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Dynamic Friedel oscillations on the surface of a topological insulator
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We study theoretically the dynamic Friedel oscillations of electrons at the surface of a topological insulator
(TI) that are generated by the rotation of a localized impurity spin. We show that the spin-orbit interaction (SOI)
in Rashba form, which is an integral part of the TI Hamiltonian, yields a highly anisotropic response to the
localized spin rotation. As a result, the response to a flip of a localized spin z projection involves the reaction
of all x, y, and z components of the local magnetization. Additionally, the dynamic spin moment (and thus also
Friedel oscillations) emitted by the localized dynamical spin depends on the orientation in the TI plane. The
resulting unusual dynamics is due to the interplay of SOI and Ruderman-Kittel-Kasuya-Yoshida interactions.
This provides the basis for manipulation of the spin transport in topological insulators decorated with localized
impurity spins, which may be important for technological applications.
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I. INTRODUCTION

The notion of Friedel oscillations appears in the quantum
mechanical description of localized charge screening in the
gas or liquid of mobile carriers [1]. It is well known that
such oscillations occur near localized defects in metallic or
semiconducting materials [2]. However, they can also occur in
other conducting materials, like in currently investigated topo-
logical insulators (TIs). These materials have unique transport
properties—they are insulating (semiconducting) in the bulk
and conducting at the surfaces due to topologically protected
gapless (metallic) surface states [3]. A characteristic prop-
erty of these states is the so-called spin-momentum locking.
In other words, the orientation of the electron spin in the
surface topological states is locked by spin-orbit interaction
(SOI) in the state perpendicular to the corresponding elec-
tron momentum [4–10]. This makes TIs promising materials
for low-dissipation spintronic applications [6,7]. Interestingly,
SOI also plays an important role in the ultrafast (subpicosec-
ond) dynamics and relaxation of impurity spins localized at
the TI surface (see Ref. [10] and references therein). If the
spins of localized impurities rotate, the relevant spin corre-
lations occur via the indirect exchange interaction, which is
mediated by the dynamic Friedel oscillations of the TI surface
electron density [11–13]. The latter interaction, known as
Ruderman-Kittel-Kasuya-Yoshida (RKKY) [1], plays a sig-
nificant role in the spin-spin response of TIs [14,15].

In this paper, we consider the dynamical response of sur-
face electrons to the dynamics of the magnetic impurity or
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surface imperfection (like a defect [16], step edge, or ad-
sorbate [17]) with large (classical) spin at the surface of a
topological insulator. The above defects can be placed at the
TI surface, for instance, by a spin-polarized scanning tun-
neling microscope (STM). The problem of static response
was already discussed in several papers [14,15,18–20]. Here,
we analyze the dynamics of magnetic response to a fast flip
of the above classical impurity spin. The motivation of our
analysis is that with the appearance of fast (in the picosecond
range) time-dependent electron transfer techniques [21,22]
and laser-induced subpicosecond magnetic switching [23], the
question arises of how the above phenomena influence the
time-dependent response of the electron gas on the TI surface.
Furthermore, in the presence of spin-orbit coupling and hence
spin-momentum locking in a TI, it is clear that the transient
electric current should somehow depend on the spin response
of the electron gas on the TI surface. Such a time-dependent
response is known to be an important ingredient in spintronic
and terahertz-emitting devices [24]. It is thus of interest to
study theoretically the time-resolved RKKY mechanism in
topological insulators.

The simplest description of the collective spin dynam-
ics is based on the phenomenological approach of Landau
and Lifshitz [25], in which the spin response obeys the
Landau-Lifshitz-Gilbert (LLG) equation (see Ref. [23] for
references). To describe theoretically magnetic relaxation and
fast spin switching in two-dimensional (2D) systems, both the
above-mentioned LLG approach and microscopic quantum
mechanical calculations [13,26–28] can be utilized in general.
The quantum mechanical model is usually formulated in terms
of the dynamic RKKY [1] interaction and is used primarily
when the localized spin rotation occurs on a femtosec-
ond timescale. In turn, the LLG collective dynamics, being
driven by correlated spin clusters of macroscopic dimensions,
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occurs on a much slower (picosecond) timescale [29,30]. Ab
initio simulations of localized impurity spin dynamics in a
semiconductor host were performed recently [31,32] within
the RKKY-based quantum approach. The same approach has
been applied to graphene, where, contrary to TIs, the SOI
contribution is almost negligible [33–35].

