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Approach-to-equilibrium molecular dynamics (AEMD) is a widely used molecular dynamics (MD) method
to extract thermal transport properties in different material systems. Despite the success in many applications,
the thermal transport mechanism in AEMD is not well understood. Although AEMD can simulate larger domain
than other MD variants, it still suffers from simulation domain size effect. In addition, the size effect is quite
different from that of the nonequilibrium molecular dynamics (NEMD) simulations. In this paper, we reveal the
phonon transport mechanism in AEMD by comparing the size-dependent thermal conductivity values of AEMD
and phonon Boltzmann transport equation. We show that the simulation size of AEMD should be defined as half
of the size in the conventional AEMD simulations with periodic boundary conditions. Also, the size effect in
AEMD originates from ballistic phonon transport. Different from NEMD, some phonons with long mean-free
paths do not contribute to the thermal conductivity, resulting in a smaller thermal conductivity than NEMD with
the same size. Based on the phonon transport mechanism in AEMD, we suggest an extrapolation method for
AEMD to obtain bulk thermal conductivity.
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I. INTRODUCTION

Molecular dynamics (MD) is a widely used atomistic sim-
ulation method for the investigation of nanoscale thermal
transport [1–10]. Several MD methods have been developed to
simulate thermal transport process in the past few decades, in-
cluding equilibrium molecular dynamics (EMD) [11–14], and
nonequilibrium molecular dynamics (NEMD) [1–3]. EMD
is based on the fluctuation-dissipation theorem and the bulk
thermal conductivity can be extracted from the heat current
autocorrelation function [13–16]. In NEMD, a steady heat
flux is established between two thermostats and the ther-
mal conductivity can be directly calculated by Fourier’s law
[17–21]. The two methods have achieved great success in
the atomistic simulation of many material systems [22–28].
However, the computational costs are relatively large [29–31].
Recently, researchers have developed a new MD variant called
approach-to-equilibrium molecular dynamics (AEMD) [32]
with the advantage of smaller computational cost.

The AEMD method simulates the temperature decay
process from a step-difference temperature profile to an
equilibrium temperature profile and calculates the transient
thermal conductivity based on Fourier’s law [32–35], which
also corresponds to the process of the thermal transient grat-
ing measurement [36–38]. Compared with EMD, the AEMD
method has the advantage of smaller oscillations and less
uncertainty [39]. Compared with NEMD, the AEMD method
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has much smaller computational cost for the same length
scale, due to its transient nature [32]. AEMD was devel-
oped by Lampin et al. [32], and was adopted to investigate
the thermal conductivity of semiconductors, such as silicon
and germanium [32,34]. Subsequently, AEMD was used to
calculate thermal conductivity in low-dimensional materials
[40,41], thermal resistance at the interfaces [42,43], porous
materials [44,45], and polymer chains [46,47]. It is worth
mentioning that the maximum size studied using the AEMD
method can reach 0.1 mm [41], which is far beyond the limit
of other MD-based approaches. The AEMD has also been
implemented to work with ab initio molecular dynamics [48]
and machine-learning potentials [49].

Despite the success in many applications, the thermal
transport mechanism in AEMD is still unclear. Similar to
EMD and NEMD, AEMD also suffers from simulation do-
main size effect [32,34]. When the bulk thermal conductivity
is of interest, it is usually obtained by extrapolation from
the limited size thermal conductivities values [29,30,50]. For
EMD and NEMD, there are several recent works that dis-
cussed their size effect. For example, Wang et al. [31] showed
the difference of the size effect in EMD and NEMD. They
suggested that the size effect in EMD is due to the limited
available long-wavelength phonon modes in the simulation
domain as the size decreases, while the size effect in NEMD
is attributed to the phonon scattering with the reservoir which
cuts off the phonon mean-free paths [20,30]. Subsequently,
Dong et al. [51] found that the bulk thermal conductivity
in EMD can be identical to the extrapolated thermal con-
ductivity in NEMD. They showed that by converting the
correlation time to an effective simulation size in EMD,
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the size-dependent thermal conductivities in the two MD
approaches are unified. A recently developed homogeneous
nonequilibrium molecular dynamics method [52–55], which
is more efficient than EMD, has similar size effect with
EMD [56]. Moreover, Hu et al. [21] recently have shown
that the size-dependent NEMD results are in quantitative
agreement with the solution of phonon Boltzmann transport
equation (BTE), which indisputably proves that the size effect
of NEMD can be fully interpreted with the ballistic phonon
transport effect. In comparison, AEMD also has simulation
domain size effect [32,34], which is not well understood.
Moreover, with the same simulation size, the extracted ther-
mal conductivity of AEMD is quite different from that of
NEMD [57].

