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Nonclassical light from finite-range interactions in a two-dimensional quantum mirror
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Excitons in a semiconductor monolayer form a collective resonance that can reflect resonant light with
extraordinarily high efficiency. Here, we investigate the nonlinear optical properties of such atomistically thin
mirrors and show that finite-range interactions between excitons can lead to the generation of highly nonclassical
light. We describe two scenarios, in which optical nonlinearities arise either from direct photon coupling to
excitons in excited Rydberg states or from resonant two-photon excitation of Rydberg excitons with finite-range
interactions. The latter case yields conditions of electromagnetically induced transparency and thereby provides
an efficient mechanism for single-photon switching between high transmission and reflectance of the monolayer,
with a tunable dynamical timescale of the emerging photon-photon interactions. Remarkably, it turns out that
the resulting high degree of photon correlations remains virtually unaffected by Rydberg-state decoherence,
in excess of nonradiative decoherence observed for ground-state excitons in two-dimensional semiconductors.
This robustness to imperfections suggests a promising approach to quantum photonics at the level of individual
photons.
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I. INTRODUCTION

The ability to couple light and excitons in a semiconduct-
ing material is foundational to the tremendous developments
in solid-state optics and nanophotonics research [1,2]. Ex-
ploring the regime of quantum photonics, in which synthetic
interactions between photons generate quantum states of
light, remains an exciting scientific challenge, since the op-
tical nonlinearity that underlies such interactions is weak in
most materials. Remarkable advances have been made by
coupling single quantum dots to photonic waveguides [3]
or by reaching strong exciton-photon coupling in semi-
conductor microcavities [4]. The latter has revealed a rich
phenomenology of nonlinear wave phenomena [5–12]. Here,
the collisional interaction between excitons [13,14] and
phase-space filling effects [15,16] gives rise to a Kerr-type
optical nonlinearity that has also been employed in paramet-
ric downconversion experiments [17] or the generation of
intensity-squeezed light [18]. More recently, enhanced mode-
confinement in optical fiber-cavities has made it possible
to observe weakly antibunched light, generated by exciton-
exciton interactions [19,20].

A potential approach to address this challenge and enhance
optical nonlinearities in semiconductors is to use excited
states of excitons [21]. Here, the increased polarizability of
excitons in excited Rydberg states leads to greatly enhanced
interactions [22–24] that can even be large enough to inhibit
photon coupling to multiple excitons within mesoscopic dis-
tances [22]. As successfully demonstrated in experiments with
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atoms [25–27], this Rydberg blockade mechanism indeed
leads to sizable nonlinearities that can be sufficiently large
to induce interactions and strong correlations between indi-
vidual photons. Experiments with Rydberg excitons in Cu2O
semiconductors [28–32] have found evidence for Rydberg
blockade over distances of up to 5 μm [28,33,34], and indeed
suggest a substantial enhancement of optical nonlinearities at
higher exciton excitation levels [34,35]. Yet, nonlinear effects
have thus far been confined to the domain of classical optics,
largely due to the overall weak exciton-photon coupling [28]
in these systems.

Strong light-matter interactions, on the other hand, are
possible in a new class of two-dimensional semiconductors—
monolayer transition metal dichalcogenides (TMDCs)—that
has emerged in recent years and offers new perspectives
for the manipulation of light, due to its promising electro-
optical properties [36,37]. Excitons in this material feature
extraordinarily strong coupling to light [2], and its in-plane
translational invariance renders this coupling highly mode-
selective. This yields a very effective mirror [38–40], where
a single layer of the material can reflect light with more
that 80% efficiency, limited only by lattice defects and other
nonradiative decay mechanisms. While the nonlinearities of
TMDC monolayers due to heat diffusion [40] or collisional
interactions between ground-state excitons [41–44] are gener-
ally small, the possibility to realize a controllable mirror at
the smallest possible scales offers exciting perspectives for
electro-optics applications [45–47] and optomechanics [48].

Here, we explore the combination of finite-range interac-
tions between excitons in excited states and highly coherent
light-matter interactions possible in two-dimensional semi-
conductors. We analyze the resulting photonic nonlinearities
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FIG. 1. (a) A quantum light field R̂in impinges on a two-
dimensional semiconductor. Under strong driving, its largest fraction
is transmitted into R̂out, while well-separated photons are backre-
flected into L̂out. (b) Atomistic model of a monolayered transition
metal dichalcogenide, where a layer of transition metal atoms (green)
is sandwiched between chalcogen atoms (yellow). (c) The exciton
resonance is described by bosonic operators P̂(r), coupled to the
laser field at a coupling strength g with a detuning �. This coupling
produces a natural decay rate γ = g2/c, which can be elevated by
additional decay and dephasing γ̄ .

in this system by solving the correlated quantum many-body
dynamics of laser-driven excitons with strongly interacting
excited states. We identify conditions that afford a mapping to
an isolated saturable emitter, which provides an intuitive un-
derstanding of the generated photon-photon correlations in the
transmitted and reflected light. Remarkably, we find a sizable
antibunching of transmitted photons for surprisingly large
dissipation of the interacting Rydberg state, allowing decay
rates that can approach and even exceed measured linewidths
of ground-state excitons in TMDC monolayers. This robust
mechanism for effective photon-photon interactions together
with the extraordinary optoelectronic properties of TMDC
monolayers [49] offers a promising outlook for the explo-
ration of quantum photonics applications at the nanoscale.
The discussed theory also offers a conceptual framework to
understand the nonlinear behavior of atomic arrays in optical
traps, which feature similar reflection properties [50–53] and
allow Rydberg states to be excited with very high principal
quantum numbers [54–56].