It has been shown that Rashba SOI twists the ordinary
RKKY interaction in one-dimensional and 2D systems [36].
However, the dynamic consequences of this twisting and its
synergy with linear electron dispersion in TIs has not been
considered yet. On the other hand, the dynamics of pure (i.e.,
without SOI) RKKY interaction was studied recently [37].
Following the recent publications [36,37], we consider here
the dynamical Friedel oscillations in a 2D electron gas formed
on the surface of a topological insulator and show that the
twisting effects appear in the dynamical case as well. For in-
stance, the tight coupling of spin and momentum in the surface
topological states due to spin-momentum locking induces the
ordinary electric (charge) current. As this current is induced
by a rotating localized spin (rather than by electric charges
flow as in an ordinary metal), it is dynamic in its nature and
vanishes in the static case. Being proportional to the dynamic
spin, it decays after a certain time proportional to the time of
localized spin rotation. To be more specific, we study here the
response of the 2D electron gas at the surface of TI to a fast re-
versal of a single impurity spin S0(t ) coupled to the electrons
by direct exchange interaction. The magnetic polarization of
the electron gas appears in the form of the time-dependent
Friedel oscillations, which now not only become noticeably
dependent on the SOI constant γ (proportional to the Fermi
velocity vF ) but also become highly anisotropic. In other
words, the flip of one component (say, Sz) of a localized spin in
the topological surface states induces dynamic polarization of
all three spin components. Accordingly, all nine components
of the spin response tensor Si j (i, j = x, y, z), describing the
response of the ith spin component to the flip of the jth one,
become nonzero. Our results also reveal different ways of
generating alternating electric currents in TIs by manipulating
the SOI parameter.

In Sec. II we present the model Hamiltonian used in this
paper and derive the corresponding Green’s function in the
time domain. The dynamic response to a single impurity spin
reversal is derived in Sec. III, where the corresponding numer-
ical results are also presented and discussed. A summary and
outlook are given in Sec. IV.

II. MODEL

We consider surface electrons in a TI with SOI in the
Rashba form. These 2D electrons are described by a Hamilto-
nian in the following matrix form:

H = −γ (kyσx − kxσy) + g

n
σ · S0(t ), (1)

where γ = h̄vF is the SOI constant, vF is the Fermi velocity,
n = N/A is the areal density of the host atoms (A is the
area of the 2D electronic system, and N is the total number
of host atoms), g is the local exchange coupling constant,
σ = (σx, σy, σz ) is a vector of Pauli matrices, and S0(t ) is the
dynamic spin of a magnetic impurity.

The first term in the Hamiltonian (1) can be identically
rendered to the form

HSOI = γ ẑ · (σ × k) ≡ γσ · (k × ẑ), (2)

where ẑ is the unit vector along the z axis and we have used the
cyclic property of a triple product. The structure of expression
(2) shows that the spin of the electron having momentum h̄k is
oriented along the vector k × ẑ, i.e., the electron spin orienta-
tion is “locked” to its momentum. This phenomenon is called
spin-momentum locking (SML) and is inherent in the systems
with SOI (see, e.g. [10]). Below we shall use this effect to
calculate the electric current, which flows only in systems with
SOI, which is related to the spin-momentum locking. Note
that kinetic terms in the Hamiltonian like h̄2k2/(2m∗) (m∗ is
the carrier effective mass) “unlock” the spin and momentum,
suppressing the latter current.

The exchange interaction between itinerant electrons on
the TI surface and localized spin S0(t ) generates dynamic
Friedel oscillations of the electron spin density around the
localized spin S0. The relevant expression for the TI response
to an impurity spin rotation can be obtained from the per-
turbation theory with respect to the coupling constant g [1].
Following the usual procedure, we first construct the unper-
turbed Green’s function of the problem. The easiest way to
do this is to invert the Hamiltonian (1). To be specific, the
expression for the inverse Green’s function reads [36]

G−1(ε, k) = ζσ0 + γ (kyσx − kxσy), ζ = ε + i0, (3)

where ε is the energy and σ0 stands for the unit matrix.
Inversion of the matrix in (3) yields

