 〈�o
↑,L

∣∣a†
∣∣�e

↑,H

〉)]}
k̃yσx. (57)

The function �λ
↑/↓,H/L is defined in Appendix A and φH/L

nz
is

given by Eq. (19). The sum of these two terms yields the total
SOI strength αso with the effective Rashba-type Hamiltonian
Hαso = H (1)

αso
+ H (2)

αso
= αsoσxky.

As shown in Fig. 5, the SOI strength αso now decreases
with magnetic field and the maximum moves towards stronger
electric fields. This decrease can be explained by orbital
effects that start to become very relevant at B ≈ 1.4 T, where
the magnetic length is comparable to the NW side length. The
second term in Eq. (55) leads to a negative contribution in
Eq. (57) and thus reduces the total SOI αso with increasing
magnetic field. In the figure we plot the analytical result

FIG. 5. Effective SOI strength αso of a Ge NW with square cross
section, Lx = Lz = 22 nm, as a function of the electric field E for
different values of the magnetic field. The solid lines are numerical
solutions obtained with the discrete basis given in Eq. (58), while
the dashed lines show the results from the semianalytical formulas
in Eqs. (56) and (57). For weak electric field the analytical result
compares to the numerics very well. The SOI decreases with increas-
ing magnetic field due to orbital effects. The dots mark the points
where the ground-state dispersion relation becomes flat and where
one needs to include in the effective theory terms that are of higher
order in momentum (see Sec. VI).

(dashed lines) together with numerical results (solid lines). We
observe good agreement between the analytical and numerical
curves for weak electric field. The dots in the plot mark where
an effective model up to order k2

y fails because the dispersion
relation is dominated by k4

y . This effect will be discussed in
detail in Sec. VI.

Accounting for anisotropies, γ1 
= γ2, in Ge we see that
the SOI only weakly depends on the growth direction of
the NW in agreement with Refs. [11,52]. In particular, the
maximum SOI is reached for z ‖ [110] and the NW paral-
lel to [001]. This is equivalent to the optimal direct Rashba
SOI direction reported in Ref. [11]. Comparing this result
for the SOI to the result with isotropic approximation for a
square NW with side length of 22 nm at B = 0.1 T, we have
a maximum SOI of αso = 53.8 meV nm at E = 1.6 V μm−1

[calculated numerically by diagonalizing H in Eq. (1)] instead
of αso = 38.3 meV nm at E = 2.6 V μm−1. Hence, with the
right choice of the NW growth direction, an even larger SOI
at lower electric field than shown by the analytical results
before is possible. In contrast to the SOI, the effective g
factor strongly depends on the growth direction and is highly
sensitive to anisotropies as discussed in detail in Sec. VII.

The calculation of the correction to the g factor coming
from the mixing term is inaccurate because it is a second-
order term in the parity-mixing Hamiltonian [cf. Eq. (46)]
and requires us to account for many states to converge to
the numerical solution. In the following section, therefore, we
use a fully numerical approach to calculate the NW quantum
levels at ky = 0. From this solution, we obtain the effective g
factor and then, by treating ky perturbatively, we compute the
SOI and the effective masses of the low-energy states.

IV. EFFECTIVE g FACTOR AND EFFECTIVE MASSES

In this section we present numerical results for the effective
g factor and the effective mass. For the numerical calculations
we use the discrete basis

fnx,nz (x, z) =
2 sin

[
nx
(

x
Lx

+ 1
2

)]
sin
[
nz
(

z
Lz

+ 1
2

)]
√

LxLz
(58)

with 0 < nx, nz � 16. This basis fulfills the HW boundary
conditions in the x and z directions. We obtain the eigenvalues
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En,S of the Hamiltonian in Eq. (1) with their correspond-
ing eigenfunctions ψn,S , where n labels the states ascending
with energy starting from the lowest eigenstate and S is their
pseudospin. In the following we extract the parameters of
an effective model describing the two states ψ1,↑(E , B) and
ψ1,↓(E , B) that are lowest in energy. By second-order pertur-
bation theory, we obtain an effective model Hamiltonian up to
order k2

y ,

Heff = h̄2

2m̄
k2

y − βσzk
2
y + geff

μBB

2
σz + αsokyσx, (59)

with the average effective mass 1/m̄, the spin-dependent term
β, the effective g factor geff , and the SOI strength αso. Here β

can be interpreted as a spin-dependent mass, which depends
on magnetic field and vanishes at B = 0. Generally, there are
further terms possible, such as a diagonal term linear in ky or
an off-diagonal term quadratic in ky. However, these terms are
zero in the isotropic LK Hamiltonian [70].

This effective model works well in different geometries;
however, in this section we restrict ourselves to the analysis
of NWs with a square cross section. We discuss alternative
geometries in Sec. V. The energy levels at E = 1 V μm−1 are
shown in Fig. 6 (solid lines). The dashed lines show the same
spectrum without orbital effects. Excluding orbital effects,
the dashed green and orange lines cross, while their solid
pendants including orbital effects anticross. Thus, the effec-
tive g factor is largely reduced by orbital effects. The large
difference between the energies calculated with and without
orbital effects leads us to the conclusion that by neglecting
orbital effects in Ge NWs, one tends to strongly overestimate
the g factor. Note also that in contrast to Fig. 3, here the
parity-mixing term is fully accounted for. In this case, the
parity-mixing term leads to a splitting at B = 0 of the degener-
ate states with nx = 2 and nz = 1 and with nx = 1 and nz = 2
already in the weak electric field limit.

More explicitly, we define here the effective g factor for a
magnetic field B applied in the z direction as

geff = E1,↑ − E1,↓
μBB

. (60)

In Fig. 7(a) we show the dependence of geff in a square-cross-
section NW as a function of the electric field E applied in
the z direction. The qualitative behavior is the same at each
value of the magnetic field: First, the g factor decreases, it
reaches a minimum, and then it grows again. The minimal
value of the g factor depends on both electric and magnetic
fields and it moves from geff = 6.6 at E = 1.6 V μm−1 for
B = 0.1 T to geff = 5.3 at E = 0.8 V μm−1 for B = 10 T. A
similar effective g factor of a cylindrical Ge NW for weak

0 2 4 6 8 10
B (T)
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17.5
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E
n

,S
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eV
)

FIG. 6. Energy levels of the Hamiltonian in Eq. (1) calculated
numerically by using the discrete basis (0 < nx, nz � 16) defined in
Eq. (58) with (solid lines) and without (dashed lines) orbital effects
as a function of the magnetic field. We note that the energy spectrum
is substantially modified if orbital effects are taken into account.
We consider a square cross-section NW with Lx = Lz = 22 nm, E =
1 V μm−1, and εs = 0. Note that, in contrast to Fig. 3, here the
parity-mixing term defined in Eq. (30) (without orbital effects) or
in Eq. (46) (with orbital effects) is included.

B has been predicted in Ref. [63] and for strong magnetic field
in Ref. [64].