II. TWO-DIMENSIONAL EXCITONS COUPLED TO LIGHT

Transition metal dichalcogenides are a class of materials
whose chemical composition MX 2 contains a transition metal
(M) such as Mo or W, and chalcogen atoms (X ) such as S,
Se, or Te [57]. Much like graphene, these materials can be
isolated into individual monolayers with a hexagonal struc-
ture, as illustrated in Fig. 1. However, unlike graphene, their
monolayers can be direct semiconductors [58,59] and exhibit
sizable band gaps of ∼1.5 eV in the optical domain. Their
direct exciton resonance gives rise to extraordinarily strong
coupling to light, as mentioned above. These remarkable op-
tical properties and associated optoelectronics applications

have motivated broad explorations into coupled spin-valley
physics [60], nonlinear effects such as second-harmonic gen-
eration [47,61–63], and the effects of radiating defects [64].

Here, we consider a TMDC monolayer that is illuminated
by a light beam detuned by a frequency � from one of the
exciton resonances (see Fig. 1). In the absence of defects, the
in-plane translational invariance of the material prohibits any
momentum transfer within the material such that the coupling
to excitons preserves the in-plane momentum component of
scattered photons. Focusing on the interaction with a parax-
ial light beam under orthogonal illumination, it is therefore
sufficient to consider two counterpropagating modes [38–40].
Photons in these modes can be described by bosonic operators
Ê→(r, t ) and Ê←(r, t ) of the electromagnetic field, and they
yield the photon density operators, Ê†

→Ê→ and Ê†
←Ê←, in each

mode. In free space, the fields propagate with the speed of
light c, as described by the paraxial wave equation [65]. They
couple to the two-dimensional excitons in the semiconductor,
described by the bosonic operator P̂(r⊥, t ). Here, r⊥ de-
notes the two-dimensional coordinate within the plane of the
TMDC, and from now on we will denote three-dimensional
spatial arguments as Ê←(r⊥, z, t ), choosing the z-axis to be
orthogonal to the semiconductor plane and parallel to the light
propagation axis. The description of the exciton state entails a
continuum approximation that neglects the lattice structure of
the host crystal on lengthscales that are orders of magnitude
smaller than the resonant wavelength λ. Within the rotating-
wave approximation, the Hamiltonian describing the excitons,
the light modes and their coupling can then be written as [65]

Ĥ = −�

∫
dr⊥P̂†(r⊥)P̂(r⊥)

+ g
∫

dr⊥P̂†(r⊥)[Ê→(r⊥, 0) + Ê←(r⊥, 0)] + H.c.

− ic
∫

dr Ê†
→(r⊥, z)∂zÊ→(r⊥, z)

+ ic
∫

dr Ê†
←(r⊥, z)∂zÊ←(r⊥, z), (1)

where g denotes the light-matter coupling strength. This de-
scription assumes paraxial light fields and neglects transverse
beam diffraction, which is well justified for beam waists
σ > λ and in close proximity to the monolayer. Moreover,
we can neglect the dispersion of the excitons for the small
relevant exciton momenta. The above Hamiltonian yields the
following Heisenberg propagation equations for the photon
dynamics:

∂t Ê→(r⊥, z, t ) = −c∂zÊ→(r⊥, z, t ) − igP̂(r⊥, t )δ(z), (2)

∂t Ê←(r⊥, z, t ) = c∂zÊ←(r⊥, z, t ) − igP̂(r⊥, t )δ(z), (3)

which can readily be solved. As illustrated in Fig. 1(a),
one can define the outgoing photon fields R̂out (r⊥, t ) ≡
Ê→(r⊥, L, t ) and L̂out (r⊥, t ) ≡ Ê←(r⊥,−L, t ) that propa-
gate away from the mirror to its left and right at
an arbitrary distance L, respectively. We define equiva-
lent expressions, R̂in(r⊥, t ) ≡ Ê→(r⊥,−L, t ) and L̂in(r⊥, t ) ≡
Ê←(r⊥, L, t ), for the input fields, and let the distance L →
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0 to obtain a remarkably simple set of input-output rela-
tions [38,66] from the solution of Eqs. (2) and (3),

R̂out (r⊥, t ) = R̂in(r⊥, t ) − i
g

c
P̂(r⊥, t ), (4)

L̂out (r⊥, t ) = −i
g

c
P̂(r⊥, t ) (5)

as well as the total field at the position of the semiconductor,

Ê→(r⊥, 0, t ) + Ê←(r⊥, 0, t ) = R̂in(r⊥, t ) − i
g

c
P̂(r⊥, t ), (6)

where we assumed that the system is only driven from the
left, such that L̂in can be omitted. Note that the vanishing
semiconductor thickness affords this particularly simple solu-
tion by allowing us to solve the field propagation exactly. The
Heisenberg equation for the exciton operator governed by the
Hamiltonian (1) together with Eq. (6) gives