G(ε, k) = ε

ζ 2 − γ 2k2
σ0 + γ (kyσx − kxσy)

ζ 2 − γ 2k2
. (4)

Expression (4) is suitable for the calculation of the above-
mentioned spin response and other characteristics. However,
as we are interested in the time domain properties, it is more
convenient for our purpose to use the time representation of
the Green’s function (4). This is accomplished, as usual, by the
expansion of the denominators in (4) into elementary fractions
and integrating over the energy ε and wave vector k in the
proper domains of t − t ′. This procedure yields the following
matrix structure of the Green’s function in the time domain:

G>0(r, r′, t, t ′) = G(0)
>0(r, r′, t, t ′)σ0 + iÂG(1)

>0(r, r′, t, t ′),

t − t ′ > 0, k > kF , (5)

G<0(r, r′, t, t ′) = G(0)
<0(r, r′, t, t ′)σ0 + iÂG(1)

<0(r, r′, t, t ′),

t − t ′ < 0, k < kF . (6)

Here, the lower indices >0 and <0 stand for t − t ′ >

0 and t − t ′ < 0, respectively, Â = σx sin α − σy cos α, α =
arctan[(y − y′)/(x − x′)], and kF = EF /γ is the Fermi mo-
mentum (accordingly, EF is the Fermi energy). The angle α

enters the problem via angular integration over k components.
The origin of the angular dependence of the Green’s func-
tion stems from the SOI structure in the initial Hamiltonian
(1). This angular dependence is the source of all twists and
anisotropies of the 2D indirect exchange interaction in the
surface topological states. The anisotropy of the dynamic
spin response, related to the dependence on the angle α, is
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a characteristic feature of Friedel oscillations at the surfaces
of TIs.

The explicit form of the Green’s functions entering expres-
sions (5) and (6) reads

G(0)
>0 = −i

n

4π

∫ ∞

kF

J0(k|r − r′|) e−i(t−t ′ )ε− kdk, (7a)

G(1)
>0 = −i

n

4π

∫ ∞

kF

J1(k|r − r′|) e−i(t−t ′ )ε− kdk, (7b)

G(0)
<0 = i

n

4π

∫ kF

0
J0(k|r − r′|) e−i(t−t ′ )ε+ kdk, (7c)

G(1)
<0 = i

n

4π

∫ kF

0
J1(k|r − r′|) e−i(t−t ′ )ε+ kdk, (7d)

ε± = Ek − EF

h̄
± i�,

where Ek = γ k (k = |k|) is the eigenvalue of the unperturbed
Hamiltonian (1) and J0,1(z) are Bessel functions [38]. Here,
� = h̄/2τ is the electron momentum relaxation rate (τ is the
corresponding relaxation time) related to the scattering of
electrons by defects, impurities, etc. Below we shall use the
Green’s functions (5) and (6) to calculate the dynamic spin
response.

III. DYNAMIC SPIN RESPONSE

Due to the SOI-induced anisotropic nature of surface elec-
tron states in TIs, the dynamic response function is determined
by the spin response tensor Smn (m, n = x, y, z), which de-
scribes the response of the mth electronic spin component
to the rotation of the nth component of the impurity spin.
This tensor actually reflects the twisting of spin density (and
thus also of the Friedel oscillations) at the surface of the TI.
The spatial and temporal dependence of the TI electronic spin
response R(r, t ) on the rotation of a localized (impurity) spin
S0(t ) in the lowest order of perturbation theory is given by the
formula [25]

Rm(r, t ) = − ig

h̄

∑
n=x,y,z

Tr
∫ t

−∞
Smn(r, t, t ′)dt ′, (8)

with

Smn(r, t, t ′) = σmG0(r, t, 0, t ′)σnS0n(t ′) G0(0, t ′, r, t ′), (9)

where G0 is the unperturbed Green’s function taken in the
appropriate domain t − t ′ > 0 (5) or t − t ′ < 0 (6), m, n =
x, y, z, and Tr means a trace over the spin indices.

