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Anisotropic g-tensors in hole quantum dots: Role of transverse confinement direction
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Qubits encoded in the spin state of heavy holes confined in Si- and Ge-based semiconductor quantum dots
are currently leading the efforts toward spin-based quantum information processing. The virtual absence of
spinful nuclei in purified samples yields long qubit coherence times and the intricate coupling between spin
and momentum in the valence band can provide very fast spin-orbit-based qubit control, e.g., via electrically
induced modulations of the heavy-hole g-tensor. A thorough understanding of all aspects of the interplay between
spin-orbit coupling, the confining potentials, and applied magnetic fields is thus essential for the development of
the optimal hole-spin-based qubit platform. Here we theoretically investigate the manifestation of the effective
g-tensor and effective mass of heavy holes in two-dimensional hole gases as well as in lateral quantum dots. We
include the effects of the anisotropy of the effective Luttinger Hamiltonian (particularly relevant for Si-based
systems) and we focus on the detailed role of the orientation of the transverse confining potential. We derive
general analytic expressions for the anisotropic g-tensor and we present a general and straightforward way
to calculate corrections to this g-tensor for localized holes due to various types of spin-orbit interaction,
exemplifying the approach by including a simple linear Rashba-like term. Our results thus contribute to the
understanding needed to find optimal points in parameter space for hole-spin qubits, where confinement is
effective and spin-orbit-mediated electric control over the spin states is efficient.
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I. INTRODUCTION

Electron-spin-based qubits hosted in gate-defined semicon-
ductor quantum dot structures have long been a promising
candidate for easily scalable quantum information processors
[1–3]. Although GaAs-based devices have propelled the field
forward for more than a decade, yielding many encouraging
features such as full electric control and fast operation times
[4–9], their coherence times are intrinsically limited due to
the coupling between the electron spins and the nuclear spin
bath of the host material [10–12]. A potential solution to this
problem is to host the qubits in group-IV materials, such as
Si or Ge, which can be made almost nuclear spin free by
isotopic purification [13–17]. However, this approach comes
with the complication of an extra valley degree of freedom for
confined electrons, which is hard to control and provides an
extra channel for leakage and dephasing [18,19].

Lately there has been dramatic progress with Si- and Ge-
based spin qubits that use instead of electron spin the spin
of valence-band holes [20–28]. These holes provide a similar
protection against magnetic noise as the electrons, due to
the virtual absence of nuclear spins in purified samples, but
they do not have the complicating valley degree of freedom.
However, since the orbitals that constitute the valence band
are of p type [29], the corresponding states have a total sixfold
angular momentum degree of freedom, possibly leading to
highly anisotropic dynamics. Compared to the valley mixing
of the electronic states, however, these dynamics are relatively
predictable, and the built-in mixing of orbital and spin degrees
of freedom can yield strong effective spin-orbit coupling that
allows for fast qubit operation [30–36]. Moreover, the p-type

orbital nature of the valence band has the additional advantage
of weaker effective hyperfine coupling to any residual spinful
nuclei, due to the wave function having a node at the atomic
site [37].

Recent experiments on two-dimensional hole quantum
wells and quantum dots have indeed shown wildly varying
and anisotropic effective hole masses [38–40] and g-factors
[41–52], depending on choice of material, hole densities, and
on the details of the confinement. In this paper we theoreti-
cally investigate these anisotropic properties of confined holes
in detail, with a focus on the role of the precise orientation of
the confinement potentials with respect to the crystal orienta-
tion. We will pay special attention to the case of Si, which has
particularly strong anisotropic properties as compared to most
other common materials, such as Ge, GaAs, and InAs [29].

We assume a semiconductor heterostructure containing a
thin layer to which a two-dimensional hole gas (2DHG) is
confined. Further in-plane confinement into quantum dots can
then be realized using electrostatic top gates. We do not re-
strict our analysis to confinement planes along the common
crystal growth directions, but investigate the more general
case where the 2DHG can be oriented along any arbitrary
direction. Although from a fabricational point of view it is
maybe not straightforward to realize arbitrary confinement
directions (or directions that are incommensurate with the
primitive lattice vectors), exploring the fully general case
will allow us to identify orientations with optimally tuned
parameters for spin-qubit implementations in different ma-
terials, such as minimal effective masses, maximal in-plane
g-factors, and maximal electrical tunability of the g-tensor.
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Apart from revealing analytical insights in the relation be-
tween the orientation of the 2DHG and the most important
effective parameters of the resulting quantum dots, our results
could thus also serve as inspiration for exploring possibilities
to create confinement planes in less common crystallographic
directions.

In Sec. II we present the effective 4 × 4 Luttinger Hamil-
tonian we use to describe the hole dynamics in the top part of
the valence band. We then write the Hamiltonian as a function
of two Euler (rotation) angles such that the z direction can be
made to point in any desired direction.

In Sec. III we add a strong confinement potential along the
(arbitrary) z direction, assuming that the corresponding con-
finement energy scale dominates all other relevant scales in
the system. The terms in the Luttinger Hamiltonian that break
spherical symmetry allow the confinement to mix states with
different angular momentum along the out-of-plane direction,
thereby introducing anisotropy in the effective hole parame-
ters. Under the assumption of strong confinement we thus di-
agonalize the dominating part of the Hamiltonian and extract
analytic expressions for the in-plane effective hole masses.
Then we add a Zeeman Hamiltonian describing the coupling
of the hole spins to an applied magnetic field. We transform
this Hamiltonian to the same eigenbasis defined by the trans-
verse confinement and extract analytic expressions for the full
anisotropic g-tensor for the lowest two-hole spin states, as a
function of the two Euler angles. We map out the full orienta-
tion dependence of the g-tensor for the case of Si, showing a
great variation of magnitude and sign in its components.