We now analyze the effective mass of the NW, mS . At
finite values of the magnetic field, this parameter depends
on the spin S and can be decomposed into the sum of two
contributions

1

mS
= 1

mu
S

+ 1

mp
S

. (61)

The first unperturbed (u) contribution comes from projecting
the part of the LK Hamiltonian [see Eq. (2)] quadratic in ky,

Hk2
y
= h̄2

2m

⎛
⎜⎜⎝

γ+ 0
√

3γs 0
0 γ− 0

√
3γs√

3γs 0 γ− 0
0

√
3γs 0 γ+

⎞
⎟⎟⎠k2

y , (62)

onto the eigenbasis of H (ky = 0), where H is given in Eq. (1),

h̄2k2
y

2mu
S

= 〈ψ1,S|Hk2
y
|ψ1,S〉. (63)

The second perturbative (p) term is a second-order correction
coming from the term linear in ky,

Hky = h̄2
√

3γs

2m

⎛
⎜⎜⎜⎝

γ+√
3γs

x ikz (ikx + x) 0

−ikz
γ−√
3γs

x 0 (ikx + x)

(−ikx + x) 0 γ−√
3γs

x −ikz

0 (−ikx + x) ikz
γ+√
3γs

x

⎞
⎟⎟⎟⎠ky (64)
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FIG. 7. (a) Effective g factor geff from Eq. (60) and (b) average inverse effective mass 1/m̄ from Eq. (66) of a Ge NW with square cross
section, Lx = Lz = 22 nm, as a function of the electric field E at ky = 0 for different values of the magnetic field B. The g factor is large even at
the minimum (geff > 5), but it decreases with increasing magnetic field. As described in Sec. VI, the minimum is preserved in a QD, resulting
in a sweet spot where charge noise is suppressed. The averaged inverse effective mass 1/m̄ starts from a small value at weak electric fields
and approaches a value close to the average HH-LH inverse mass γ1/m at large E . The dots mark the points where the ground-state dispersion
relation becomes flat and where one needs to include in the effective theory terms that are of higher order in momentum (see Sec. VI).

(see, e.g., Ref. [71]),

h̄2k2
y

2mp
S

=
∑

n�2,S′=↑,↓

|〈ψn,S′ |Hky |ψ1,S〉|2
E1,S − En,S′

. (65)

At this point, we also define an average effective mass m̄ and
a spin-dependent term β as they appear in the effective model
in Eq. (59):

1

m̄
:= m↓ + m↑

2m↓m↑
= 1

2

(
1

m↑
+ 1

m↓

)
, (66)

β := −h̄2 m↓ − m↑
m↓m↑

= −h̄2

(
1

m↑
− 1

m↓

)
. (67)

The average effective mass 1/m̄ is shown in Fig. 7(b) as
a function of the electric field. Generally, when E is large,
1/m̄ approaches a constant value close to γ1/m, the average
HH-LH mass in the LK Hamiltonian. The exact large E limit
of 1/m̄ depends on the magnetic field. Also note that when
below B < 6 T, 1/m̄ has a maximum, while for B > 6 T, 1/m̄
increases monotonically.

We show the spin-dependent masslike term β as a function
of the magnetic field in Fig. 8. This term is linear in B at
low magnetic field and decreases with the electric field. At
B = 0, β = 0 due to time-reversal symmetry. While generally
this term is significant, at weak magnetic fields (or at strong
electric fields), it can be justified to consider a simplified
effective model with β = 0.

The effective model in Eq. (59) is valid when the subband
gap is larger than the quantization energy along the y axis.
The subband gap including orbital effects is smallest at large
values of the magnetic field (see Fig. 6) and at E = 0 (not
plotted). However, in the system considered the gap remains
larger than 1.9 meV, justifying the use of an effective 2×2
model for sufficiently long QDs. We note that the subband
gap can be increased by reducing the side lengths Lx,z or by in-
cluding strain. Importantly, we also remark that orbital effects
extend the validity of this effective model to large values of the

magnetic field and that without them, the effective model can
only be valid at weak B, far away from the crossing in Fig. 6.

V. EFFECT OF THE GEOMETRY
AND CONFINEMENT DETAILS

In the following we compare the parameters of square
NWs with side Lx = Lz = L, cylindrical NWs with radius R,
and two-dimensional heterostructures with an electrostatically
defined one-dimensional channel [see Fig. 1(b)]. In the latter
case, the electrostatic potential confining the NW in the x

0 2 4 6 8 10
B (T)

0.0

0.5

1.0

1.5

2.0

β
(e

V
nm

−
2
)

E (V/μm)
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FIG. 8. Spin-dependent masslike term β defined in Eq. (67) as a
function of the magnetic field B at ky = 0 for different values of the
electric field. At B = 0, β is zero due to time-reversal symmetry and
it increases linearly for small B. At large E , β increases very slowly.
The dots mark the points where the ground-state dispersion relation
becomes flat and where one needs to include in the effective theory
terms that are of higher order in momentum (see Sec. VI). Here we
use Lx = Lz = 22 nm.
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FIG. 9. Comparison of the effective parameters of Ge NWs with different geometries with (dashed lines) and without (solid lines) strain,
obtained by the numerical diagonalization of the Hamiltonian in Eq. (1), as described in the text. Here � denotes a NW with a square cross
section (blue) and © a NW with a circular cross section (orange); ch denotes the one-dimensional gate-defined channel (green). With s we
label strained devices (|εs| = 0.62% [51], εs > 0 for the NW, and εs < 0 for the channel). (a) Effective g factor geff . In the NW, this quantity
has a minimum that persists even in the presence of strain. (b) SOI strength αso. The maximum value of αso is reached at comparably weak
electric field without strain. With strain a stronger electric field is required to reach the largest SOI. (c) Average effective mass 1/m̄. This
quantity tends to converge to a value close to γ1/m and in unstrained NWs with circular cross section, it is negative at small E . Here B = 2 T,
L = 22 nm, R = L/

√
π ≈ 12.4 nm, and lx = L/π ≈ 7 nm.

direction is

U (x) = h̄2γ1

2ml4
x

x2 (68)

and is parametrized by the harmonic length lx. To describe this
case, we use the first 16 eigenstates of the harmonic oscillator.
For the NW with circular cross section with radius R, we
discretize the cross section in real space. To compare different
cross sections we choose lx = L/π and R = L/

√
π , with L

the side length of the square NW.
Furthermore, here we study the effect of strain. For the NW

we consider strain induced in the Ge core by a Si shell of rela-
tive thickness γ = (Ls − L)/L = 0.1 [γ = (Rs − R)/R = 0.1
for cylindrical NW]. The strain in the NW is included by the
BP Hamiltonian in Eq. (5). In contrast, in the two-dimensional
heterostructure, the strain is controlled via the percentage of Si
in the SiGe layers and it is aligned perpendicular to the two-
dimensional plane as explained in Sec. II [see in particular
Eq. (6)]. A comparison between the effective parameters of
the unstrained (solid lines) and strained (dashed lines) devices
is shown in Figs. 9 and 10.

The g factors, shown in Fig. 9(a), are similar for both NW
geometries at weak electric fields and only weakly depend
on strain. In this case, the shape of the NW does not play
a relevant role because the wave function is centered in the
middle of the cross section, away from the edges. On the
one hand, at strong electric fields the one-dimensional channel
resembles a square-cross-section NW because the wave func-
tion is compressed at the top of the Ge layer and the parabolic
confinement in x becomes less relevant. On the other hand, the
difference between circular and square cross sections becomes
increasingly important when the wave function is compressed
to the top of the NW.

Moreover, strain generally increases the g factor at weak
electric field and moves its minimal value to stronger
electric fields. At larger electric fields the g factor of the NWs

with strain becomes smaller than without strain. Strain affects
much more the one-dimensional channel compared to the NW
and it increases the g factor at E = 0 by almost a factor of 3.
At strong electric field the values with and without strain are

FIG. 10. Comparison of the spin-dependent masslike term β in
Ge NWs with different geometries with (dashed lines) and without
(solid lines) strain as a function of perpendicular magnetic field
B in the z direction. These results are obtained by the numeri-
cal diagonalization of the Hamiltonian in Eq. (1). Here � denotes
the square cross section, © the circular cross section, and ch the
one-dimensional gate-defined channel. With s we label the lines
with strain (|εs| = 0.62% [51], εs > 0 for the NW, and εs < 0 for
the channel). Time-reversal symmetry at B = 0 demands β = 0. At
small B we observe a linear increase regardless of the geometry and
strain. Here E = 2 V μm−1, L = 22 nm, R = L/

√
π ≈ 12.4 nm, and

lx = L/π ≈ 7 nm.
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closer to each other, but the strained channel still has a larger
g factor.