Having the expression for the spin response vector (8), we
are in the position to derive the expression for the electric cur-
rent, related to the above spin-momentum locking effect. The
expression for the electric current operator can be obtained
from the following general relation (see, e.g., [25]):

ĵ = e

h̄

∂H
∂k

, (10)

where e is an electronic charge and H is the Hamiltonian (1)
of our system. In the lowest order of perturbation theory with
respect to the interaction constant g, the Hamiltonian H should

be substituted for HSOI (2) so that the operatorial part of the
expression for the electric current (10) reduces to

ĵ = eγ

h̄
ẑ × σ. (11)

As the unit vector ẑ depends on neither time nor space, the
averaging procedure (8) indicates that the observable value of
the current j is proportional to the electronic spin response
vector R(r, t ). Specifically,

ĵ = eγ

h̄
ẑ × R(r, t ), (12)

where R(r, t ) is determined by expression (8). The possible
experimental setup comprises a spin-polarized STM scanning
tip placed on the TI surface. A latter tip is assumed to act
effectively on the localized impurity spin with a magnetic
field, directed perpendicular to the surface. This field tends
to align the spin direction S0 of the above magnetic impurity
with that of the tip. This activates a Larmor precession of S0
in the above magnetic field. The switching of STM magneti-
zation along the z axis generates the rotation of the localized
impurity spin in the xy plane, which is perpendicular to the z
axis. To quantify the above character of impurity spin rotation,
we consider the experimentally relevant case [37] when the y
component of the spin has the form

S0y(t ) =
{

S̃0 cos(πt/T ), |t | < T/2,

0, |t | � T/2,
(13)

where T is the spin-flip time. Substituting Eqs. (5) and (6)
[also taking into account Eqs. (7a) to (7d)] into Eq. (8) and
calculating the trace of Pauli matrices, we find that for the
dynamic spin in the form (13), the electronic spin response
consists of the components Rx(r, t ) and Ry(r, t ). This pro-
cedure gives identically Rz ≡ 0, which is consistent with the
picture that the spin response occurs in only the TI plane. The
explicit expressions for spin response components assume the
form

Rx(r, t ) = − ig

4π2h̄
sin 2α

∫ t

−∞
S0y(t ′)dt ′

×
{∫ ∞

kF

eiωkk1 (t−t ′ )kdk
∫ kF

0
J1(kr)J1(k1r)k1dk1

−
∫ ∞

kF

eiωkk1 (t−t ′ )k1dk1

∫ kF

0
J1(kr)J1(k1r)kdk

}
,

(14)

Ry(r, t ) = − ig

4π2h̄

∫ t

−∞
S0y(t ′)dt ′

{∫ ∞

kF

eiωkk1 (t−t ′ )kdk

×
∫ kF

0
g+(k, k1, α)k1dk1

−
∫ ∞

kF

eiωkk1 (t−t ′ )k1dk1

∫ kF

0
g−(k, k1, α)kdk

}
,

(15)
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where

ωkk1 = Ek − Ek1 − 2i�

h̄
,

g±(k, k1, α) = J0(kr)J0(k1r) ± cos 2αJ1(kr)J1(k1r). (16)

For the discussed experimental setup, which generates
components Rx(r, t ) and Ry(r, t ) in the forms (15) and (16),
the SML-related current components read

jx(r, t ) = −eγ

h̄
Ry(r, t ), jy(r, t ) = eγ

h̄
Rx(r, t ). (17)

This means that the electric current and the system spin re-
sponse are “linked” to each other so that the properties of
the SML-related current reduce to those of the spin response
vector, although in the “rotor” form (12) and (17).

We see that the components of the spin response and cur-
rent depend differently on the angle α. Really, while Rx(r, t ) is
proportional to sin 2α and does not contain the angle α inside
the integral, the component Ry(r, t ) contains cos 2α inside the
integral, so that at α = 0 (no SOI twisting of the exchange in-
teraction) it gives the nonzero answer. This implies that for the
case of an ordinary semiconductor with parabolic electronic
dispersion, the dynamic localized spin S0y(t ) (13) excites only
the y component of the electronic gas spin response. Note also
that in the latter case, there would be no SML effect, so that
the electric current in the form (12) is substituted by the spin
current. This result coincides with our previous consideration
[37]. Moreover, while the Ry component is nonzero at any
angle α (including α = 0; see above), the Rx component is
zero at α = 0 and α = π/2, achieving the maximal value
at α = π/4. This fact will be seen below in the numerical
calculations.