∂t P̂(r⊥, t ) = −igR̂in(r⊥, t ) + (i� − γ )P̂(r⊥, t ) + F̂R(r⊥, t ),
(7)

where γ = g2

c is the rate of radiative decay of the exciton
into the forward and backward propagating photon modes.
The last term, F̂R(r⊥, t ), denotes the δ-correlated Langevin
noise operator associated with the decay of the exciton. We
assume that there are no spatial correlations in the Langevin
operators. Furthermore, since all normal ordered correlation
functions involving the noise operator vanish if the reservoir is
in a low-temperature thermal state [65], we can omit this term
in the following to simplify notation [67]. Under realistic con-
ditions, defects and nonradiative processes lead to additional
dissipation and in particular cause scattering into other modes.
Experiments show [39,40] that such additional losses can be
well accounted for by a phenomenological decay constant γ̄ ,
such that the exciton dynamics can be described by

∂t P̂(r⊥, t ) = −igR̂in(r⊥, t ) − �

2
P̂(r⊥, t ) (8)

with an effective complex decay rate � = (2γ + γ̄ − 2i�).
In the following, we will assume a typical experimental

situation [20] in which the reflected and transmitted photons
are detected in the same transverse mode as the incident field.
Denoting this detection mode by E (r⊥), one can project into
this mode and define new operators

Ô =
∫

Ô(r⊥)E∗(r⊥)dr⊥, (9)

which describe the occupation of the transverse detection
and input mode E (r⊥), with

∫ |E (r⊥)|2dr⊥ = 1. In this way,
Iout = 〈L̂†

outL̂out〉 describes the linear density of outgoing de-
tected photons, while 〈P†P〉 count the number of excited
excitons in the spatial mode E . The equations of motion then
take the simple form

R̂out (t ) = R̂in(t ) − i
g

c
P̂ (t ), (10)

L̂out (t ) = −i
g

c
P̂ (t ), (11)

∂t P̂ (t ) = −igR̂in(t ) − �

2
P̂ (t ). (12)

Solving this simple set of linear equations in Fourier space
gives the reflection and transmission spectrum

R(ω) = − 2g2

c(� + 2iω)
, (13)

T (ω) = 1 − 2g2

c(� + 2iω)
(14)

of the TMDC. For resonant cw-driving (� = ω = 0), the
reflection coefficient R(0) = −(1 + γ̄

2γ
)−1 ≈ −1 + γ̄

2γ
is lim-

ited only by nonradiative losses. The strong exciton-photon
coupling of TMDC monolayers can render radiative processes
dominant (γ > γ̄ ), which has made it possible to realize re-
flection coefficients of more than 80% [39,40]. Under such
conditions, residual transmission with T (0) = γ̄ /(2γ + γ̄ )
and photon losses 1 − |R(0)|2 − |T (0)|2 = 4γ γ̄ /(2γ + γ̄ )2

are greatly suppressed.
The phase φ(ω) of the complex reflection coefficient

R(ω) = |R(ω)|eiφ(ω) contains information about the photon-
exciton interaction dynamics. For a long input pulse with a
spectral width well below 2γ + γ̄ , the reflected light

L̂out (t ) ≈ R(0)R̂in(t − �τ ) (15)

has a pulse delay of

�τ = − dφ

dω

∣∣∣∣
ω=0

= 2(γ̄ + 2γ )

4�2 + (γ̄ + 2γ )2 . (16)

We can interpret this time as the characteristic time the photon
interacts with the monolayer and is transferred to an exci-
tonic excitation. For a perfect material (γ̄ = 0) under resonant
driving (� = 0), the delay time or photon-interaction time is
expectedly given by the radiative lifetime �τ = 1/γ of the
exciton.

We can use this time to scale the equations of motion by in-
troducing dimensionless times γ t → t and lengths (γ /c)r →
r. This yields a simple set of linear equations

R̂out (t ) = Rin(t ) − iP̂ (t ), (17)

L̂out (t ) = −iP̂ (t ), (18)

∂t P̂ (t ) = −iRin(t ) − �

2
P̂ (t ), (19)

that relate the dimensionless output fields Rout → g
cRout and

Lout → g
cLout to the incident light field Rin → g

cRin with only
two remaining parameters γ̄ /γ and �/γ that determine the
dimensionless width �̃ = �/γ .

III. CLASSICAL OPTICAL NONLINEARITIES DUE TO
FINITE-RANGE EXCITON INTERACTIONS

Nonlinear optical processes can alter the above behavior,
whereby the absorption of one photon can affect the optical
response of the system to additional photons and break the
conditions that otherwise lead to perfect reflection. Possi-
ble mechanisms that have been investigated include lattice
heating due to photon absorption [40], phonon coupling, and
exciton-exciton interactions [38]. The latter usually give rise
to relatively weak nonlinearities, due to the typically short
range of exciton interactions. This lengthscale is, however,
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enhanced for excitons in excited states [21,23], as observed
for TMDCs in [68–70]. Very highly excited states of exci-
tons have been observed in bulk Cu2O semiconductors [28]
and found to generate large optical nonlinearities due to
an excitation blockade of multiple Rydberg excitons [34].
Such a blockade is caused by the van der Waals interaction
U (r) = C6/r6 between excitons. The van der Waals coeffi-
cient C6 ∼ n11 increases rapidly with the principal quantum
number n [22]. The resulting energy shift of exciton-pair
states can inhibit the excitation of multiple excitons within a
blockade radius Rbl, at distances r for which U (r) exceeds the
linewidth of the excitation process. Experimental evidence for
the increase of the blockade radius with n and actual values of
Rbl ∼ 25 nm at n = 2 in TMDCs [70] suggests that blockade
radii close to Rbl ∼ 1 μm may be achieved for n = 10 [71].
Under such conditions, the exciton blockade offers a new
route to optical nonlinearities that is effective at very low
exciton densities where exciton collisions are insignificant.