In addition, in all cases the SOI strength increases linearly
with E at weak electric fields. However, at large E , the be-
havior of the SOI strength depends on the cross section and
it either saturates or reaches a maximum before decreasing.
These trends are shown in Fig. 9(b). Without strain the SOI
for the square NW and the 1D channel reaches a maximum at
around E = 2–3 V μm−1, while the cylindrical NW increases
monotonically in the whole range of E studied, from E = 0
to E = 20 V μm−1. In general, strain decreases the SOI at
weak electric field since the SOI is inversely proportional to
the HH-LH gap, which increases with strain [12]. At stronger
electric fields, however, the situation changes for the NW
devices. In fact, the SOI is larger in the strained NW because
the HH-LH gap is decreased by strain (not shown here) and
thus the negative effect of strain on the SOI can be overcome
by applying stronger electric fields. The reduction of the SOI
due to strain at weak electric field is also reported in Ref. [72].

Next, Fig. 9(c) shows the average effective mass 1/m̄ as
a function of the electric field. In analogy to the analysis in
Sec. IV, this quantity reaches a value close to γ1/m at strong
electric fields, which is slightly increased by strain. At low
electric fields E < 2 V μm−1, the NWs however present small
average masses. In particular, we observe that in NWs with a
circular cross section, the average mass is negative 1/m↑ < 0.
The average mass remains negative at low electric field in a
broad range of magnetic fields, from B = 0 to fields above
B = 10 T. However, even when the mass is negative, there
are additional terms that are of higher order in k that ensure
the positive curvature of the dispersion relation at large k,
as discussed in Sec VI B. Thus, even in these cases, it is
possible to confine a QD in the NW with an electrostatic
potential. Also, in strained devices, the average mass remains
positive. In Appendix B we highlight the differences in the
dispersion relation of a NW with circular cross section and
having positive and negative average effective masses.

Finally, in Fig. 10 we show the spin-dependent mass term
β. Regardless of the geometry and strain, β is linear in B at
weak magnetic field. Although this term is typically small, at
sufficiently low electric field, it is not negligible and it affects
the g factor of an elongated QD created by gating the NW, as
shown in the next section.

VI. QUANTUM DOT PHYSICS

This section is dedicated to the physics of a QD in a NW.
The dot is defined by an electrostatic confinement potential
from gates as sketched in Fig. 1(a). In Sec. VI A we focus on
the QD g factor and show how strain can be used to tune the
position of its minimum such that it occurs at the same electric
field where the SOI is maximal. These conditions provide an
ideal working point in the parameter space, where the qubit
can be driven fast, but at the same time the decoherence rate
is diminished by a reduced sensitivity to charge noise [73,74].
At this sweet spot, we predict ultrafast qubits at low power.
In Sec. VI B we analyze the effective NW model in Eq. (59)
for small ky and show that this model works generally well,
except at specific fine-tuned parameters where one needs to
include corrections of higher order in momentum.

In the model given by Eq. (59), the eigenenergies expanded
around ky = 0 are

E↑/↓ = ±EZ

2
+ E (2)

↑/↓k2
y + O

(
k4

y

)
, (69)

with Zeeman energy EZ = geffμBB [see Eq. (60)] and

E (2)
↑/↓ = h̄2

2m̄
∓ β ± α2

so

EZ
. (70)

In inversion symmetric cross sections and at zero electric field,
the SOI αso is zero [71]. As the SOI increases with the electric
field, the spectrum gradually splits into two separate parabolas
with minima at a finite value of ky; at ky = 0, these bands are
split by EZ = geffμBB. We note that for a certain combination
of electric and magnetic fields, the mass of the ground state
vanishes, i.e., E (2)

↓ = 0. In particular, this occurs when

E (2)
↓ = 0 ⇒ EZ = α2

so
2m̄

±h̄2 + 2βm̄
(71)

⇔ m↓ = EZ h̄2

2α2
so

. (72)

In the vicinity of this point our model quadratic in ky is not
valid and would predict the appearance of a flat band. In this
case, we extend our results to fourth order in ky. The points
where E (2)

↓ = 0 are marked with dots in Figs. 5, 7, and 8 and
the spectrum at one of these points is shown in Fig. 11(b). In
this figure we also show the spectrum for different electric
fields and compare our analytical theory in Eq. (59) with
numerical results obtained by diagonalizing H in Eq. (1) using
the basis in Eq. (58). We observe that in general the spectrum
is well described by an effective Hamiltonian quadratic in
ky. When E = 0, this effective model fits the ground-state
dispersion nicely; however, the dispersion of the first excited
state is qualitatively correct only up to momenta |0.3/L|
and it requires additional higher-order corrections for larger
ky. Moreover, as anticipated, there are points, e.g., at E =
0.49 V μm−1, where E (2)

↓ = 0, and the O(k2
y ) model gives a

relatively flat ground-state dispersion. In this case, also the
exact ground-state dispersion is rather flat and can be well
described by including terms proportional to k4

y .

A. Qubit operation

Having shown the validity of the effective model in
Eq. (59), we now use it to analyze a QD. In particular, we
study the QD g factor and its sweet spot, and by including
an ac electric field Ey(t ) applied along the NW, we calculate
the frequency of Rabi oscillations induced by EDSR [75].
Here we consider parameters that are sufficiently far away
from the vanishing effective mass condition in Eq. (72). We
consider a harmonic confinement potential Vc = 1

2 m̄ω2y2 with
the harmonic length ly = √

h̄/m̄ω along the NW. Following
Ref. [52], we further introduce the external driving Hamilto-
nian HD(t ) = −h̄ky∂t dy(t ) with the time-dependent position
of the center of the QD dy(t ). We restrict the motion of the
QD to the y direction even if the ac field is not perfectly
aligned to the NW since the QD is strongly confined in the
directions perpendicular to the NW. This leads to the total NW
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FIG. 11. Dispersion relations of a NW with square cross section of side length L = 22 nm at B = 2 T for (a) E = 0, (b) E = 0.49 V μm−1,
and (c) E = 3 V μm−1. The figures compare the exact numerical solution (black solid line) obtained by the diagonalization of the Hamiltonian
in Eq. (1), the effective model quadratic in ky (red dashed line) in Eq. (59), and the effective model quartic in ky (blue dash-dotted line) discussed
in Sec. VI B. We observe that the ground-state dispersion is well described by both effective models around k = 0. Only when the condition
from Eq. (72) is fulfilled as in (b), the O(k2

y ) model gives rise to a flat lowest-energy band and quartic corrections become more relevant.