Finally, in Sec. IV, we add in-plane confinement into quan-
tum dots, assuming the corresponding orbital energy scale
to be much smaller than the out-of-plane orbital energy. Al-
though we assume a circularly symmetric confining potential,
the anisotropic effective hole mass makes the confinement
effectively elliptic. We add the effect of the out-of-plane
component of the applied magnetic field and use a diagonal-
ized version of a single quantum-dot Hamiltonian in terms
of bosonic ladder operators. Expressing the hole momentum
operators in terms of the same ladder operators allows for
a straightforward and versatile perturbative evaluation of the
effect of spin-orbit interaction (SOI) on the dynamics of the
confined holes. We exemplify this approach by including a
simple linear Rashba-like SOI that can result from the out-
of-plane confinement, and we derive analytic expressions for
the resulting corrections to the g-tensor for the confined holes.
As we point out below, including other types of SOI that
might dominate depending on choice of material and details
of confinement is simple in our approach, and our results
can straightforwardly be used to produce analytic expressions
for the g-tensor corrections due to any desired type of SOI.
The SOI-induced corrections to the g-tensor of localized holes
can used for fast spin manipulation through electrical g-tensor
modulation [42,47,53,54], and developing a thorough under-
standing of the detailed interplay of SOI, confinement, and
applied magnetic fields is thus crucial [55–57].

II. HAMILTONIAN

In semiconductors with diamond or zinc-blende structure
the states in the valence band are comprised of atomic orbitals

TABLE I. Luttinger parameters γ1,2,3 and bare effective g-factors
κ and q in Si, Ge, GaAs, and InAs [29].

Si Ge GaAs InAs

γ1 4.285 13.38 6.85 20.40
γ2 0.339 4.24 2.10 8.30
γ3 1.446 5.69 2.90 9.10
κ −0.42 3.41 1.20 7.60
q 0.01 0.06 0.01 0.39

with angular momentum l = 1 and spin s = 1
2 . The band thus

has a sixfold degree of freedom that can be classified in terms
of total angular momentum j = l + s. Spin-orbit interaction
splits off the two states with j = 1

2 from the other four by
an energy of the order ∼100 meV, and for the low-energy
dynamics one can thus focus on the four j = 3

2 states. Using
k · p theory, one can derive an effective 4 × 4 Hamiltonian for
this subspace, which reads in the cubic approximation

HL = p2

2m0

(
γ1 + 5

2
γ2

)
− γ2

m0

(
p2

xJ2
x + c.p.

)

− 2γ3

m0
({px, py}{Jx, Jy} + c.p.), (1)

where {A, B} = 1
2 (AB + BA), m0 is the electron rest mass,

pi are the momentum operators, with i ∈ {x, y, x}, Ji are the
three spin- 3

2 matrices, and c.p. denotes cyclic permutation.
Furthermore, the dimensionless constants γ1,2,3 are the three
so-called Luttinger parameters, and are given in Table I for Si,
Ge, GaAs, and InAs.

Although we will mainly focus on the dynamics gov-
erned by the Luttinger Hamiltonian (1), the effect of strain
could easily be added by including the so-called Bir-Pikus
Hamiltonian [58],

HBP =
(

−a + 5

4
b

)
(εxx + c.p.) − b

(
εxxJ2

x + c.p.
)

− 2d√
3

(εxy{Jx, Jy} + c.p.), (2)

where ε̄ is the strain tensor, a is the Bir-Pikus hydrostatic
deformation potential, and b and d are two Bir-Pikus shear
deformation potentials [58]. This Hamiltonian has the same
structure as the Luttinger Hamiltonian (1), which in principle
allows for a straightforward inclusion of strain into the results
we will report below.

In both Hamiltonians (1) and (2) it is assumed that the
coordinate system {x, y, z} is aligned with the main crystal-
lographic axes. This is important since the terms proportional
to γ2,3, b, and d are not spherically symmetric, i.e., the struc-
ture of these two terms depends on the choice of coordinate
system. In many common semiconductors such as GaAs,
Ge, and InAs the difference δ ≡ γ3 − γ2 is smaller than the
(weighted) average 2γ2 + 3γ3 (see Table I), which makes
neglecting terms proportional to δ a good approximation. In
that case, the Hamiltonian becomes spherically symmetric
and no longer depends on the orientation of the coordinate
system with respect to the crystal structure. However, since we
specifically want to include Si in our consideration, for which
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FIG. 1. Illustration of the rotation using the two Euler angles
α and β. The crystallographic axes are shown in blue, the rotated
coordinate system (x, y, z) is shown in red.

the spherical approximation is not particularly good, we will
not neglect δ, and will take the actual crystal orientation into
account.

A 2DHG is created by applying strong confinement along
one direction. To find an effective in-plane two-dimensional
Hamiltonian for the 2DHG we need to integrate out the coor-
dinate along the direction of confinement, which we will call
z. If z does not point along one of the main crystallographic
axes, we first need to rotate the Hamiltonian to the correct
coordinate system. This can be done as follows: (i) The origi-
nal Hamiltonian is separated in a spherically symmetric part,
which is invariant under rotations, and a cubic part that is com-
prised of the 0 and ±4 components of the rank-4 part of the
tensor product of the two irreducible rank-2 tensors that can be
formed from the elements Ki j = 3

2 (pi p j + p j pi ) − δi j p2 and
Li j = 3

2 (JiJj + JjJi ) − δi jJ2 [59]. (ii) The cubic contribution
can be rotated to the new coordinate system by applying the
rotation matrix for j = 4 angular-momentum eigenfunctions
D(4)(α, β, γ ) to the components of the rank-4 tensor men-
tioned above, where {α, β, γ } are the Euler angles of the
rotation [60]. In this work we will explore the full range of
possible confinement planes and thus not restrict ourselves to
the common crystal growth directions such as [nnm].

Since any plane of confinement can be defined by two
angles only, we fix γ = 0 to simplify our analytic expressions.
The new coordinate system then results from a rotation by α

about [001] followed by a rotation by β about the new y axis,
as illustrated in Fig. 1. In that way the [nnm] directions, as
investigated in Refs. [29,59], can be obtained by simply set-
ting α = π/4. Most experiments use samples grown along the
[001] and [110] directions, with the confinement created along
the growth direction, and when presenting explicit results we
will thus consider these highly used confinement directions.
However, since we can obtain results for any general direc-
tion of confinement, it is straightforward to also explore less
common directions, which could result in a 2DHG with more
interesting or useful properties. There is no fundamental prob-
lem with growing structures along less common directions
and by investigating all possible confinement orientations our

text might identify new attractive orientations that motivate
the production of the more exotic substrates required.