Interactions are included in the exciton propagation equa-
tion (8) according to

∂t P̂(r⊥) = −iR̂in(r⊥) − �̃

2
P̂(r⊥)

− iγ −1
∫

dr′
⊥U (|r⊥ − r′

⊥|)P̂†(r′
⊥)P̂(r′

⊥)P̂(r⊥),

(20)

and they lead to a correlated exciton dynamics that typically
prevents a simple analytical solution as in the previous sec-
tion. To gain some more intuitive insights into the resulting
optical response, we first analyze the classical-optics limit
for a coherent input field with a constant amplitude Rin =
〈R̂in〉, where 〈R̂inP̂〉 = Rin〈P̂〉, 〈R̂inP̂†P̂〉 = Rin〈P̂†P̂〉, etc. Un-
der these assumptions, Eq. (20) results in an infinite hierarchy
of equations for products of exciton operators in a perturbation
series in the driving field [16], which can be truncated at the
lowest nonlinear order [21] to obtain an exact description of
the third-order susceptibility χ (3) of the reflected field as

Lout (r⊥) = χ (1)Rin(r⊥)

+
∫

dr′
⊥χ (3)(|r⊥− r′

⊥|)|Rin(r′
⊥)|2Rin(r⊥), (21)

where χ (1) = R(0) corresponds to the linear reflection coef-
ficient discussed in the preceding section, and the nonlinear
susceptibility is given by

χ (3)(r⊥ − r′
⊥) = 16

�̃|�̃|2
iU (|r⊥ − r′

⊥|)
� + iU (|r⊥ − r′

⊥|) . (22)

The third-order susceptibility χ (3)(r) acts as an effective inter-
action potential for two photons, and its specific form affords
a simple interpretation. At large distances, r, for which the
exciton interaction potential U (r) � |�| remains well below
the linewidth, the nonlinear kernel scales as χ (3)(r) ∼ U (r)
and directly reflects the exciton interaction in this perturbative
regime. However, in the opposite limit U (r) > |�| for dis-
tances r < Rbl within the blockade radius, the susceptibility
approaches a constant χ (3) ≈ 16

�̃|�̃|2 = −8χ (1)/|�̃|2 that re-
duces the overall reflection due to the blocking of multiphoton
reflection at distances below Rbl. The blockade radius Rbl =

(a)

(b)

FIG. 2. Reflection properties for various beam sizes. (a) Non-
linear reflection, as characterized by the dimensionless function F ,
reaches a maximal plateau value when σ < Rbl and falls off for larger
beam radii, shown in terms of the function F defined in Eq. (23)
for resonant driving (ϕ = 0). The solid line represents the real part
(nonlinear reflection), the dashed line represents the imaginary part
(nonlinear refraction). (b) The equal-time correlation function g(2) of
reflected light is strongly suppressed for small beams radii.

|C6/�|1/6 follows directly from the denominator in Eq. (22).
Its magnitude relative to the waist of the input beam deter-
mines the extent of nonlinear effects. To be specific, we chose
a Gaussian mode profile E (r⊥) = e−r2

⊥/2σ 2
/(

√
πσ ), and we

consider cw-driving with an amplitude Rin(r⊥) = RinE (r⊥).
Upon projecting onto this mode and carrying out some of the
integrals in Eq. (21), one finds for the reflected field

Lout = − 2

�̃
Rin + 16

�̃|�̃|2 |Rin|2RinF
( σ

Rbl
, ϕ

)
,

where we have defined the function

F
( σ

Rbl
, ϕ

)
=

(Rbl

σ

)2 ∫ ∞

0

1

1 ± ix6eiϕ
e−

(
x Rbl√

2σ

)2

x dx, (23)

and ϕ = arg(�̃) denotes the phase of the complex linewidth,
which vanishes for resonant excitation. The different signs
correspond to repulsive (+) and attractive (−) exciton inter-
actions, but for simplicity we focus here on the repulsive case.
The function F determines the nonlinear reflection and gives
a particularly simple expression

R = −1 + 2|Rin|2F
( σ

Rbl
, 0

)
(24)

for an ideal monolayer (γ̄ = 0) under resonant driving.
Figure 2(a) shows its dependence on the beam radius

√
2σ .

For large values σ � Rbl, multiple excitons can be inde-
pendently created within the illuminated area ∼σ 2, which
reduces the effects of the nonlinearity and, hence, requires
higher light intensities, |Rin|2, to alter the reflection. In this
regime, the interactions also affect the shape of the output
mode [see Eq. (21)], and therefore transfer population out of
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the incident mode E (r⊥). This is reflected in the imaginary
part of F , which increases with decreasing σ as the effect
of the nonlinearity becomes stronger. Eventually, however,
nonlinear losses decrease again once the beam size decreases
below the blockade radius Rbl. In this regime, incident photons
only probe the constant inner part of χ (3) ≈ −8χ (1)/|�̃|2,
which therefore leads to shape-preserving reflection according
to Eq. (21). Concurrently, the nonlinear reflection coefficient
saturates to its maximal value, since a single absorbed pho-
ton inhibits the reflection for any additional photons in this
full-blockade limit σ < Rbl. Such strong photon-photon inter-
actions can also give rise to photonic correlations, as we shall
discuss in the following.