Hamiltonian

HW = h̄2

2m̄
k2

y + g̃
B

2
σz + αsokyσx + Vc + HD(t ), (73)

where we introduce g̃ = μBgeff − β0k2
y with the NW g fac-

tor geff . Because at weak magnetic fields β ∝ B, we also
define the quantity β0 = β/B (cf. Figs. 8 and 10). The spin-
dependent transformation [29] S = e−iσxy/lso removes the SOI
via S†(Heff + Vc)S, where we use the spin-orbit length lso =
h̄2/m̄αso. When the confinement energy ω is much larger than
the driving and the Zeeman energy, we obtain an effective
QD Hamiltonian by projecting onto the harmonic-oscillator
ground state at B = Ey(t ) = 0,

HQD = B

2
e−l2

y /l2
so

(
μBgeff − β0

2l2
y

)
︸ ︷︷ ︸

=:gQDμB

σz + h̄∂t dy(t )

lso
σx. (74)

We now discuss the parameters of the QD theory.
In Fig. 12 we show the effective renormalized QD g factor

gQD [22,29,76] for a QD in a NW with a square cross sec-
tion of side length Lx = 22 nm and QD confinement length
ly = 35 nm. Without strain the QD g factor has a minimum
at weak electric field [see Fig. 12(a)]. With strain, as shown
in Fig. 12(b), the situation is drastically altered. First, in
agreement with the analysis in Sec. V, we observe that the
QD g factor increases with strain. Furthermore, strain shifts
the g factor sweet spot to larger electric fields. We find the
minimal value gQD = 3.2 with strain at the static electric field
in the z direction Esw = 14.3 V μm−1 instead of gQD = 1.3 at
Esw = 0.4 V μm−1 and at B = 0.1 T.

Importantly, including strain the sweet spot of the g factor
occurs exactly at the same value of the electric field that
maximizes the SOI (E = 14.3 V μm−1) [see Fig. 9(b)]. Also,
we remark that because of the term β0 in Eq. (74), one can
tune the position of these sweet spots by adjusting the size of
the QD via the harmonic length ly. The dependence of gQD

on ly is examined in detail in Fig. 13, where we show that
at certain values of ly, the minimal value of gQD coincides

with the optimal SOI. These working points are ideal for qubit
manipulation because they maximize the speed of operation
while reducing drastically the effect of charge noise [73,74].

Moreover, when the harmonic drive is given by Ey(t ) =
Eac sin(ωDt ), we can calculate the Rabi frequency ωR at the
resonance

ωD = e−l2
y /l2

so

(
μBg − β0

l2
y

)
B (75)

as [52]

ωR = ly
2lso

(
ly

lEγ
1/3
1

)3 Eac

E
ωD. (76)

At the g-factor sweet spot and at B = 0.1 T, we reach with the
realistic driving field amplitude Eac = 0.02 V μm−1 the ex-
tremely large Rabi frequency ωR = 3.7 GHz with a resonant
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FIG. 12. Effective g factor gQD of a Ge NW QD according to
Eq. (74) as a function of the electric field E at kz = 0 for different
values of the magnetic field B. The NW has a square cross section of
side length L = 22 nm and the QD confinement length is ly = 35 nm.
(a) The sweet spot is at very small electric fields, where the NW is
unstrained, and (b) it is shifted to larger electric fields when strain is
included. We consider here a strain tensor element εs = 0.62%.
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FIG. 13. Position of the sweet spot Esw (black solid line) of the
effective g factor gQD in a strained Ge NW QD as a function of
the QD confinement length ly. We consider here B = 0.1 T and we
calculated gQD [see Eq. (74)] numerically by using the discrete basis
defined in Eq. (58) for diagonalizing H defined in Eq. (1). The NW
has a square cross section of side length L = 22 nm. The blue solid
line shows the value of gQD at the sweet spot and the horizontal black
dashed line marks the electric field at which the SOI is maximal. By
changing the size of the QD, ly, we can tune the position of the sweet
spot of gQD to be at the same value of the electric field at which SOI
also achieves its maximum strength.

driving frequency of ωD = 4.5 GHz. These results indicate
that in the setups analyzed here, one can perform ultrafast
qubit operations at low power.

For a complete picture of the qubit, we estimate the de-
phasing rate when the QD is left in the idle state. For this aim
we assume 1/ f -charge noise and small fluctuations δE of the
electric field. This results in an approximate dephasing rate of
[52,71,77,78]

1

T ∗
2

= μBB
√

〈δE2〉∂gQD

h̄∂E

√
1

2π
ln

(
gQDμBB

√
〈δE2〉

h̄ωir

)
, (77)

where we assume a cutoff frequency of ωir = 1 Hz. At the
sweet spot the qubit is protected against fluctuations of the g
factor, but it is not protected against other sources of noise
such as random fluctuations of ly due to gate potential fluc-
tuations or hyperfine noise, which could still be addressed by
appropriately designing the QD [45,71]. Moreover, in echo
experiments the dephasing rate can be further reduced. For a
detailed analysis of charge noise sources for hole-spin qubits
in quantum dots in diamond crystal structure materials such
as Si and Ge, see Ref. [79]. A detailed analysis of all noise
sources in Ge NWs is of interest but is beyond the scope of
the present work.

In Fig. 14 we give an overview over the important param-
eters for qubit operations. Figures 14(a)–14(c) show the Rabi
frequency ωR, the resonance driving frequency ωD, and the
dephasing rate 1/T ∗

2 as a function of electric and magnetic
field. The Rabi and resonance driving frequencies increase
linearly with the magnetic field as we can see in Eqs. (75)
and (76). For electric fields E > 10 V μm−1 both frequencies
stay almost constant as E increases. The dashed vertical lines

in all plots mark E = 14.3 V μm−1, where the decoherence
rate has a minimum. Since we only account for charge noise
due to g-factor fluctuations, the decoherence rate is zero at the
first-order minimum. With our very simple model for deco-
herence, we predict away from the sweet spot a large quality
factor of 300 at E = 8 V μm−1 and B = 50 mT compared to
18 [19] or 45 [18] measured in a Ge hut-wire experiment. The
figures show that for reasonable values of Eac the qubit can
be driven so fast that corrections beyond the rotating-wave
approximation will come into play. For more moderate driving
power, still very fast Rabi rotations that do not invalidate the
approximations are achievable. In Fig. 14(d) we present the
spin-orbit energy Eso = m̄αso/2h̄2 as a function of E since
it depends only slightly on the magnetic field, similarly to
the QD g factor in Fig. 12. The maximum spin-orbit energy
coincides with the maximum coherence time of the qubit.

B. Beyond the harmonic approximation

In the following we discuss in more detail the case of
E (2)

↓ = 0. Including the term H4 = ( A+
2 + A−

2 σz )k4
y , coming

from fourth-order perturbation theory, in ky, the eigenenergies
are modified as

E↑/↓ = ±EZ

2
+
(

h̄2A↓ + h̄2α2
so

2E2
Z |m↑|

)
k4

y + O
(
k6

y

)
, (78)

where we define A↓/↑ = (A+ ∓ A−)/2. The Hamiltonian H4

completely determines the spectrum when E (2)
↓ = 0. The

spectrum given by the effective model in Eq. (59) including
the term H4 is shown in Fig. 11 with blue lines. The values
of the parameters A↑ and A↓ used in the figure are given in
Table I. For large ky, the quartic Hamiltonian gives a better es-
timate for the ground-state dispersion compared to quadratic
model in Eq. (59).