The resulting rotated Hamiltonian can always be written in
the following form:

H (α, β ) =

⎛
⎜⎜⎝

P − Q −S R 0
−S† P + Q 0 R
R† 0 P + Q S
0 R† S† P − Q

⎞
⎟⎟⎠, (3)

in the basis of the eigenstates {| 3
2 〉, | 1

2 〉, |− 1
2 〉, |− 3

2 〉} of Jz with
its quantization axis along the new z direction. The matrix
elements P, Q, R, and S can be expressed in terms of dimen-
sionless symmetric tensors Mi j ,

M = 1

2m0

∑
i, j

Mi j{pi, p j}, (4)

where M ∈ {P, Q, R, S} and i, j ∈ {x, y, z}. The diagonal el-
ement P is invariant under rotations and follows from Pi j =
δi jγ1; the other elements are more involved and explicit ex-
pressions for their Mi j as a function of α and β are given
in Appendix A. The Bir-Pikus contribution to the Hamil-
tonian can easily be included in this notation, by adding a
similar contribution M → M + ∑

i, j MBP
i j εi j , where the ele-

ments MBP
i j can be obtained from Mi j by the substitution

{γ1, γ2, γ3} → {−a, 1
2 b, 1

2
√

3
d}.

III. TWO-DIMENSIONAL HOLE GAS

In this section we investigate the dynamics of the holes in
a 2DHG, and calculate their effective masses and g-tensor.
The in-plane Hamiltonian for the confined holes is obtained
by integrating out the coordinate along the direction of con-
finement, which we labeled z. Assuming no strain and an
infinite-well-type of confinement for simplicity, one finds that
all terms in H that are linear in pz vanish, also in the presence
of a finite magnetic field [29], and the terms quadratic in pz

integrate out to contributions Mzzuz, where the confinement
energy scale uz = 〈p2

z〉/2m0 will be assumed much larger than
the in-plane kinetic energy of the holes.

The next step is to diagonalize the part of the Hamiltonian
that is proportional to uz, which in general leads to a basis that
no longer consists of pure mj = ± 3

2 and mj = ± 1
2 states. The

two resulting pairs of spin-mixed eigenstates are the heavy
and light holes (HHs and LHs), where the heavy holes are the
ones with the lowest excitation energy. The light holes are split
off by an energy 	HL = 2uz

√
Q2

zz + |Rzz|2 + |Szz|2, but can
become mixed with the heavy holes by in-plane confinement
or an applied magnetic field.

A. Effective masses

1. Spherical approximation, δ = 0

Before investigating the anisotropic dynamics of the
2DHG, we briefly repeat the well-known results for the spher-
ical approximation, which follows from neglecting all terms
in the Hamiltonian proportional to δ = γ3 − γ2. Then, the
HH and LH states at the band edge are pure mj = ± 3

2 and
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mj = ± 1
2 states, and one finds S = 0 and

Q = 4γ2 + 6γ3

5
uz − 1

10m0
(2γ2 + 3γ3)

(
p2

x + p2
y

)
, (5)

R = −
√

3

10m0
(2γ2 + 3γ3)(px − ipy)2, (6)

so that 	HL = 4
5 (2γ2 + 3γ3)uz. We see that the Hamiltonian

is indeed spherically symmetric in this limit and irrespective
of the crystallographic orientation of the 2DHG the in-plane
effective masses read to leading order in 1/uz as mH(L) =
m0/[γ1 ± 1

5 (2γ2 + 3γ3)] for the HHs and LHs, respectively.

2. Anisotropic Hamiltonian, δ �= 0

The spherical approximation is good in materials where
δ/(2γ2 + 3γ3) is very small. For the case of Si, however, we
have δ/(2γ2 + 3γ3) ≈ 0.22, which is not negligible, and we
thus need to include the terms proportional to δ as well. In
general this results in the HHs and LHs becoming mixtures
of the mj = ± 3

2 and mj = ± 1
2 states, except for confinement

along high-symmetry directions, such as [001] and [111],
where Rzz = Szz = 0 and the Hamiltonian becomes isotropic
again.

Most generally, we find for the in-plane effective masses to
leading order in 1/uz, cf. [29]

mH,L(θ ) = 2m0

2γ1 + s + r cos(2θ − 2ζ )
, (7)

where θ is the angle between the x axis and the direction of
motion of the hole. The parameters s and r are different for
the HHs and LHs,

sH,L = ∓ Re[nzz · (vxx + vyy)∗],

rH,L = ±
√

Re[nzz · (vxx − vyy)∗]2 + Re[nzz · v∗
xy]2,

where we introduced the vectors vαβ ≡ {Qαβ, Rαβ, Sαβ} and
nαβ ≡ vαβ/|vαβ |, and the upper (lower) sign corresponds to
the heavy (light) holes. The angle

ζ = 1

2
arctan

(
Re[nzz · v∗

xy]

2Re[nzz · (vyy − vxx )∗]

)
(8)

determines what θ gives the smallest (largest) effective heavy
(light) hole mass, while the largest (smallest) effective mass
is always obtained when θ is an angle π

2 off from ζ . Insert-
ing the expressions given in Appendix A reveals the explicit
dependence of mH,L(θ ) on the Euler angles that were used to
rotate the Hamiltonian.

In Fig. 2 we illustrate how the effective HH masses in Si
depend on the two Euler angles α and β. Figures 2(a) and 2(b)
show the magnitudes of the smallest effective mass mH(ζ )/m0

and the largest effective mass mH(ζ + π
2 )/m0, respectively.