IV. QUANTUM STATES OF LIGHT

Correlations between reflected photons can be quantified
by the two-time correlation function

g(2)
refl.(τ ) = 〈L̂†

out (t )L̂†
out (t + τ )L̂out (t + τ )L̂out (t )〉

〈L̂†
out (t )L̂out (t )〉〈L̂†

out (t + τ )L̂out (t + τ )〉 , (25)

which only depends on the time difference between successive
photon detection events once the system has reached its long-
time steady state (t → ∞) under cw-driving. Using Eq. (18),
g(2)

refl.(τ ) can be related directly to temporal correlations of the
generated excitons. In particular, we can obtain equal-time
correlations (τ = 0) from operator products of P̂ (t ), using
the truncation approach outlined in the previous section. As
shown in Fig. 2(b), the obtained dependence of g(2)

refl(τ ) on the
widths of the incident laser beam shows similar behavior to
that discussed above for the nonlinear reflection coefficient.
For large values of σ > Rbl, the incident light can simulta-
neously excite multiple excitons at distances r > Rbl, which
facilitate the simultaneous reflection of multiple photons in
the transverse mode E (r⊥) such that g(2)

refl(0) > 0. Eventually,
the correlation function approaches 1 with increasing waist
of the incident beam, as multiple excitons can be excited
unimpededly for σ � Rbl and, therefore, give rise to uncor-
related photon reflection. However, in the opposite limit of
σ < Rbl, the incident light in the driving mode E (r⊥) can only
generate a single exciton at a time while any further excitation
is blocked by the interaction. As a consequence, a single
reflected photon effectively blocks reflection of any further
light, which passes the monolayer unaffected. The resulting
quantum mirror thus acts as an efficient single-photon filter
that generates antibunched light with g(2)

refl(0) = 0, as shown in
Fig. 2(b).

In this strong-blockade limit, in which the interaction U (r)
exceeds all other energy scales across the illuminated area,
one can simplify Eq. (20) and describe the exciton dynamics
by

∂t P̂ = −iRin − �̃

2
P̂ − iŨ P̂†P̂P̂, (26)

in terms of an effective interaction potential Ũ = const that
extends over the entire array. Taking the subsequent limit
Ũ → ∞ suppresses all contributions from multiple excitons,
and for simplicity we consider resonant excitation and ne-
glect additional broadening. This permits truncation of the
hierarchy and an adiabatic elimination of the corresponding

interaction terms, which lead to a closed set of propagation
equations,

∂t 〈P̂〉 = −iRin − �̃

2
〈P̂〉 + 2iRin〈P̂†P̂〉, (27)

∂t 〈P̂†〉 = iRin − �̃∗

2
〈P̂†〉 − 2iRin〈P̂†P̂〉, (28)

∂t 〈P̂†P̂〉 = iRin(〈P̂〉 − 〈P̂†〉) − �̃ + �̃∗

2
〈P̂†P̂〉 (29)

for the excitons. This simple set of equations describes the
dynamics of an effective spin-1/2 system with spin operators
Ŝz = P̂†P̂ − 1/2 and Ŝx = (P̂ + P̂†)/2. Similar to so-called
Rydberg superatoms [72], in which the Rydberg blockade of
an atomic ensemble enables strong photon interactions with
a single collective atomic excitation [73], the present setting
thus realizes strong coupling between individual photons in a
single photonic mode to a single effective saturable exciton.

On resonance and without additional decay (� = γ̄ = 0),
the steady-state expectation values

〈P̂〉 = −i
Rin

1 + 2R2
in

, 〈P̂†P̂〉 = R2
in

1 + 2R2
in

(30)

yield the nonlinear reflection Lout = −Rin/(1 + 2R2
in ) =

−Rin + 2R3
in + O(R5

in ), in agreement with the third-order
result Eq. (24) of the previous section. Note that 〈P̂†P̂〉 �=
〈P̂†〉〈P̂〉, which indicates the emergence of photon-photon
correlations down to the lowest nonlinear order in the driving
field Rin. The photon correlation function is readily obtained
from Eqs. (27)–(29) using the quantum regression theorem,
giving the known result

g(2)
refl(τ ) = e− 3τ

2

[
−3 sinh

(
τ
√

κ

2

)
√

κ
− cosh

(√
κ

2
τ

)]
+ 1 (31)

for a driven two-level system [74], where the constant κ =
1 − 16R2

in is determined by the driving field intensity R2
in.

For weak fields (κ > 0), the pair correlation function mono-
tonically approaches its long-time asymptote g(2)(τ ) → 1 on
a timescale set by the decay rate γ (Fig. 3). At higher inci-
dent intensities for which κ < 0, g(2)

refl(τ ) undergoes damped
oscillations with a frequency ∼√−κ . While the damping
timescale is set by the radiative decay rate γ , the oscillation
frequency increases as ∼Rin, reflecting the coherence of the
underlying single-body Rabi oscillations in the limit of strong
driving [74]. Most importantly, the outgoing light exhibits
complete antibunching regardless of the driving intensity due
to the interaction blockade of simultaneous reflection, as dis-
cussed above.