We point out that when the mass vanishes, there are many
energy states that are close in energy and thus we envision that
this regime could be interesting for simulations of strongly
correlated matter, e.g., the Sachdev-Ye-Kitaev model [80–82].
We now estimate the number of states we can put into such
a QD. To do so, we consider a harmonic QD confinement
Vcy2 = 1

2 m̄ω2y2 with the confinement length ly = √
h̄/m̄ω

along the NW. Then we solve the differential equation(
E (2)

↓ k2
y + E (4)

↓ k4
y + Vcy2)φ(ky) = Eφ(ky) (79)

numerically and find its lowest eigenvalues. This proce-
dure allows us to see how many states can coexist in the
QD below a certain energy threshold ET = kBT set by the
temperature. In what follows we focus on the number of states
at T = 1 K. With a confinement length of ly = 186 nm,2 we
obtain Vc = 4.25×10−7 meV nm−2; we consider also a NW
with side length L = 15 nm and magnetic field B = 2 T such
that the condition for vanishing mass in Eq. (72) is fulfilled
at E = 0.72 V μm−1. With these parameters we have in total
eleven single-hole states in the QD, in contrast to a QD with

2We obtain this value from explicitly solving the Laplace equation
for a three-gate setup with gate side length 200 nm, distance between
the gates 100 nm, distance between the QD and the gates 120 nm,
center gate voltage 50 mV, and side gate voltages 55 mV.
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FIG. 14. Qubit parameters of a Ge NW QD as a function of electric and magnetic field. The dashed vertical line marks E = 14.3 V μm−1,
where the minimum of gQD and the maximum of Eso are located. (a) Rabi frequency ωR according to Eq. (76) for Eac = 0.02 V μm−1. The
Rabi frequency increases linearly with B due to the resonance driving frequency ωD and is almost constant with E . (b) Resonance driving
frequency ωD according to Eq. (75). (c) Dephasing rate 1/T ∗

2 according to Eq. (77). Independently of the magnetic field, 1/T ∗
2 has a minimum

at E = 14.3 V μm−1. However, for stronger B the dephasing rate increases faster when the electric field is not exactly at the sweet spot. (d) The
spin-orbit energy Eso = m̄αso/2h̄2, as well as the QD g factor in Fig. 12, starts to depend on the magnetic field noticeably only at stronger B.
We choose L = 22 nm, ly = 35 nm, and

√
〈∂E 2〉/E = 10−3.

typical effective mass m/γ1, where under the same conditions,
one obtains three states below ET . A detailed analysis of hole-
hole interactions in these system is an interesting problem for
future work, but it goes beyond the scope of the present paper.

VII. BEYOND THE ISOTROPIC APPROXIMATION

In this section we analyze the limits of the isotropic approx-
imation used in the previous sections and commonly adopted
in the literature [54,63,64,72]. As we show in Sec. IV, at
low magnetic fields only the effective g factor is significantly
affected by orbital effects. Thus, we focus on the effective NW
g factor and how it depends on the growth direction with and
without orbital effects.

TABLE I. Explicit values for A↑ and A↓ used in Fig. 11 calcu-
lated numerically in fourth-order perturbation theory.

A↓/↑ (eV nm4) E = 0 E = 0.49 V μm−1 E = 3 V μm−1

A↑ 0.358 −8.19 −4.61
A↓ 183 55.3 −5.88

We use here the general anisotropic LK Hamiltonian

HLK = h̄2

2m
[γkπ

2 − 2γ2
(
π2

x′J2
x′ + π2

y′J2
y′ + π2

z′J2
z′
)

− 4γ3({πx′, πy′ }{Jx′, Jy′ } + c.p.)], (80)

where the primed indices x′, y′, and z′ denote the axes aligned
to the main crystallographic axes [100], [010], and [001], re-
spectively. Strain is included via the isotropic BP Hamiltonian
introduced in Eq. (5) and neglecting corrections coming from
different growth directions [51]. We consider the coordinate
system specified in Fig. 1 including orbital effects via the
Landau gauge A = (0, x, 0)B. Since we are mainly interested
in the orbital effects of the magnetic field, we consider at first
E = 0. To account for different growth directions, we rotate
the LK Hamiltonian and solve for the eigenvalues numeri-
cally as described in Sec. IV. For further information on the
rotations see Appendix C.

In Fig. 15 we show how the effective NW g factor geff

depends on the growth direction of the NW. As in the previous
sections, we consider a NW parallel to y and B ‖ z (see Fig. 1).
In particular, we analyze the four cases shown at the top of
Fig. 15: First, we consider three typical growth directions of
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FIG. 15. Effective g factor geff for different growth directions of the NW, obtained numerically from the diagonalization of the Hamiltonian
given by Eq. (1) and the anisotropic LK Hamiltonian given by Eq. (80), using the discrete basis defined in Eq. (58). The four panels on top
show the rotations of the coordinate system corresponding to the color code in the legend. In each case one axis is fixed and then we rotate
by the angle ϕ around it. For the blue, green, and purple lines the NW axis (y) is fixed parallel to the crystallographic directions [001], [100],
and [111], respectively. For the orange line, we fix z ‖ [001]. The dashed square indicates the NW cross section and how it is fixed with
respect to the coordinate axes. (a) Without orbital effects, without strain; (b) without orbital effects, with strain; (c) with orbital effects, without
strain; and (d) with orbital effects, with strain. The g factor depends on the growth direction and this dependence changes when orbital effects
are included. This leads to the conclusion that the isotropic approximation is not well justified in Ge NWs in a general case without strain.
In core/shell NWs with strain the isotropic approximation is better justified. We choose a NW with a square cross section with side length
Lx = Lz = 22 nm, B = 0.1 T, E = 0, and strain tensor element εs = 0.62%.

a NW (y ‖ [001], [110], and [111]) and, second, we consider
a magnetic field aligned to a main crystallographic axis, i.e.,
B ‖ [001] ‖ z. We also rotate the coordinate system by an

angle ϕ according to Table II. More specifically, by varying
ϕ in the first case, the magnetic field points along differ-
ent crystallographic axes, and in the second case the growth

TABLE II. For each line in Fig. 15 we fix one axis and then rotate around this axis as shown below. We use the coordinate system with the
NW parallel to z and B ‖ x.

Fixed axis Rotation Rotation

z ‖ [001] x ‖ − sin(ϕ)[100] − cos(ϕ)[010] y ‖ cos(ϕ)[100] − sin(ϕ)[010]
x ‖ [001] y ‖ cos(ϕ)[100] − sin(ϕ)[010] z ‖ sin(ϕ)[100] + cos(ϕ)[010]

z ‖ [110] x ‖ − sin(ϕ)√
2

[100] + sin(ϕ)√
2

[010] + cos(ϕ)[001] y ‖ cos(ϕ)√
2

[100] − cos(ϕ)√
2

[010] + sin(ϕ)[001]

z ‖ [111]
x ‖ ( cos(ϕ)√

6
− sin(ϕ)√

2
)[100] −

√
2
3 cos(ϕ)[010]

+( cos(ϕ)√
6

+ sin(ϕ)√
2

)[001]

y ‖ ( cos(ϕ)√
2

+ sin(ϕ)√
6

)[100] −
√

2
3 sin(ϕ)[010]

+( − cos(ϕ)√
2

+ sin(ϕ)√
6

)[001]

075308-17



CHRISTOPH ADELSBERGER et al. PHYSICAL REVIEW B 105, 075308 (2022)

TABLE III. Explicit crystallographic directions for certain rotation angles ϕ. We use the coordinate system with the NW parallel to z and
B ‖ x.