In Fig. 2(c) we plot the anisotropy of the effective masses
mH(ζ + π

2 )/mH(ζ ), while Fig. 2(d) shows how the angle ζ

depends on α and β.
The three symbols in Fig. 2 mark three common con-

finement directions: [001] (circle), [110] (cross), and [112]
(star). For the high-symmetry direction [001] the effective
masses are isotropic, as expected. Inserting zero for α and β

in Eq. (7) we find mH,L
[001](θ ) = m0/(γ1 ± γ2), which is indeed

0

0.17

0.20

0.23

0.14

0.17

0.20

0.23

0.14

0
0

0
0 1.00

1.25

1.50

(a) (b)

(c) (d)

FIG. 2. The effective hole masses of Si as predicted by Eq. (7),
plotted against the direction of confinement. (a) and (b) show the
smallest and largest effective mass mH(ζ ) and mH(ζ + π/2), re-
spectively; (c) shows the anisotropy of the effective masses mH(ζ +
π/2)/mH(ζ ); and (d) shows the angle ζ .

independent of θ since rH,L
[001] = 0. The largest anisotropy of the

effective masses is obtained when the 2DHG is confined along
[110], where mH(ζ + π

2 )/mH(ζ ) > 1.5. Here, the parameter
rH,L in Eq. (7) is at its maximum, making the masses highly
dependent on θ ,

mH,L
[110](θ ) = 2m0

2γ1 ±
√

γ 2
2 + 3γ 2

3 ± 3 |γ 2
3 −γ 2

2 |√
γ 2

2 +3γ 2
3

cos(2θ )
. (9)

We find a similar expression for the [112] direction,

mH,L
[112](θ ) = 2m0

2γ1 ±
√

γ 2
2 + 3γ 2

3 ∓ |γ 2
3 −γ 2

2 |√
γ 2

2 +3γ 2
3

cos(2θ )
. (10)

which has less anisotropy and opposite directions where the
masses are largest and smallest, as compared to [110].

B. Heavy-hole Zeeman effect

We will now add a magnetic field and consider its coupling
to the angular momentum of the HHs in a 2DHG through
the Zeeman effect. The Hamiltonian describing this coupling
for the four j = 3

2 states in the upper valence band reads
as [29,61]

HZ = 2κB · J + 2qB · J , (11)

where κ is the effective g-factor of the isotropic coupling,
B is the applied magnetic field, q sets the strength of the
anisotropic coupling, J = {J3

x , J3
y , J3

z }, and we use units
where the Bohr magneton μB = 1. Since κ is usually two
orders of magnitude larger than q (see Table I) we will neglect
the anisotropic contribution to HZ. The goal of this section is
to derive an effective g-tensor ḡ for the HH subspace, such
that the linear Zeeman Hamiltonian (11) for the HHs can be
written as

HH
Z = 1

2σ · ḡ · B, (12)

075303-4



ANISOTROPIC G-TENSORS IN HOLE QUANTUM DOTS: … PHYSICAL REVIEW B 105, 075303 (2022)

where σ = {σx, σy, σz} is the vector of Pauli matrices, acting
in the HH subspace.

1. Spherical approximation, δ = 0

Let us again first review the case where the spherical
approximation δ → 0 is reasonable, such as for Ge. At the
edge of the valence band, i.e., where px = py = 0, we have
R = S = 0 and the two HH states are thus pure mj = ± 3

2
states. In that case, the effective HH Zeeman Hamiltonian
becomes to leading order in 1/uz

HH
Z = 3κBzσz. (13)

At the edge of the valence band, the coupling to the in-plane
components of the magnetic field Bx,y is a higher-order effect
via the LH states and is thus proportional to B3

x,y/u2
z . In terms

of the g-tensor this means that gzz = 6κ and all other elements
are much smaller.

For a 2DHG with a finite density, the holes with nonzero
in-plane momentum have a nonzero matrix element R, see
Eq. (6). This means that for holes close to the Fermi level the
resulting HH-LH mixing adds a finite coupling to the in-plane
field, yielding an effective direction-dependent g-tensor

ḡ =
⎛
⎝g‖ cos 2ϕ −g‖ sin 2ϕ 0

g‖ sin 2ϕ g‖ cos 2ϕ 0
0 0 g⊥

⎞
⎠, (14)

with g⊥ = 6κ and g‖ = 6κ p2
F/2m0uz, again up to order

O(1/uz ). Here pF is the Fermi momentum and ϕ is the di-
rection of propagation of the hole under consideration.

Using that we defined uz = 〈p2
z〉/2m0, we arrive at

an elegant expression for the ratio of the magnitudes of
the in-plane and out-of-plane g-factors in the spherical
approximation [29,62],

g‖
g⊥

= p2
F〈

p2
z

〉 . (15)

Assuming parabolic dispersion for the range of energies of
interest, we can consider a finite two-dimensional density of
HHs ρ in the valence band and thus write for the ratio of g-
factors at the Fermi level

g‖
g⊥

= 2πρ〈
k2

z

〉 = 2

π
ρd2, (16)

where in the last step we again used our assumption of an
infinite-well-type of confinement along z, resulting in 〈k2

z 〉 =
π2/d2, where d is the width of the well.

2. Anisotropic Hamiltonian, δ �= 0

Going beyond the spherical approximation, as is necessary
for Si, all HHs and LHs are mixtures of mj = ± 3

2 and mj =
± 1

2 states, thus resulting in general in a finite coupling to Bx,y

within the HH subspace, also in the absence of finite in-plane
momentum. We thus transform the Zeeman Hamiltonian (11)
to the basis where the part of H proportional to uz is diag-
onal, which we then project to the HH subspace. To leading
order in 1/uz, the resulting g-tensor can be written relatively

compactly,

gzz

κ
= 2

Qzz

ν
+ 4

ν

μ
, (17)

gzx − igzy

κ
= 2

√
3

Szz

ν
− 2

RzzS∗
zz

μν
, (18)

gxz + igyz

κ
= 2

RzzSzz

μν
, (19)

gxx − igxy = g−+ + g++, (20)

gyy + igyx = g−+ − g++, (21)

with

g−+
κ

= −
√

3
R∗

zz

μ

(
1 + Qzz

ν

)

− (S∗
zz )2

|Szz|2
(

1 − Qzz

ν

)(
1 + ν

μ

)
,

g++
κ

=
√

3
Rzz

μ

S2
zz

|Szz|2
(

1 − Qzz

ν

)

+ R2
zz

|Rzz|2
(

1 + Qzz

ν

)(
1 − ν

μ

)
,

using the shorthand notation ν = √
Q2

zz + |Szz|2 and μ =√
Q2

zz + |Szz|2 + |Rzz|2. These results generalize those pre-
sented in Refs. [61,63], where the focus was on confinement
along [nnm]. Equations (18)–(21) are again valid to leading
order in 1/uz; we note that with the spherical approximation
we have Szz = Rzz = 0, yielding gzz = 6κ as the only nonzero
element, as expected.1 We only included the leading-order
terms in 1/uz and assumed that k‖ = 0, i.e., formally we
evaluate the g-tensor at the edge of the valence band. However,
finite k‖ also contributes to ḡ in the anisotropic (δ �= 0) case,
similar as in Sec. III B 1. That contribution typically becomes
comparable to the one evaluated here when k‖d ∼ 1, the exact
number being highly material dependent.