Our analysis shows that the presented dependences (14)
and (15) are the “building blocks” of any more sophisticated
dependence of the spin response provided more complex ro-
tations of impurity spin. For instance, the above rotation of
the localized spin in the xy plane can admit the nonzero Sox

component. In this case, the response will also comprise the
Rx and Ry components, each of which is a linear combination
of the contributions (14) and (15). Note that for any other STM
scanning patterns, any component of the spin response tensor
Smn can be easily calculated by taking traces of different com-
binations of the Pauli matrices in Eq. (9). These components
will be essentially the same as those in Eqs. (14) and (15).

To present numerical results for the spin response vec-
tor components (14) and (15), we introduce normalized
response functions Rx,y/R0 and the following dimensionless
variables: R0 = gk4

F S̃0/(4π2EF n2), x = EF (t − t ′)/h̄, y =
k/kF , y1 = k′/kF , t0 = EFt/h̄, τ0 = EF τ/h̄, and T0 = EF T/h̄.
Figures 1(a)–1(c) show the spatial behavior of the spin re-
sponse component Ry for α = 0 and different values of t0
and T0, as indicated. We have chosen α = 0, as the corre-
sponding curves are then more distinguishable on the scale
of the plots. Moreover, as we can note in Fig. 1(d), where
the dependence on α is shown, the case α = 0 corresponds
to the most pronounced oscillations in the Ry(z) dependence.
We can see from Figs. 1(a)–1(c) that for small time, t0 = 1, the
electron spin polarization does not spread far from the source
[i.e., from the magnetic impurity with spin rotating according

0 4 8 12

-0.05

0

0.05

0.1

0.15

S
p
in

 r
es

p
o
n
se

, 
R y

/R
0 t0=1

5

0 4 8 12

0

0.05

0.1

0.15

0.2

0 4 8 12

Coordinate, z=kFr

0

0.05

0.1

0.15

0.2

10

0 5 10 15
0

0.02

0.04

0.06 α=0
30

o

45
o

60
o

90
o

T0=2 T0=5

T0=20

(a) (b)

(c) (d)

α=0

T0=20
t0=10

FIG. 1. Spin response component Ry oscillations for different
dimensionless times t0 [as explained in the legend in (a)]. (a)–(c) cor-
respond to different T0 as shown in each panel. (d) The α dependence
of the parameters reported in the panel. For all panels τ0 = 100; in
(a)–(c) α = 0, as indicated in (a).

to Eq. (13)] on the TI surface. For instance, in Fig. 1(a) the
response at t0 = 1 spreads approximately up to z = 1 and
then decays to zero. For t0 = 10, the first pulse of the system
response decays around z0 = 3, and then it oscillates up to
large values of z. At longer spin-flip times T0 = 5 and 20, the
curves for all t0 (for T0 = 5 this concerns only t0 = 5 and 10)
become indistinguishable because for t0 < T0 [which is the
case for Fig. 1(c)] the system simply does not have enough
time to respond for the impurity spin flip. This behavior is due
to the synergy of SOI and the retardation of the TI surface
response to the impurity spin flip, Eq. (13), which spoils the
regular Friedel oscillations.

Figure 1(d) shows the angular dependence of Ry for typical
experimentally relevant values t0 = 10 and T0 = 20. We have
chosen the angular range 0◦ < α < 90◦ due to the angular de-
pendence in Eq. (16). To be specific, this angular dependence
is defined by the factor cos(2α), which is π periodic. Thus,
the range 0◦ < α < 90◦ (half period) covers all physically
relevant cases. The choice of other parameters was dictated by
the experimental situation in femtosecond optical switching:
12 fs [39] and 80 fs [30]. In turn, the electron momentum
relaxation time is in the picosecond range, so that everywhere
we assumed τ0 = 100. We can note that at large distances
from the localized spin, z = kF r > 15, the anisotropy van-
ishes, and the curves for different α merge into a single one.
This shows that at large z the main characteristic features of
TI due to SOI disappear. A similar effect was obtained in a
recent work [40], where SOI was the underlying mechanism
of chaotization of the internal motion in an exciton of finite
radius.