Direction ϕ = 0 ϕ = π/4 ϕ = π/2 ϕ = 3π/4 ϕ = π

z ‖ [001] x ‖ [01̄0], y ‖ [100] x ‖ [1̄1̄0], y ‖ [11̄0] x ‖ [1̄00], y ‖ [01̄0] x ‖ [1̄10], y ‖ [1̄1̄0] x ‖ [010], y ‖ [1̄00]
x ‖ [001] y ‖ [100], z ‖ [010] y ‖ [11̄0], z ‖ [110] y ‖ [01̄0], z ‖ [100] y ‖ [1̄1̄0], z ‖ [11̄0] y ‖ [1̄00], z ‖ [01̄0]
z ‖ [110] x ‖ [001], y ‖ [11̄0] x ‖ [1̄10], y ‖ [001] x ‖ [001̄], y ‖ [1̄10]
z ‖ [111] x ‖ [12̄1], y ‖ [101̄] x ‖ [1̄01], y ‖ [12̄1] x ‖ [1̄21̄], y ‖ [1̄01]

direction of the NW changes. (Note that to improve readabil-
ity, in Tables II and III and Appendix C, we choose a different
coordinate system compared to that used here. In particular,
the coordinate system in the main text is related to the one in
Appendix C by the replacements x → y, y → z, and z → x.)

The orange curve in Fig. 15 shows the g factor when the
magnetic field B ‖ z is aligned to one of the main crystal-
lographic axes, i.e., B ‖ [100], [010], [001], while the blue
curve shows geff when the NW is aligned to these axes, i.e.,
y ‖ [100], [010], [001]. At the angles ϕ = 0, π/2, π , these
two curves describe the same situation and thus the values of
geff coincide. In analogy, the orange curve at ϕ = π/4, 3π/4
describes a NW grown in the [110] direction with a magnetic
field aligned to a main crystallographic axis; this case is equiv-
alently described by the green line at ϕ = π/2.

Moreover, the black dotted curve shows the values of the
NW g factors in the isotropic approximation and is indepen-
dent of the angle ϕ. In the other cases, however, we expect
the g factor to be an oscillating function of ϕ. These oscilla-
tions can have a rather large amplitude when y ‖ [001] and
y ‖ [110]. Without orbital effects [see Fig. 15(a)], geff varies
at most of ±20% from the g factor obtained with the isotropic
approximation and therefore this approximation is justified in
this case.

To have a better understanding of the origin of these os-
cillations, we refer to Appendix C, where we report explicit
expressions of the LK Hamiltonian in all the cases considered
here (note the different coordinate system used in Appendix
C). In particular, when the NW is parallel to [001], the LK
Hamiltonian in Eq. (C2) has a term proportional to e±4iϕ that
modulates the amplitude of the coupling between spin ± 3

2 to
spin ∓ 1

2 . This modulation leads to a change of the HH-LH
mixing with ϕ and thus to an oscillation of the g factor with
a periodicity of π/2. The maximum LH contribution to the
ground state is obtained at ϕ = π/4, where the g factor is
minimal. In analogy, the orange curves corresponding to the
case where B ‖ z ‖ [001] have a similar ϕ dependence, which
can also be explained by a term proportional to cos(4ϕ). In
contrast, when the NW is parallel to [110] (green curve) the ϕ-
dependent coupling between spins ± 3

2 and ∓ 1
2 is proportional

to e±iϕ [see Eq. (C3)], resulting in a π -periodic geff.
Interestingly, we note that the oscillations disappear when

y ‖ [111] (purple line). In this case, in fact, the rotation angle
ϕ only changes the phase of the HH-LH matrix elements in
the LK Hamiltonian, but it does not affect their amplitude [see
Eq. (C4)]. Consequently, ϕ does not modify the g factor at
ky = 0.

We obtain a similar result with strain [cf. Fig. 15(b)].
The deviation from the g factor with isotropic approximation

(dashed lines in Fig. 15) is less than 5%. Hence, with strain
the isotropic approximation is even more justified than in the
unstrained case. This difference can be explained by the larger
subband gap between the two lowest-energy states and the
excited states with strain [11]. Interestingly, with and without
strain, the g factor for the NW parallel to [110] is closest to the
isotropic approximation for ϕ = π/4, 3π/4 corresponding to
B being parallel to highly nonsymmetric directions.

Including orbital effects in our calculations changes drasti-
cally the picture. Without strain [cf. Fig. 15(c)], for specific
angles the g factor can vary up to 60% from the isotropic
approximation. This large variation occurs when B ‖ [001]
with ϕ = π/4 and ϕ = 3π/4, where x ‖ [110] and the NW
is parallel to [1̄10] and where x ‖ [11̄0] and the NW is par-
allel to [110], respectively, and the NW is parallel to [110]
with ϕ = 0 where B ‖ [11̄0] and x ‖ [001̄] and with ϕ = π

where B ‖ [1̄10] and x ‖ [001]. With such a large deviation,
the isotropic approximation is not well justified anymore to
describe the g factor correctly. For the NW parallel to [111],
the g factor oscillates now slightly with the angle between
6.31 and 6.32 due to an additional angle dependence in the
orbital effect terms that couple spin ± 3

2 to spin ∓ 1
2 states

[see Eq. (C4)]. Because of the triangular symmetry of the
crystal when the NW is parallel to [111], the periodicity
is π/3.

Additionally including strain into our calculations gener-
ally increases the g factor and brings it closer to the g factor
with isotropic approximation. In this case, the maximum devi-
ation from the g factor with isotropic approximation is around
20%. These results show the profound impact of the magnetic
orbital effects even at weak magnetic fields and they show how
big the influence of strain can be.

In conclusion, our results show that without strain the
isotropic approximation is justified only in special cases
where the effective g factor depends only weakly on the ro-
tation angle. With strain the results for the g factor deviate
less from the result with isotropic approximation, and thus
increasing the strain by using a thicker Si shell would render
the Ge core even more isotropic.

VIII. CONCLUSION

We derived a low-energy effective one-dimensional model
that describes the physics of confined hole systems when
electric and magnetic fields are applied in one of the confined
directions. We developed an analytic approach to quantify the
spin-orbit interactions of this model and, assisted by numer-
ical calculations, we investigated the dependence of the SOI,
g factor, and effective masses on the applied fields, on strain,
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and on the magnetic orbital effects. These effects are crucial
to have a good description of the system.

In particular, by complementing the analytical approach
with numerical calculations, we found that the g factor is
strongly renormalized by orbital effects even at low magnetic
fields. Moreover, the orbital effects introduce a strong depen-
dence of the g factor on the material growth direction, which
leads to a breakdown of the isotropic approximation typically
employed for Ge.

We found excellent agreement between analytically and
numerically computed SOIs in the weak electric field limit.
At strong fields, our analytical theory captures the qualitative
trend of the numerical results, but is quantitatively impre-
cise. We also found that the SOI decreases with increasing
magnetic field. Our analysis enables a better understanding of
approximately isotropic semiconductor NWs including orbital
effects. Moreover, we showed that a square cross section is not
the best choice for optimizing the SOI and that the optimal
NW cross section is rectangular with a width that depends
on the electric field as Lx ≈ 2.74lEγ1. We also identified an
extra term that can be interpreted as a spin-dependent effective
mass.

The analysis of different NW geometries revealed that at
low electric field circular and square cross sections are very
similar, while in the strong field limit (typically reached for
E > 3 V μm−1) a gate-defined one-dimensional channel is
comparable to the square cross section. Furthermore, we ana-
lyzed the influence of strain and observed that it increases the
g factor and reduces the SOI at weak electric field.

We showed that in a QD in qubit operation mode it is
possible to tune the SOI maximum and the g-factor sweet
spot to be at the same electric field by designing strain and
confinement potential. At the sweet spot we predicted Rabi
frequencies in the gigahertz range at low power, enabling
ultrafast gates. With this result it was possible to optimize
electrically controlled qubits in Ge NW QDs and we be-
lieve a similar optimization is possible in other approximately
isotropic semiconductor NWs.