When the 2DHG is confined along a high-symmetry di-
rection, such as [001] or [111], we obtain an out-of-plane
g-factor g⊥ = 6κ and in-plane g-factors g‖ = 0, as expected.
For lower-symmetry directions also the gxx and gyy compo-
nents become nonzero, and by taking [110] as an example we
find straightforwardly

gzz

κ
= 2 + 2(γ2 + 3γ3)√

γ 2
2 + 3γ 2

3

, (22)

gyy

κ
= −2 − 2(γ2 − 3γ3)√

γ 2
2 + 3γ 2

3

, (23)

gxx

κ
= 2 − 4γ2√

γ 2
2 + 3γ 2

3

, (24)

1Although we here focus on the leading-order terms ∝ 1/uz, we
note that the expressions in Eqs. (18)–(21) can be generalized to
describe the g-tensor of any heavy hole governed by a Hamilto-
nian in the form of Eq. (3) by simply substituting {Qzz, Rzz, Szz} →
{Q, R, S}.
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FIG. 3. The nine components of the heavy hole g-tensor given by
Eqs. (18)–(21) plotted against the direction of confinement. We here
used parameters for Si, see Table I.

and vanishing off-diagonal components. To obtain nonzero
off-diagonal elements one has to consider less common di-
rections. For example, for a 2DHG oriented along [112] one
finds nonzero off-diagonal elements

gxz

κ
= 2

√
2√
3

(γ3 − γ2)2√
γ 2

2 + 3γ 2
3

√
11γ 2

2 + 2γ2γ3 + 35γ 2
3

, (25)

gzx

κ
= 2

√
2√
3

6(γ3 − γ2)
√

γ 2
2 + 3γ 2

3 − (γ3 − γ2)2

√
γ 2

2 + 3γ 2
3

√
11γ 2

2 + 2γ2γ3 + 35γ 2
3

, (26)

coupling the z component of the spin to the x com-
ponent of B and vice-versa, making the g-tensor highly
anisotropic. All these expressions follow straightforwardly
from Eqs. (18)–(21) upon inserting the explicit expressions
given in Appendix A. In Fig. 3 we plot the magnitude of all
nine components of the HH g-tensor at the band edge as a
function of the two confinement angles α and β, as given by
Eqs. (18)–(21), where we again used parameters for Si. We see
that by controlling the orientation of the confining potential
one can design the qualitative form of the g-tensor, ranging
from purely diagonal for high-symmetry directions to highly
anisotropic for less common directions.

IV. CONFINED HEAVY HOLES

In the previous section we investigated the effects of con-
finement along the z direction on the g-tensor in a 2DHG.
Further confinement along the in-plane coordinates x and y,
often done via electrostatic gating, can then be used to localize
the holes in lateral quantum dots, opening up the possibility to
use them as a spin-qubit platform. The effective g-tensor for
such localized holes can be affected by spin-orbit interaction
(SOI) [2], the effect of which we will include in this section.

In this section we will restrict ourselves to a general linear
Rashba-type SOI, which could be caused by the 2DHG con-
finement potential [64,65]. The Hamiltonian describing this
type of interaction for the j = 3

2 states in the upper valence
band reads as [29,63,66]

Hso = βso(pyJx − pxJy), (27)

where we neglected the contribution proportional to J , which
is usually much weaker, and we assumed the electric field
associated with the confining potential to point along z. The
parameter βso is material dependent and depends also in an
intricate way on the exact shape of the transverse confining
potential. By focusing solely on this Rashba term, we neglect
the Dresselhaus contribution stemming from the lack of a
crystallographic inversion center (which can contribute to the
SOI in materials like GaAs and InAs) and we disregard the
direct Rashba SOI due to HH-LH mixing [31–34,67] and the
dipolar SOI [68]. Our choice is not meant to indicate that we
believe that this type of SOI is dominant most often in realistic
systems, but we think that it makes our presentation as peda-
gogical as possible: the straightforward derivation that follows
below can serve as a clear blueprint for how the approach can
be adapted to other, possibly more complex types of SOI.

In the remainder of this section we will start by calculating
the level structure of holes confined in a quantum dot. This
allows us then to project the spin-orbit Hamiltonian in Eq. (27)
to this basis of localized heavy-hole states and calculate the
SOI-induced corrections to the g-tensor using perturbation
theory.

A. Level structure

The Luttinger Hamiltonian that governs the in-plane mo-
tion of the effective heavy holes was obtained by transforming
the in-plane part of H in Eq. (3) to the basis where the part of
H proportional to uz is diagonal. We now add a circularly sym-
metric parabolic confinement potential V (r) = λ(x2 + y2),
which can describe the confinement of the holes in a quantum
dot,

HH
L,‖ = p2

x̃

2m−
+ p2

ỹ

2m+
+ m−

2
ω2

x x̃2 + m+
2

ω2
y ỹ2. (28)

Here, m− = mH(ζ ) and m+ = mH(ζ + π/2) are the minimum
and maximum HH effective masses, as given by Eq. (7),
and the new in-plane coordinate system {x̃, ỹ} is thus rotated
over an angle ζ along z with respect to the original sys-
tem {x, y}. Further, the frequencies ωx = √

2λ/m− and ωy =√
2λ/m+ determine the strength of the in-plane confinement

and p = −ih̄∂r̃ + eA(r̃) is the canonical momentum, with
A(r̃) = Bz(−ỹ/2, x̃/2, 0) being the vector potential for which
we use the circular gauge and neglect in-plane components of
the magnetic field, assuming strong confinement along z.