The spatial dependence of the Rx component of the spin
response vector is reported in Fig. 2. It is seen that the qualita-
tive behavior of Rx is similar to that of Ry. The only distinction
is the different character of the spatial decay of the Rx and
Ry components. Namely, while, at large z and t0, Ry decays
monotonously with minute oscillations, Rx has pronounced
oscillations with higher amplitude. The latter property will
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FIG. 2. The same as Fig. 1, but for the Rx component of the
spin response vector. (a) (dimensionless spin-flip time T0 = 2) and
(b) (T0 = 5) report the absolute value (i.e., that normalized by sin 2α)
of the Rx component. Different dimensionless times t0 are explained
in the legend in (a). Panel (c) shows a comparison of the Rx (solid
lines) and Ry (dashed lines) components for angle α = 45◦.

also be revealed in corresponding time dependences. On the
other hand, a comparison of Figs. 1 and 2 shows that for the
same angle α, Ry is always larger than Rx at small coordinates
r. This becomes evident from Fig. 2(c), where a direct com-
parison of the components Ry and Rx is shown for α = 45◦
(sin 2α = 1) as at this angle the Rx component is largest. The
reason is that at a small distance from the localized magnetic
impurity the strongest response occurs for a component which
is present without SOI twisting, i.e., Ry. This means that SOI
influence occurs for substantially high distances from the lo-
calized spin. This is one more demonstration of the lag effect
in spin response.

The temporal evolution of the spin response components
Rx and Ry is reported in Fig. 3. The main result here is that,
according to the corresponding spatial dependence in Fig. 1,
the larger the dimensionless distance z to the impurity is,
the smaller the amplitude of the Friedel oscillations is. This
situation is shown in Figs. 3(a) and 3(c), where the amplitude
of the corresponding oscillations is 3 [Fig. 3(c), α = 45◦]
to 10 times [Fig. 3(a), α = 0] smaller than that for z = 2.
Moreover, as we saw in Fig. 2(c), at small distances from
the magnetic impurity z < 1 the component Ry is larger than
Rx. This situation is revealed in Fig. 3(d), where we compare
the Rx and Ry components of the spin response vector. It is
seen that at z = 0.5 the component Ry > Rx, while at higher
z = 2, 6, 12, both components are almost equal to each other.
This situation occurs for α = 45◦, where the Rx component
is maximal. However, at other angles, the above qualitative
regularity still occurs.

Figures 3(a) and 3(c) show also that the spin-flip time
of the initial pulse T0 determines the period of the Friedel
oscillations of the spin response components. We can see
from Figs. 3(a) and 3(c) that the half period of the Friedel
oscillations is equal to approximately T0: at T0 = 5 it is ap-
proximately 5 [black curves in Figs. 3(a) and 3(c)], while at
T0 = 20 it is smaller than T0, close to 15. Our analysis shows
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FIG. 3. Friedel oscillations of spin response components (a) and
(b) Ry and (c) Rx as a function of dimensionless time t0 for different
spatial points z and spin-flip times T0 as explained in (b) and (d). The
curves in (b) are repeated from (a) on an expanded scale. (d) shows
a comparison of the components Rx (solid lines) and Ry (dashed
lines) as explained in the legend. (a) and (b) correspond to α = 0,
and (c) and (d) correspond to α = 45◦. All curves are plotted for
τ0 = 100.

that at higher T0, the oscillation period becomes progressively
smaller than 2T0. This regularity also occurs in the entire
admissible range of angles α. Apart from the diminishing
amplitude of the oscillations at large z, there is one more
important effect, namely, the time lag in the system response
(corresponding, for instance, to the first maximum of Friedel
oscillations of both the Rx and Ry components) as the distance
from the magnetic impurity grows. Indeed, while at z = 2
the first maximum occurs at t0 ≈ 2.5, at higher distances the
maximum (being much smaller than that at z = 2) occurs
at t0 ≈ 10. This is detailed in Fig. 3(b), where we can see
that while at z = 6 the first maximum occurs at t0 ≈ 8, at
z = 12 it occurs at t0 ≈ 15. The same retardation effect is
visible for the Rx component in Figs. 3(c) and 3(d) when the
system response appears earlier at smaller distances from the
impurity spin.
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IV. DISCUSSION OF EXPERIMENTAL
SITUATION AND OUTLOOK