The effective model (59) we presented is valid for most of
the relevant NW growth directions. We discussed the growth
direction dependence of the g factor and showed that orbital
effects play an important role, even at low magnetic field, but
that they can be counteracted by strain. Finally, we observed
that the effective NW model can break down at certain electric
and magnetic fields, resulting in a flat band over k. In these
cases the physics is dominated by a k4 term. This interesting
working point could open up the possibility of investigating
strongly correlated systems in QDs.
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APPENDIX A: WAVE FUNCTIONS
WITH ORBITAL EFFECTS

In this Appendix we provide some details on the wave
functions in which orbital effects are included exactly. If we
neglect the parity-mixing term H

ky=0
mix , the general solutions

for the wave functions of H0 = Hzz + HZ + HE + H
ky=0
xy with

orbital effects are written as

�λ
↑(x, z) =

⎛
⎜⎜⎝

φH
nz

(z)�λ
↑,H(x)

0
φL

nz
(z)�λ

↑,L(x)
0

⎞
⎟⎟⎠, (A1)

�λ
↓(x, z) =

⎛
⎜⎜⎝

0
φL

nz
(z)�λ

↓,L(x)
0

φH
nz

(z)�λ
↓,H(x)

⎞
⎟⎟⎠, (A2)

where the z part φH/L
nz

(z) is given by Eq. (19) and the spinor
components of the in-plane contribution read

�λ
↑,H(x) = ψλ

η−+2

(
Lx

2

)
cλ
↑(η+)ψλ

η+ (x)

− ψλ
η++2

(
Lx

2

)
cλ
↑(η−)ψλ

η− (x), (A3)

�λ
↑,L(x) = ψλ

η−+2

(
Lx

2

)
ψλ

η++2(x)

− ψλ
η++2

(
Lx

2

)
ψλ

η−+2(x), (A4)

�λ
↓,L(x) = ψλ

χ−+2

(
Lx

2

)
cλ
↓(χ+)ψλ

χ+ (x)

− ψλ
χ++2

(
Lx

2

)
cλ
↓(χ−)ψλ

χ− (x), (A5)

�λ
↓,H(x) = ψλ

χ−+2

(
Lx

2

)
ψλ

χ++2(x)

− ψλ
χ++2

(
Lx

2

)
ψλ

χ−+2(x), (A6)

where η± are the two solutions of the quadratic equation

ε−1/2
z (nz )

h̄ωc
− ε + γ−

(
η + 5

2

)
= 3γ 2

s (η + 2)(η + 1)
〈
φH

nz

∣∣φL
nz

〉2
ε

3/2
z (nz )
h̄ωc

− ε + γ+
(
η + 1

2

)
(A7)

and χ± the solutions of

ε−3/2
z (nz )

h̄ωc
− ε+γ+

(
χ+5

2

)
= 3γ 2

s (χ + 2)(χ + 1)
〈
φH

nz

∣∣φL
nz

〉2
ε

1/2
z (nz )
h̄ωc

−ε+γ−
(
χ + 1

2

) .

(A8)

The constants are defined as

ce
↑(η) = (γ1 − γs)

(
η + 5

2

)− ε + ε−1/2
z (nz )/h̄ωc√

3γs
〈
φH

nz

∣∣φL
nz

〉
(η + 1)

, (A9)

co
↑(η) = (γ1 − γs)

(
η + 5

2

)− ε + ε−1/2
z (nz )/h̄ωc√

3γs
〈
φH

nz

∣∣φL
nz

〉
(η + 2)

, (A10)
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ce
↓(χ ) = (γ1 + γs)

(
χ + 5

2

)− ε + ε−3/2
z (nz )/h̄ωc√

3γs
〈
φH

nz

∣∣φL
nz

〉
(χ + 1)

, (A11)

co
↓(χ ) = (γ1 + γs)

(
χ + 5

2

)− ε + ε−3/2
z (nz )/h̄ωc√

3γs
〈
φH

nz

∣∣φL
nz

〉
(χ + 2)

. (A12)

Imposing the hard-wall boundary conditions on �λ
↓,H and

�λ
↓,L, we calculate the eigenvalues ε numerically.

APPENDIX B: DISPERSION RELATION
WITH NEGATIVE AVERAGE MASS

In this Appendix we show a plot of the dispersion rela-
tion of a NW with a circular cross section of radius R =
22 nm/

√
π . We choose the same parameters as in Fig. 9 in

the main text and show the dispersion relation in Fig. 16(a)
with negative average effective mass and in Fig. 16(b) with
positive effective mass. Interestingly, we observe a crossing
between the lowest two states close to ky = 1/2R at E = 0
which becomes an anticrossing for larger electric field due to
the SOI. As already mentioned in the main text, terms higher
order in ky make sure

−1 0 1
ky (1/R)

−1.0

−0.5

0.0

0.5

1.0

E
n

,↑
/
↓

(m
eV

)

E = 0

−1 0 1
ky (1/R)

E = 1 V �m−1

(a) (b)

FIG. 16. Dispersion relation of the lowest-energy states of a cir-
cular NW calculated numerically by diagonalizing the Hamiltonian
in Eq. (1) as described in Sec. IV for (a) E = 0 and m̄ < 0 and (b)
E = 1 V μm−1 and m̄ > 0. Here B = 2 T and R = 22 nm/

√
π .

that the dispersion relation has a positive curvature at large
values of ky even when m̄ < 0.

APPENDIX C: ROTATIONS OF THE LK HAMILTONIAN

In the main text we consider the situations where the NW is parallel to y as well as z ‖ B. In the following we switch to a
different coordinate system in order to express the LK Hamiltonian where the spin quantization axis is aligned along the NW
axis. This is a more convenient basis for the interpretation of the matrix elements of the LK Hamiltonian. To switch to the new
coordinate system, we make the replacements x → y, y → z, and z → x. Then the NW is parallel to the z axis and the magnetic
field is parallel to the x axis.

For each case considered we keep one coordinate axis fixed parallel to a certain crystallographic axis and rotate around this
axis as specified in Table II and as illustrated at the top of Fig. 15. The rotations around the fixed main crystallographic axis
are performed via standard Euler rotation matrices R. Then we only need to solve the equations for the momenta k j and spin- 3

2
matrices Jj , j = x, y, z, ⎛

⎝kx′

ky′

kz′

⎞
⎠ = R

⎛
⎝kx

ky

kz

⎞
⎠,

⎛
⎝Jx′

Jy′

Jz′

⎞
⎠ = R

⎛
⎝Jx

Jy

Jz

⎞
⎠, (C1)

and plug them into the LK Hamiltonian in Eq. (80). For certain angles ϕ we give the crystallographic directions to which the
coordinate axes are parallel in Table III.