The eigenstates and eigenenergies of such an anisotropic
two-dimensional oscillator in the presence of a magnetic field
can be found in different ways, see, e.g., Refs. [69–71]. We
follow the procedure presented in Ref. [72], resulting in a
Hamiltonian that can be written in terms of two independent
harmonic oscillators,

HH
L,‖ = h̄ω+

(
a†

+a+ + 1
2

) + h̄ω−
(
a†

−a− + 1
2

)
, (29)
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FIG. 4. Asymmetry in the confinement energy ω+/ω− as given
by Eq. (31). (a) ω+/ω− as a function of the direction of confinement
in the absence of a vector potential. (b) ω+/ω− as a function of
the angle β and applied magnetic field eBz/

√
λm0, setting α = π/4

(which corresponds to focusing on confinement directions [nnm]). In
both plots we used parameters for Si.

where a(†)
± are bosonic creation and annihilation operators, and

the (positive) oscillator frequencies are defined through

ω2
± = 1

2
ω2

x + 1

2
ω2

y + 2ω2
c

± 1

2

√(
ω2

x − ω2
y

)2 + 8
(
ω2

x + ω2
y + 2ω2

c

)
ω2

c , (30)

with ω2
c = e2B2

z /4m+m−. We will assume throughout that the
oscillator energies h̄ω± are much smaller than the energy uz

associated with the transverse confinement.
Since the masses m± depend on the orientation of the plane

of the 2DHG (through the angles α and β, see Sec. III A) the
level splitting in the dot will also vary as a function of that
orientation, which can be shown more explicitly by inserting
the maximum and minimum masses as given by Eq. (7),

ω2
± = λ

m0

(
2γ1 + s + 2χ2

c ± η
)
, (31)

where we introduced the notation

η =
√

b2 + 4χ2
c

(
2γ1 + s + χ2

c

)
, (32)

and used the dimensionless parameter

χc = eBz

4
√

λm0

√
(2γ1 + s)2 − r2, (33)

characterizing the magnitude of the cyclotron frequency com-
pared to the harmonic oscillator frequencies. We used the
same notation as in Sec. III A, where we omitted the super-
script “H” from the coefficients r and s.

To illustrate the dependence of the confinement energies on
the orientation of the 2DHG explicitly, we plot in Fig. 4(a) the
anisotropy of the level splitting ω+/ω− as a function of the
angles α and β in the absence of a vector potential, where
we used parameters for Si. Naturally, since this anisotropy
stems from the orientation dependence of the effective mass, it
strongly resembles the results shown in Fig. 2(c). Figure 4(b)
shows how a nonzero vector potential affects the anisotropy.
We plot ω+/ω− as a function of eBz/

√
λm0 and the angle

β, fixing α = π/4, which captures all confinement directions

of the form [nnm]. We see that, as expected, the magnetic
field increases the anisotropy, while retaining some of the
orientation dependence.

B. Corrections to the g-tensor

Since the holes we now consider are localized, Hso does not
couple the orbital ground states of the heavy holes directly,
but does so only in higher order via virtually excited orbital
states, this in contrast with the Zeeman Hamiltonian. To find
the corrections to the g-tensor for the localized eigenstates of
the Hamiltonian (28), we first transform Hso to the basis that
diagonalizes the part of the Luttinger Hamiltonian (3) that is
proportional to uz, as we did in Sec. III B. This transformation
thus amounts to performing the same rotation as we applied
to HZ, meaning that the resulting Hamiltonian in the HH
subspace can be written using the g-tensor we derived above.
For a general spin-orbit Hamiltonian f (px, py) · J this results
in 1

4κ
σ · ḡ · f (px, py), and for the case of the linear Rashba

Hamiltonian (27) we thus write

HH
so = βso

4κ
σ · ḡ ·

⎛
⎝ py

−px

0

⎞
⎠. (34)

In this form the spin-orbit Hamiltonian contains the leading-
order effect of HH-LH mixing.

We then express the in-plane momentum operators px,y as
linear combinations of the bosonic creation and annihilation
operators a†

± and a± (see Appendix B),

px = w+
x a+ + w−

x a− + H.c., (35)

py = w+
y a+ + w−

y a− + H.c., (36)

with

w±
x = W ∓

[
±

(
m3

−
m+

)1/8√
η ± r ± 2χ2

c cos ζ

− i

(
m3

+
m−

)1/8√
η ∓ r ± 2χ2

c sin ζ

]
, (37)

w±
y = W ∓

[
i

(
m3

+
m−

)1/8√
η ∓ r ± 2χ2

c cos ζ

±
(

m3
−

m+

)1/8√
η ± r ± 2χ2

c sin ζ

]
, (38)

where the common prefactor reads as

W ± =
(

h̄2λ

16η2

)1/4[(
2γ1 + s + 2χ2

c − η
)√m+m−

m2
0

]±1/4

,

(39)
and the angle ζ was defined in (8).

By inserting Eqs. (35) and (36) for px and py in the spin-
orbit Hamiltonian (34) we see that we can write

HH
so = βso

4κ
σαAγ

αaγ + H.c., (40)

in terms of bosonic creation and annihilation operators,
which makes performing perturbation theory in the SOI
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very straightforward. Summation over repeated indices α ∈
{x, y, z} and γ ∈ {+,−} is implied and we introduced the
vectors

A±
α = gαxw

±
y − gαyw

±
x . (41)

Similar expressions for other types of SOI can straightfor-
wardly be derived along the same lines.