Topological insulators and low-dimensional materials with
spin-orbit interaction exhibit a large variety of interesting
physical phenomena, which make them promising candidates
for future spintronic applications [41]. We have shown here
that the interplay of spin-orbit coupling and dynamic Friedel
oscillations in the surface 2D electron gas in TIs reveals inter-
esting effects like strong anisotropy of the system response to
the rotation of a localized impurity spin. Specifically, the SOI-
induced spin-momentum locking in TIs yields the anisotropic
tensor structure of dynamic Friedel oscillations and gener-
ates a transient electric current, which is proportional to the
dynamic spin. As both the dynamic spin response and SML-
related transient current are due to the localized spin rotation
(which acts for a finite time), the equilibrium versions of
these quantities vanish. This fact is at odds with the case
of an ordinary semiconductor (where SOI is absent) with
massive electrons [37], where after a sufficiently long time,
the dynamic Friedel oscillations yield an ordinary 2D RKKY
interaction between localized spins [42].

Here, we calculated the spatial and temporal dependence
of the dynamic spin response, which is proportional to the
SML-related transient electric current. The need for such cal-
culations may appear to explain theoretically some specific
experimental situations. The presented model can describe
adequately the propagation of spin excitation resulting from
the fast optical or all-electrical reversal of a localized spin
on the TI surface. Although our formalism captures the basic
features of dynamic Friedel oscillations in TIs, the natural
generalization should take into account a more general [than
(1)] Hamiltonian which stems from a proper mapping of the
exchange interaction between electrons and localized spins
in the TI bulk to its surface states. Such a Hamiltonian was
derived in Ref. [18], and it would be interesting to calculate
the dynamic spin response and transient electric current within
such a generalized approach.

One more generalization of our model is to consider the
distortion of the initial Dirac cone, i.e., the unperturbed term
(2) in the Hamiltonian (1). This distortion is usually thought
of in the form of warping [43,44] and tilting [44,45]. Gener-
ally speaking, the warping of the initial Dirac cone emerges
when one considers the expansion of the initial crystal lattice
potential up to higher orders in wave vector k components.
In the TI Bi2Te3, the warping of the initial Dirac cone has
hexagonal symmetry due to that of the underlying crystal
structure. These warping terms were introduced by Fu [43]
in order to reproduce the angle-resolved photoemission spec-
troscopy experimental results, showing the deviation of the
Fermi surface cross sections from the circular ones. In terms
of the kx and ky components used here (rather than k± =
kx ± iky used in the original paper [43]), this term reads �H =
λσzkx(k2

x − 3k2
y ), showing that it is significant only when we

consider the out-of-plane properties of the TI. Moreover, as
has been shown, these terms generate the additional (to those
considered above) Friedel oscillations of the local density of
states around nonmagnetic, i.e., spinless, defects (both point
[43] and extended [46,47]) in STM experimental setups. The
question of dynamic Friedel oscillations around magnetic

impurity, to the best of our knowledge, has not been con-
sidered to date with respect to the above warping term. We
note here that constant λ in the above warping term is very
large at high charge carrier densities. As here we consider
the small carrier density, the above warping corrections to the
nonperturbed Hamiltonian (2) are small. However, it would be
interesting to consider the contribution of the warping terms
to the dynamic Friedel oscillations. This may be done along
the lines of the present perturbative consideration as it may be
possible to construct the unperturbed Green’s function of the
Hamiltonian with respect to warping terms.

Likewise, the Dirac cone tilting in the form −tσxkx (t is a
tilt parameter) [44,45] can be included in the Hamiltonian (2).
This term is remarkable as it breaks the time-reversal sym-
metry, which allows for backscattering of the (topologically
protected in the initial Dirac cone) states and hence suppresses
the spin-momentum locking. If the tilt is realized in TIs, it
will alter the character of dynamic Friedel oscillations, mak-
ing them less regular with a smaller amplitude compared to
Figs. 2(a), 2(b), and 3. Also, the z component of the spin re-
sponse, Rz, may appear. The magnitude of this effect depends
on the tilting parameter value. From a technical point of view,
this term may be well treated within the presented approach
as it permits us to construct the unperturbed Green’s function.
Thus, theoretical studies of the joint action of the tilting and
warping terms on the dynamical response of a TI electron
gas would be interesting. We postpone these studies to future
publications.