This picture is confirmed by the correlation function

g(2)
trans(τ ) = − 16e− 3τ

2

(κ − 1)2
√

κ

[
(κ + 3) sinh

(√
κτ

2

)

+(κ − 5)
√

κ cosh

(√
κτ

2

)]
+ 1 (32)

of the transmitted light, described by R̂out. At low intensi-
ties, the transmitted light is strongly bunched, with g(2)

trans(0)
diverging as ∼1/(4R4

in ). Since transmission through an oth-
erwise perfectly reflecting monolayer is only possible via
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FIG. 3. Photon correlations in reflection and transmission.
(a) Photon correlations expressed in g(2)

refl.(τ ) for Rin = 0.1 (black)
and Rin = 5 (red) show strong antibunching and a periodic structure
of minima and maxima. (b) The transmitted light at the same param-
eters is strongly bunched under weak driving but exhibits only small
oscillations around the long-time limit for strong driving.

exciton-exciton interactions, photons can only be transmitted
simultaneously, leading to the large bunching displayed in
Fig. 3(b). However, since a single generated exciton blocks
reflection of all subsequently incident photons, the mirror
saturates for high intensities and largely transmits the inci-
dent coherent field such that g(2)

trans(0) ≈ 1 + 1/R2
in quickly

approaches unity with increasing driving intensity.
Under strong coherent driving, the nonlinear monolayer,

therefore, transmits coherent radiation with weak correlations,
while its reflected light is a highly nonclassical train of anti-
bunched single-mode photons.

V. TWO-PHOTON DRIVING AND
ELECTROMAGNETICALLY INDUCED TRANSPARENCY

While the interaction between excitons is enhanced for
excited states, their coupling to light (g) tends to weaken with
increasing principal quantum number n. A strong light matter
coupling can, however, be maintained by using an additional
control laser field. More specifically, this can be achieved
via a two-photon coupling of two distinct exciton states as
illustrated in Fig. 4. Hereby, the incident probe field with
amplitude Rin generates excitons described by the bosonic
field P̂(r⊥), as introduced above, while the control laser cou-
ples these excitons to a higher-lying excited state with Rabi
frequency �. Denoting the bosonic field operator for these

FIG. 4. Photon dynamics using electromagnetically induced
transparency. (a) The semiconductor is transparent under conditions
of weak driving. Stronger driving breaks EIT and leads to strong
reflection off the exciton resonance. The resulting individual photons
emerge in reflection with a time separation of γ /�2. (b) To establish
EIT, the exciton resonance is coupled via a second laser to a high-
lying Rydberg state, described by Ŝ, at Rabi frequency �. The upper
state is quasistable, limited only by a small total decay rate γryd.

Rydberg excitons by Ŝ, this adds the Hamiltonian

Ĥc = −δ

∫
dr⊥Ŝ†(r⊥)Ŝ(r⊥)�

∫
dr⊥(P̂†(r⊥)Ŝ(r⊥)

+ Ŝ†(r⊥)P̂(r⊥)) (33)

to the light-matter Hamiltonian introduced in Eq. (1), where δ

denotes the total detuning of the two-photon transition to the
excited Rydberg state.

Following a similar calculation as in Sec. II, we now obtain
for the transmission spectrum of the monolayer

T (ω) = 1 + 2i(δ − ω)

2�2 + (2ω − i�̃)(δ − ω)
. (34)

While this coincides with Eq. (14) for � = 0, a finite control
field leads to a vanishing reflection coefficient on two-
photon resonance, δ = ω = 0. This is a direct manifestation
of electromagnetically induced transparency (EIT) [75,76],
as has been observed in a range of driven three-level sys-
tems [77–79], and it can be traced back to the establishment of
a dark steady state that does not contain excitons in low-lying
states (P̂). From Eq. (34) we obtain a simple expression

�τ = 1

�2
(35)

for the group delay of resonantly transmitted photons, which
can now be controlled by the Rabi frequency � and ex-
tends well beyond the values given by Eq. (16) for the
two-level mirror discussed above. This delay �τ corresponds
to the characteristic times for which a transmitted photon is
transferred into a Rydberg exciton and, therefore, directly
affects the dynamics of the optical nonlinearity. Neglecting
the comparably weak interactions between the low-lying ex-
citon states, the two-photon resonant dynamics (δ = 0) of the
excitons is now described by the coupled equations

∂t P̂ = −iRin − �̃

2
P̂ − i�Ŝ, (36)

∂t Ŝ = −i�P̂ − iŨ Ŝ†ŜŜ, (37)

where we take the limit Ũ → ∞ to obtain the interaction
blockade of multiple Rydberg excitons within the illuminated
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area of the monolayer. The situation is, however, more com-
plex than in the previous section, since the interaction does not
confine the number of excitons in low-lying states. Thus, one
has to solve the driven and correlated many-body dynamics of
multiple excitons coupled to their strongly interacting excited
state. Starting from Eqs. (17), (36), and (37), this can be
expressed in an infinite hierarchy of equations for operator
products for the two types of excitons (P̂ and Ŝ) along with
the transmitted photon field (R̂out). Defining the correlators

An,q = 〈
(R̂†

out )
nŜ†R̂q

out

〉
, (38)

Bn,q = 〈
(R̂†

out )
nŜR̂q

out

〉
, (39)

Cn,q = 〈
(R̂†

out )
nŜ†ŜR̂q

out

〉
, (40)