Using this form of the spin-orbit Hamiltonian we now
perform second-order perturbation theory on the eigenstates
of the unperturbed Hamiltonian H0 = HH

L,‖ + HH
Z , as given in

Eqs. (12) and (29). To order β2
so/ω

2
± this yields a correction

that follows from projecting

Vso =
∑
γ=±

{
HH

so

[
γ

1

2
EZ − H0

]−1

HH
so, Pγ

}
, (42)

to the HH subspace. Here EZ = |ḡ · B| is the magnitude of
the HH Zeeman splitting, the operator P± = |±〉〈±| projects
to the two eigenstates of HH

Z and can be written explicitly as
P± = 1

2 (1 ± b · σ ) with b = ḡ · B/EZ the unit vector pointing
in the direction of the Zeeman field. We then evaluate (42)
and extract the spin-orbit-induced contribution to the g-tensor
from the linear dependence of Vso on B. This yields the rela-
tively compact expression

gso
i j = 1

16κ2

l2
0

l2
so

[
cos2 ζ

(
gixg jx

L3−
+ giyg jy

L3+

)
+ sin2 ζ

(
gixg jx

L3+

+ giyg jy

L3−

)
+ sin(2ζ )

L+ + L−
L2+L2−

εikl gkxglyδ jz

]
, (43)

where

L± =
√

2γ1 + s ± r, (44)

and we used the length scales l0 = (h̄2/m0λ)
1
4 (characterizing

the in-plane confinement) and lso = h̄/m0βso (the spin-orbit
length). The first two terms in (43) arise due to the Zeeman
shift of the ground and excited spin states, whereas the last
term contains the contribution linear in ωc and couples there-
fore only to Bz.

In Fig. 5 we show an example of the orientation de-
pendence of the matrix elements gso

i j as given by Eq. (43),
where we again used parameters for Si, for consistency. The
matrix elements are plotted in units of the dimensionless
ratio l0/lso, which characterizes the effect of the spin-orbit
interaction in the quantum dots. The elements gso

ix and gso
iy

are solely determined by the first two terms in Eq. (43),
whereas the elements gso

iz also include contributions from the
last term. Similar to the unperturbed g-tensor as investigated
in Sec. III B, many elements of the spin-orbit correction ḡso

also vanish for high-symmetry confinement directions such as
[001] and [111].

Depending on the details of the material and confinement
potential of the hole gas, other types of SOI than the lin-
ear Rashba type of Eq. (34) could be dominating, such as
an effectively cubic Rashba interaction ∝ p3

+σ− − p3
−σ+. We

emphasize again that the derivation presented in this section
can easily be adapted to such other spin-orbit Hamiltoni-
ans, simply by substituting Eqs. (35), (36) into the spin-orbit

0

0
0

0 0

0

10

15

5

0

-5

-10

-15

FIG. 5. The nine matrix elements of the spin-orbit correction
to the g-tensor, as given by Eq. (43), plotted as a function of the
direction of the confinement plane. The correction is shown in units
of l0/lso. In this plot we used again parameters for Si.

Hamiltonian and evaluating the resulting correction (42).
Working in the bosonic number basis this is a straightforward
task.

V. CONCLUSION

Depending on the choice of material, holes confined in
two- or lower-dimensional semiconductor structures can pos-
sess anisotropic dynamics that are highly dependent on the
details of the confinement potentials in the system. Such holes
can have several interesting properties that arise from this
anisotropy, such as highly anisotropic effective masses and
g-tensors.

In this paper we investigated these anisotropies, with
special focus on the detailed role of the orientation of
the confinement potentials. Starting from a 4 × 4 Luttinger
Hamiltonian, which we did not necessarily assume to be
spherically symmetric, we assumed very strong transverse
confinement in one direction, resulting in a 2DHG. We ro-
tated our coordinate system such that the transverse direction
could easily be integrated out for an arbitrary direction of
confinement. This approach allowed us to extract very gen-
eral analytic expressions for both the in-plane effective hole
masses and the heavy-hole g-tensor, where we pointed out
how the effect of strain can easily be included. We then inves-
tigated a strainless 2DHG and derived analytic expressions for
the effective masses and the g-tensor. In our explicit results we
focused on Si, which exhibits relatively strong anisotropies,
but the expressions we presented are fully general.

We then assumed additional in-plane confinement, leading
to the formation of quantum dots. We presented a straightfor-
ward approach to include the effects of spin-orbit coupling on
the dynamics of the hole states localized in a quantum dot. As
an example we considered the effect of a linear Rashba-like
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SOI that could arise from the transverse confinement. By
calculating the level splitting of the localized states, we pro-
jected the spin-orbit Hamiltonian to the basis of the localized
states and used perturbation theory to obtain an electric-field-
dependent correction to the g-tensor of the confined heavy
holes. Our results are highly relevant for the ongoing efforts
to use hole spins localized in Si- or Ge-based quantum dots
as spin qubits. Finding optimal working points, providing
fast qubit control through g-tensor modulation together with
relative insensitivity to charge noise requires a thorough un-
derstanding of the intricate interplay of SOI, confinement, and
applied magnetic fields.
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APPENDIX A: HAMILTONIAN TENSOR ELEMENTS

The rotated Luttinger (and Bir-Pikus) Hamiltonian can al-
ways be written in the following form:

H (α, β ) =

⎛
⎜⎜⎝

P − Q −S R 0
−S† P + Q 0 R
R† 0 P + Q S
0 R† S† P − Q

⎞
⎟⎟⎠, (A1)

in the basis of the eigenstates {| 3
2 〉, | 1

2 〉, |− 1
2 〉, |− 3

2 〉} of Jz with
its quantization axis along the new z direction.

For the Luttinger Hamiltonian the matrix elements P, Q, R,
and S can be expressed in terms of dimensionless symmetric
tensors Mi j ,

M = 1

2m0

∑
i, j

Mi j{pi, p j}, (A2)

where {A, B} = 1
2 (AB + BA), M ∈ {P, Q, R, S} and i, j ∈

{x, y, z}. The diagonal element P is invariant under rotations
and follows from Pi j = δi jγ1, while the tensor elements of Q,
R, and S read

Qxx = −1

5
(2γ2 + 3γ3) − 3δ

160
[3 + 5 cos(4α) − 5 cos(4β ){7 + cos(4α)}], (A3)

Qyy = −1

5
(2γ2 + 3γ3) + 3δ

40
[3 + 5 cos(4α) + 10 cos(2β ) sin2(2α)], (A4)

Qzz = 2

5
(2γ2 + 3γ3) − 3δ

160
[9 + 20 cos(2β ) + 35 cos(4β ) + 40 cos(4α) sin4 β], (A5)

Qxy = −3δ

2
sin(4α) cos β sin2 β, (A6)

Qyz = −3δ

2
sin(4α) sin3 β, (A7)