The LK Hamiltonians for the different growth directions fixed along the z axis discussed in the main text are, given in the
coordinate system with the NW parallel to z and B ‖ x,

Hz‖[001]
LK = h̄2

2m

⎡
⎢⎣
⎛
⎜⎝

(γ1 + γ2)π+π− 0 M 0
0 (γ1 − γ2)π+π− 0 M

M∗ 0 (γ1 − γ2)π+π− 0
0 M∗ 0 (γ1 + γ2)π+π−

⎞
⎟⎠

+

⎛
⎜⎜⎝

0 −2
√

3γ3π− 0 0
−2

√
3γ3π+ 0 0 0
0 0 0 2

√
3γ3π−

0 0 2
√

3γ3π+ 0

⎞
⎟⎟⎠πz+

⎛
⎜⎝

γ1 − 2γ2 0 0 0
0 γ1 + 2γ2 0 0
0 0 γ1+2γ2 0
0 0 0 γ1−2γ2

⎞
⎟⎠π2

z

⎤
⎥⎦,

(C2)

Hz‖[110]
LK = h̄2

2m

⎡
⎢⎢⎢⎣
⎛
⎜⎝

N+ 0 O 0
0 N− 0 O

O∗ 0 N− 0
0 O∗ 0 N+

⎞
⎟⎠ +

⎛
⎜⎝

0 −P 0 0
−P∗ 0 0 0

0 0 0 P
0 0 P∗ 0

⎞
⎟⎠πz
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+

⎛
⎜⎜⎜⎝

1
2 (2γ1 − γ2 − 3γ3) 0

√
3

2 e−2iϕ (γ2 − γ3) 0

0 1
2 (2γ1 + γ2 + 3γ3) 0

√
3

2 e−2iϕ (γ2 − γ3)√
3

2 e2iϕ (γ2 − γ3) 0 1
2 (2γ1 + γ2 + 3γ3) 0

0
√

3
2 e2iϕ (γ2 − γ3) 0 1

2 (2γ1 − γ2 − 3γ3)

⎞
⎟⎟⎟⎠π2

z

⎤
⎥⎥⎥⎦, (C3)

Hz‖[111]
LK = h̄2

2m

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

(γ1 + γ3)π+π−
√

2
3 e−3iϕ (γ2 − γ3)π2

+ − γ2+2γ3√
3

π2
− 0√

2
3 e3iϕ (γ2 − γ3)π2

− (γ1 − γ3)π+π− 0 − γ2+2γ3√
3

π2
−

− γ2+2γ3√
3

π2
+ 0 (γ1 − γ3)π+π− −

√
2
3 e−3iϕ (γ2 − γ3)π2

+

0 − γ2+2γ3√
3

π2
+ −

√
2
3 e3iϕ (γ2 − γ3)π2

− (γ1 + γ3)π+π−

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 − 2√
3
(2γ2 + γ3)π−

√
8
3 e−3iϕ (γ2 − γ3)π+ 0

− 2√
3
(2γ2 + γ3)π+ 0 0

√
8
3 e−3iϕ (γ2 − γ3)π+√

8
3 e3iϕ (γ2 − γ3)π− 0 0 2√

3
(2γ2 + γ3)π−

0
√

8
3 e3iϕ (γ2 − γ3)π− 2√

3
(2γ2 + γ3)π+ 0

⎞
⎟⎟⎟⎟⎟⎟⎠πz

+

⎛
⎜⎝

γ1 − 2γ3 0 0 0
0 γ1 + 2γ3 0 0
0 0 γ1 + 2γ3 0
0 0 0 γ1 − 2γ3

⎞
⎟⎠π2

z

⎤
⎥⎥⎥⎥⎥⎥⎦, (C4)

with π± = πx ± iπy. The matrix elements are defined as

M = −
√

3

2
[e−4iϕ (γ2 − γ3)π2

+ + (γ2 + γ3)π2
−], (C5)

N± = 1

4
[∓3(γ2 − γ3)(e−2iϕπ2

+ + e2iϕπ2
−) + (4γ1 ± γ2 ± 3γ3)π+π−], (C6)

O =
√

3

8
[3e−4iϕ (γ3 − γ2)π2

+ + 2e−2iϕ (γ3 − γ2)π+π− − (3γ2 + 5γ3)π2
−], (C7)

P =
√

3[e−2iϕ (γ3 − γ2)π+ + (γ2 + γ3)π−]. (C8)

Looking at the πz = kz = 0 parts of the Hamiltonians explains the periodicity of the g factor under rotation by the angle ϕ around
the labeled fixed axis. The off-diagonal matrix elements M [cf. Eq. (C5)] of the Hamiltonian in Eq. (C2) at kz = 0 contain the
exponential exp(−4iϕ) and couple the spins ± 3

2 and ∓ 1
2 . This explains the π/2 periodicity of the effective g factor for the

NW parallel to [001]. Similarly, the Hamiltonian in Eq. (C3) at kz = 0 contains off-diagonal matrix elements O which have a
term proportional to exp(−2iϕ) [cf. Eq. (C7)]. Also, these matrix elements couple spin ± 3

2 to spin ∓ 1
2 and thus explain the π

periodicity of the g factor for the NW parallel to [110]. In contrast to that, the Hamiltonian in Eq. (C4) at kz = 0 contains a
ϕ dependence only in the matrix elements coupling spins ± 3

2 and ± 1
2 . Hence, only the phase of the HH-LH wave function is

changed and not the amplitude leaving the g factor for the NW parallel to [111] unchanged.
The LK Hamiltonian with x ‖ [001], again in the coordinate system with the NW parallel to z and B ‖ x, reads

Hx‖[001]
LK = h̄2

2m

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

Q+ i
√

3
2 (γ2 − γ3) sin(4ϕ)π2

y R 0

− i
√

3
2 (γ2 − γ3) sin(4ϕ)π2

y Q− 0 R

R∗ 0 Q− − i
√

3
2 (γ2 − γ3) sin(4ϕ)π2

y

0 R∗ i
√

3
2 (γ2−γ3) sin(4ϕ)π2

y Q+

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

3
2 (γ2−γ3) sin(4ϕ)πy S

√
3

2 (γ2 − γ3) sin(4ϕ)πy 0

S∗ − 3
2 (γ2 − γ3) sin(4ϕ)πy 0

√
3

2 (γ2 − γ3) sin(4ϕ)πy√
3

2 (γ2 − γ3) sin(4ϕ)πy 0 − 3
2 (γ2 − γ3) sin(4ϕ)πy −S

0
√

3
2 (γ2 − γ3) sin(4ϕ)πy −S∗ 3

2 (γ2 − γ3) sin(4ϕ)πy

⎞
⎟⎟⎟⎠πz
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+

⎛
⎜⎜⎜⎜⎜⎝

T+ − i
√

3
2 (γ2 − γ3) sin(4ϕ)

√
3

2 (γ2 − γ3) sin2(2ϕ) 0

i
√

3
2 (γ2 − γ3) sin(4ϕ) T− 0

√
3

2 (γ2 − γ3) sin2(2ϕ)
√

3
2 (γ2 − γ3) sin2(2ϕ) 0 T− i

√
3

2 (γ2 − γ3) sin(4ϕ)

0
√

3
2 (γ2 − γ3) sin2(2ϕ) − i

√
3

2 (γ2−γ3) sin(4ϕ) T+

⎞
⎟⎟⎟⎟⎟⎠π2

z

⎤
⎥⎥⎥⎥⎥⎦, (C9)

with the explicit matrix elements

Q± = 1

4

[
4(γ1 ± γ2)π2

x + (4γ1 ± γ2 ± 3γ3)π2
y ± 3(γ2 − γ3) cos(4ϕ)π2

y

]
, (C10)

R =
√

3

4

[− 4γ2π
2
x + 8iγ3πxπy + (3γ2 + γ3)π2

y + (γ2 − γ3) cos(4ϕ)π2
y

]
, (C11)

S = i
√

3[2iγ3πx + (γ2 + γ3)πy − (γ2 − γ3) cos(4ϕ)πy], (C12)

T± = 1

4
[4γ1 ∓ 5γ2 ∓ 3γ3 ∓ 3(γ2 − γ3) cos(4ϕ)]. (C13)

The g factor for B ‖ [001] is again π/2 periodic, which is explained well by the matrix element R in Eq. (C11), the only matrix
element coupling spins ± 3

2 and ∓ 1
2 at kz = 0. The matrix element R contains a term proportional to cos(4ϕ) leading to the π/2

periodicity.
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