Dn,q = 〈
(R̂†

out )
nR̂q

out

〉
, (41)

this hierarchy can be written in closed form as

∂t An,q = −(n + q)An,q + �Dn+1,q − �RinDn,q

+ 2�RinCn,q − 2�Cn+1,q − q�Cn,q−1, (42)

∂t Bn,q = −(n + q)Bn,q + �Dn,q+1 − �RinDn,q

+ 2�RinCn,q − 2�Cn,q+1 − n�Cn−1,q, (43)

∂tCn,q = −(n + q)Cn,q − �Rin(An,q + Bn,q )

+ �Bn+1,q + �An,q+1, (44)

∂t Dn,q = −(n + q)Dn,q − n�An−1,q − q�Bn,q−1, (45)

where D0,0 = 1 and � = γ̄ = 0 have been assumed for sim-
plicity. For any finite input power |Rin|2, the solution of this
set of equations converges for sufficiently large coefficient
matrices An,q, Bn,q, Cn,q, and Dn,q. We can thus calculate
the steady-state expectation values and use the quantum re-
gression theorem to determine the two-photon correlation
functions from Eqs. (42)–(45) for a finite set of equations with
n, q < νmax, and subsequently verify convergence of the result
with respect to νmax.

As shown in Fig. 5, the transmitted light is strongly anti-
bunched, and the photon correlation function g(2)

trans(τ ) exhibits
damped oscillations at finite times. This reversed response,
as compared to the previously discussed case with a single
exciton state, is readily understood by noting that the lin-
ear mirror is now completely transmissive, instead of being
fully reflective. As a single photon is transmitted through the
mirror, it generates a Rydberg exciton for a time t ∼ �τ ,
which blocks EIT for any other photons. More specifically, by
preventing the formation of the EIT dark state, the Rydberg-
exciton blockade exposes the strong photon coupling to the
low-lying exciton states, which leads to high reflection and
thereby reduces the simultaneous transmission of multiple
photons.

Interestingly, we find that the degree of antibunching,
g(2)

trans(0), depends on the amplitude Rin of the driving field
as well as the control Rabi frequency �. We can analyze this
behavior more systematically by first considering the limit of
weak control fields, � � 1, in which we can adiabatically
eliminate the dynamics of the intermediate states. Neglecting

FIG. 5. Correlations in transmitted light under conditions of EIT.
(a) Numerical solution of Eqs. (42)–(45) shows slowing oscillations
for decreasing �. (b) Fluctuations intensify both in frequency and in
number with growing Rin.

the time derivative in Eq. (36) gives

P̂ = −2i

�̃
Rin − 2i�

�̃
Ŝ, (46)

and substitution into Eq. (37) yields a single equation for
the Rydberg exciton that can once again be mapped onto an
effective spin-1/2 system. This makes it possible to obtain
exact expressions for the steady-state exciton density

〈Ŝ†Ŝ〉 = R2
in

2R2
in + �2

, (47)

and for the two-photon correlation of the transmitted light

g(2)
trans(τ ) = 1 − e− 3�2

2 τ

√
κ

[
3� sinh

(√
κ�

2
τ

)

+√
κ cosh

(√
κ�

2
τ

)]
, (48)

where we have set � = 0 for simplicity and where κ =
�2 − 16R2

in. We see that the additional control-field coupling
now makes it possible to independently tune the characteristic
correlation time ∼�−2 and the oscillation frequency �

√−κ

by varying the control and probe field amplitudes, � and
Rin. In particular, the weak-field limit � � 1 corresponds to
strong photon correlations with persistent long-time oscilla-
tions, even at high probe-field intensities.

As shown in Fig. 6, this adiabatic approximation yields
a good description of emerging photon correlations for not
too strong intensities of both applied laser fields, �,Rin < 1.
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FIG. 6. Comparison of exact solution with adiabatic elimination.
After large differences for small τ , agreement is generally good.

We can gain a better understanding of the observed devia-
tions at short times by considering the perturbative solution
of Eqs. (42)–(45) for small driving strengths, Rin � 1. The
obtained Rydberg-exciton density

〈Ŝ†Ŝ〉 = 1

�2
R2

in + 2(�4 − �2 − 1)

�4(�2 + 1)2
R4

in + O
(
R5

in

)
(49)

establishes � � 1 as a condition for the adiabatic elimination
and agrees with Eq. (47) in this limit, while the perturbative
expansion of the equal-time photon correlations

g(2)
trans.(0) = �4

(1 + �2)2
(50)

− 8(�2(11�6 − 39�4 − 108�2 − 36))

3((�2 + 1)3(�2 + 2)2(�4 + 24�2 + 12))
R2

in

→ �4 + 2R2
in, (51)

shows that weak control and probe field amplitudes � and
Rin indeed permit generating strongly antibunched light as
predicted in the adiabatic limit.