Qzx = 3δ

16
[4 sin2(2α) sin(2β ) + sin(4β ){7 + cos(4α)}], (A8)

Rxx = −
√

3

5
(2γ2 + 3γ3) +

√
3δ

160

[
21 − 40 cos(2β ) + 35 cos(4β ) + 80 cos2 β

{
e−4iα cos4

(
β

2

)
+ e4iα sin4

(
β

2

)}]
, (A9)

Ryy =
√

3

5
(2γ2 + 3γ3) −

√
3δ

40
[9 + 15 cos(4α) − 10 sin2(2α) cos(2β ) − 20i sin(4α) cos β], (A10)

Rzz =
√

3δ

8
sin2 β[5 + 7 cos(2β ) + cos(4α){3 + cos(2β )} − 4i sin(4α) cos β], (A11)

Rxy = 2
√

3i

5
(2γ2 + 3γ3) +

√
3δ

40
[5 sin(4α){7 cos β + cos(3β )} + 4i{3 + 5 cos(4α) − 10 sin2(2α) cos(2β )}], (A12)

Ryz =
√

3δ

8
[sin(4α){5 sin β + sin(3β )} − 8i sin2(2α) cos(2β )], (A13)

Rzx = −
√

3δ

8
sin(2β )[3 − 7 cos(2β ) − cos(4α){3 + cos(2β )} + 4i sin(4α) cos β], (A14)

Sxx = −
√

3δ

16
[8 cos2 β sin β{cos(4α) cos β − i sin(4α)} − 2 sin(2β ) + 7 sin(4β )], (A15)

Syy = −
√

3δ sin(2α) sin β[sin(2α) cos β + i cos(2α)], (A16)

Szz = −
√

3δ

16
[8 sin3 β{cos(4α) cos β − i sin(4α)} − 2 sin(2β ) − 7 sin(4β )], (A17)
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Sxy = −
√

3δ sin(2α) sin(2β )[cos(2α) cos β − i sin(2α)], (A18)

Syz = −2
√

3i

5
(2γ2 + 3γ3) −

√
3iδ

10
[3 + 5 cos(2β ) + 10 sin2 β{cos(4α) − i sin(4α) cos β}], (A19)

Szx = 2
√

3

5
(2γ2 + 3γ3) −

√
3δ

40
[3 + 5 cos(4α){1 − cos(4β )} − 35 cos(4β ) − 40i sin(4α) cos β sin2 β]. (A20)

Also the Bir-Pikus Hamiltonian can easily be obtained
from the tensor elements above. The matrix elements of the
Hamiltonian take the form

M =
∑
i, j

MBP
i j εi j, (A21)

where ε̄ is the strain tensor, and MBP
i j can be obtained from Mi j

by the substitution {γ1, γ2, γ3} → {−a, 1
2 b, 1

2
√

3
d}.

APPENDIX B: HARMONIC OSCILLATOR HAMILTONIAN

The Hamiltonian we consider has the form

H = π2
x

2m−
+ π2

y

2m+
+ m−

2
ω2

x x2 + m+
2

ω2
y y2, (B1)

with π = p + eA(r), where A(r) = Bz(−y/2, x/2, 0), and
p = −ih̄∂r the kinetic momentum. We insert this expression
for p and rewrite the Hamiltonian as

H = p̄2
x

2μ
+ p̄2

y

2μ
+ ωc p̄yx̄ − ωc p̄xȳ + μ

2
ω2

1 x̄2 + μ

2
ω2

2 ȳ2,

(B2)

using the frequencies ω1 = √
ω2

x + ω2
c , ω2 =

√
[b]ω2

y + ω2
c ,

and ωc = eBz/2μ. We further rescaled p̄x = px
√

μ/m−,
p̄y = py

√
μ/m+, x̄ = x

√
m−/μ, and ȳ = y

√
m+/μ, with μ =√

m+m− being the geometric average of the two effective
masses. In this way we rewrote the Hamiltonian as that for
an electron with an isotropic mass μ in an elliptic harmonic
potential in the presence of an out-of-plane magnetic field.

There are many ways to diagonalize such a Hamiltonian;
we will follow the method outlined in Ref. [72], which leads
straightforwardly to

H = h̄ω+
(
a†

+a+ + 1
2

) + h̄ω−
(
a†

−a− + 1
2

)
, (B3)

with ω± as defined in the main text and

a± = u± · {x̄, p̄x, ȳ, p̄y}, (B4)

which obey bosonic commutation relations. The vectors u±
read as

u± = 1

C±

{−iμω±
(
ω2

± − ω2
y − 2ω2

c

)
, ω2

± − ω2
y ,

−μωc
(
ω2

± + ω2
y

)
,−2iωcω±

}
, (B5)

with

C± =
√

2h̄μω±
[(

ω2± − ω2
y

)2 + 4ω2
cω

2
y

]
. (B6)

We can then solve Eq. (B4) to express the coordinate and
kinetic momentum operators {x̄, p̄x, ȳ, p̄y} in terms of the
bosonic operators a± and a†

±,

p̄x = u−
3 a+ − u+

3 a−
2(u−

3 u+
2 − u−

2 u+
3 )

+ H.c., (B7)

p̄y = −u−
1 a+ + u+

1 a−
2(u−

4 u+
1 − u−

1 u+
4 )

+ H.c., (B8)

x̄ = u−
4 a+ − u+

4 a−
2(u−

4 u+
1 − u−

1 u+
4 )

+ H.c., (B9)

ȳ = −u−
2 a+ + u+

2 a−
2(u−

3 u+
2 − u−

2 u+
3 )

+ H.c. (B10)

After scaling back to the original operators {x, px, y, py}, the
canonical momenta

πx =
√

m−
μ

p̄x − eBz

2

√
μ

m+
ȳ, (B11)

πy =
√

m+
μ

p̄y + eBz

2

√
μ

m−
x̄, (B12)

are expressed in terms of the bosonic operators. Such a
form of the momentum operators is very convenient to use
in perturbation theory: In this bosonic framework one can
straightforwardly work exclusively in the bosonic Fock space,
where no explicit knowledge of the electronic wave functions
is required.
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