One more interesting physical problem directly related to
the present consideration is the implications of the results
obtained for the TI thin films. A key distinctive feature of a
TI thin film compared to a slab of finite thickness is that in
the former case there are two surfaces, say, top and bottom.
Due to the small film thickness, the electronic states localized
on the top and bottom surfaces are not independent. The
coupling between the localized states on the two surfaces
leads to additional effects absent in semi-infinite (sufficiently
thick) slabs where only one surface is present. Static Friedel
oscillations in thin films were considered in Ref. [48] for spin-
independent Coulomb potentials. On the other hand, here, we
consider magnetic impurities and the dynamical response to
the impurity spin rotation. It was shown in [48] that at low
charge carrier densities the TI thin films behave as ordinary
conductors with parabolic carrier dispersion and like surfaces
of the bulk TI at high densities. Our analysis of Figs. 1 and 2
shows that dynamic Friedel oscillations at large distances z >

5 decay as cos 2z/zp, where the exponent p depends on the
spin-flip time duration T and angle α. Namely, for α = 45◦
(Fig. 2) at dimensionless spin-flip time T0 = 2, p ≈ 3.1, while
for T0 = 20, p ≈ 4.8. For α = 0, which is the case for Ry

(Fig. 1), the decay is faster, p ≈ 5.1. This shows that although
the logic of Ref. [48] applies also for our consideration, in
the dynamic case we have more parameters, so the situation
requires additional studies. The case of dynamic Friedel os-
cillations in TI thin films will be considered elsewhere.

The possible experimental methods for very fast reversal
of spins localized on a TI surface can be found, for in-
stance, in Refs. [30,39]. To access the controllable transient
impurity spin dynamics, time-dependent driving of an adatom
on the TI surface is needed while monitoring characteristics
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like the magnetization of a neighboring adatom and time-
dependent electric current leading to spin-momentum locking.
For instance, the magnetic moment direction of a single 3d
adsorbed adatom (Cr, Mn, Fe, and Co) can be controllably
varied by changing the distance between the adatom and the
STM tip [49]. Ultrafast temporal resolution can be enabled
using pulsed electromagnetic fields acting on the localized
spin moment of an adatom [50]. On the nanosecond timescale,
spin-polarized STM experiments were realized [51] using
voltage pulses to achieve the time resolution.

We note in this context that the spin-orbit interaction, being
an integral part of the TI Hamiltonian, would facilitate spin
reversal, so that TIs can be regarded as an almost ideal system
for that. As we have shown, in addition to the tensor structure
of the spin response, SOI also generates anisotropy in the TI
plane, which is reflected in the appearance of the angle α. In
this case, the picosecond spin flips in magnetic nanoparticles
(possessing localized spins), reachable in TIs, may become
shorter or longer depending on the SOI constant γ and
anisotropy angle α. Note that SOI-induced anisotropy may in-
teract with the natural anisotropy of a magnetic nanoparticle,
thus limiting such spin rotation. This interesting effect will be
considered elsewhere.

We finally mention the effects which may appear not only
in TIs but also in other 2D systems (like semiconductor sur-
faces and interfaces), where Rashba SOI plays an important
role. One such effect is related to the chaotic internal motion

in 2D excitons due to SOI inclusion. The chaotic regime was
studied in a recent paper [40] that showed such a chaotic
regime may be important for photovoltaic devices fabricated
from thin films of organometallic perovskites [52] and other
2D semiconductor structures. Chaotic behavior may also arise
in the case studied here. Indeed, the irregular oscillatory be-
havior of the spin density, reported in Fig. 1, may be related to
the possible onset of chaotic behavior. One can easily imagine
a situation where some electron-hole interactions (like the
Coulomb one in an exciton) in a 2D electron gas produce
certain bound states, which may become unstable and thus
prone to chaos. The manifestation of chaos is also present in
the quantum case [53]. Another example is the ensemble of lo-
calized spins in a 2D semiconductor structure, which interact
indirectly via the RKKY mechanism [41]. The most common
case is that the impurity spins are distributed chaotically in a
semiconducting host so that their separation is random. This
may immediately lead to sub- or superdiffusive spin transport
in these structures [39], which can be described by the intro-
duction of fractional derivatives in the corresponding kinetic
equations [54].
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