A final important factor is the linewidth of the excited
exciton state. While the radiative Rydberg-state coupling is
known to decrease with increasing principal quantum num-
ber, the influence of defects and nonradiative decay processes
might remain substantial and limit the linewidth γryd of the
excited state. We can investigate such dissipation effects on
the resulting photon correlations by including a decay term,
− γryd

2 Ŝ , in Eq. (37). In Fig. 7(a) we show the obtained
two-photon correlation of the transmitted light for different
values of γryd. Surprisingly, the short-time behavior of the
photon correlations remains virtually unaffected by excited-
state decoherence, even for values of γryd = 0.2γ that are
already twice as large as the nonradiative linewidths that have
been measured for ground-state excitons in TMDC mono-
layers [39,40]. As shown in Fig. 7(b), it turns out that the
excited-state decay rate can be substantially larger than this
value and still retain significant antibunching of the transmit-
ted light. This surprising level of robustness of the generated
photon correlations against Rydberg-state broadening can be
understood intuitively from the fact that—even in the pres-
ence of additional broadening—the control-field coupling to

FIG. 7. Effects of Rydberg decay γryd on light correlations.
(a) Examples of the correlation function for different γryd at Rin = 1
and � = 0.3. (b) Zero-time antibunching in the transmitted photons
tends to decrease with γryd and Rin but remains at remarkably high
levels even in the presence of large Rydberg decay.

the excited state will always lower the otherwise near-perfect
reflectivity generated on the lower exciton transition, driven
by the probe field Rin. Hence, the interaction blockade of
the excited-state excitons can still provide an efficient non-
linear switching mechanism of the monolayer transmission
and generate strong photon correlations despite substantial
excited-state broadening that may exceed the decay rate of the
low-lying exciton state. Provided that the interaction blockade
remains effective, the asymptotic solution of the equal-time
correlation function (γryd � 1,� and Rin � 1),

g(2)
trans(0) ≈ 1 − 4

γryd
+ O

(
γ −2

ryd

)
, (52)

suggests that much larger decay rates on the order of γryd ∼
10γ still permit the generation of correlated, nonclassical
light with photon antibunching well below current values of
g(2)(0) ∼ 0.95 in semiconductor microcavities [19,20].

VI. CONCLUSION

In this work, we have elucidated the effects of finite-range
exciton interactions on the optical properties of atomistically
thin mirrors formed by two-dimensional semiconductors. Re-
markably, this combination turned out to permit an exact
solution of the underlying many-body problem of interact-
ing excitons coupled to quantum light fields. This stands in
marked contrast to equivalent bulk systems [34] or cavity
settings [80], where a theoretical description [81–86] beyond
the few-photon or semiclassical limits remains a formidable
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numerical challenge. We have made use of this property to
investigate the properties of the scattered light and showed
that the interaction-induced nonlinear reflection and transmis-
sion of the semiconductor can generate highly nonclassical
states of light. We have proposed a two-photon coupling
scheme that permits exploiting the strong photon-coupling to
ground-state excitons, while a classical control beam is used
to efficiently couple these excitons to an interacting excited
state. By realizing conditions of electromagnetically induced
transparency, this approach provides an efficient nonlinear
switching mechanism between high transmission and high
reflection, and thereby it enables us to convert a coherent
input field into strongly antibunched photons. Importantly, the
proposed two-photon scheme is surprisingly robust against
unavoidable line broadening of the excited Rydberg state,
which offers a promising outlook on future experiments.

While experiments on pristine samples of Cu2O [28]
have already revealed high-lying Rydberg states with strong
interactions [22] and sizable nonlinear signals [34], equiva-
lent observations for two-dimensional excitons are currently
limited to lower-lying states. Measurements on monolayer
TMDCs have observed excited states of excitons [68–71] with
assigned principal quantum numbers of up to n = 11, and
they found signatures for the enhancement of the induced
optical nonlinearities and exciton interaction range with in-
creasing principal quantum number [70]. A recently measured
blockade radius of ∼25 nm at n = 2 in WSe2 monolay-
ers [70] suggests blockade radii of ∼1 μm for moderate
principal quantum numbers of n ∼ 5, . . . , 10. Small beam
waists of ∼1 μm are possible with optical fibers [87], and
the present calculations indicate that significant antibunching
below previous measurements [19,20] should still be pos-
sible for blockade radii that are four to six times smaller
than this value, while fabricated masks and electrostatic gate
control [88,89] may be used to isolate small excitation spots
that enable complete interaction blockade for even smaller
principal quantum numbers.

Such coupling of focused in- and outgoing light via prox-
imate fiber ends also permits creating high-quality optical
resonators [90] that can lead to transverse confinement of
optical modes, which was recently shown to generate observ-
able photon correlations with GaAs quantum wells [19,20].
The combination of strong mode confinement, the mode-
selective photon coupling of TMDC monolayers in an optical

resonator [91–93], and the nonlinear mechanisms described
in this article thus presents a promising approach to quan-
tum nonlinear optics in the solid state that remains to be
explored in future work. Here, the remarkable electro-optical
properties of TMDC monolayers open up a number of in-
teresting possibilities. Their strong spin-orbit coupling, for
example, leads to valley-dependent photon coupling with tun-
able polarization selection [60]. This, in turn, can generate a
polarization-dependent nonlinearity that may give rise to po-
larization entanglement and offers an enabling mechanism for
generating and manipulating more complex quantum states of
light.

Let us finally note that regular arrays of ultracold
atoms, optically trapped at sub-wavelength distances, also
exhibit sharp reflection resonances with suppressed photon
losses [50–52], as demonstrated in recent experiments [53].
The coherent generation of Rydberg atoms in very high-lying
states capable of blocking several hundred atoms has already
been demonstrated in numerous experiments [94–98]. The
theoretical framework and analytical results presented in this
work may thus provide a useful approach to describe non-
linear optical effects in such systems. In particular, it will
be interesting to use the theory for exploring the many-body
regime of multiple photons in large arrays that can host several
strongly interacting Rydberg atoms.
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