In this paper, we develop a deeper understanding about
AEMD simulation by a detailed comparison of the size-
dependent thermal conductivity values of AEMD, NEMD,
and the phonon BTE simulations. Through such a comparison,
we reveal the phonon transport mechanism in AEMD simu-
lations. We then propose an improved extrapolation method
for AEMD to obtain the bulk thermal conductivity from the
simulation results of finite-size structures.

The paper is organized as follows. In Sec. II, we calculate
the different size-dependent thermal conductivities of crystal
silicon in NEMD and AEMD and discover their differences.
In Sec. III, we discuss the definition of the simulation domain
size in AEMD simulation. In Sec. IV, we reveal the phonon
transport mechanism in AEMD by unifying AEMD with tran-
sient BTE. In Sec. V, an extrapolation method is proposed to
extrapolate bulk thermal conductivity from the AEMD results
with limited size. In Sec. VI, we present summaries and con-
clusions.

II. SIZE-DEPENDENT THERMAL CONDUCTIVITY

In this section, we compare the size-dependent thermal
conductivity in AEMD and NEMD, taking silicon with the
Tersoff potential [58] as a prototype. All simulations are per-
formed using the LAMMPS package [59].

Following previous works [32,34], a simulation domain
with periodic boundary conditions in the x, y, z directions
is adopted in AEMD simulations, as shown in Fig. 1(a). The
length along the x axis is defined as the characteristic size L.
An initial step-difference temperature profile is established,
dividing the domain into the hot and cold blocks. During
the simulation process, the difference between the average
temperatures of the two blocks declines gradually until an
equilibrium state is approached [32], as shown in Fig. 1(b).
Simulation details of AEMD can be found in Appendix A.

To extract thermal conductivity values from AEMD simu-
lations, the heat diffusion equation based on Fourier’s law for
the same system is solved. The thermal conductivity can be
extracted by fitting the decay curve of the average temperature
difference between the hot block and cold block with the
solution of the heat diffusion equation,

�T (t ) =
∞∑

m=0

8(T1 − T2)

(2m + 1)2π2
e−{[(2m+1)2t]/τ}, (1)
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z
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FIG. 1. (a) The simulation domain in AEMD. The domain is
divided into two blocks, hot and cold, each block with a size of L/2.
The initial temperatures of the hot and cold block are 320 and 280
K, respectively. (b) Decay of the temperature profile in AEMD. The
length of the domain is 109 nm. Three sample times (2, 30, and 110
ps) are selected to describe the temperature decay process from step
difference to equilibrium. (c) The simulation domain in NEMD. The
size of the domain is L. Two thermal reservoirs are located on both
sides of the domain with 320 and 280 K, respectively. Two layers
of atoms are fixed at both ends of the x axis. (d) Comparison of
size-dependent thermal conductivity in AEMD and NEMD. The blue
triangles represent the NEMD results and the red dots represent the
AEMD results. Note that the error bars have comparable size of the
markers.

where �T is the average temperature difference between the
hot block and the cold block, T1 and T2 are the initial temper-
atures in the hot and cold block, and τ is the decay time that
is related to the thermal conductivity κ through

κ = L2CV

4π2τ
. (2)

In Eq. (2), L is the simulation size along the x axis and
CV is the heat capacity per unit volume. Through fitting τ in
AEMD simulations, the thermal conductivity value of each
sample can be obtained.

To compare with AEMD, NEMD simulations with the
same material and different sizes are also carried out. The
sample with length L in NEMD is in contact with two thermal
reservoirs using the Langevin thermostat [21]. The simulation
domain is shown in Fig. 1(c) and the simulation details in
NEMD can also be found in Appendix A.

The heat flux can be extracted after establishing a steady
state and the thermal conductivity is calculated by κ = q

�T/L ,
where q is the heat flux in the x direction, and �T is the tem-
perature difference between the two thermal reservoirs. Note
that it has been proved that such a definition of thermal con-
ductivity should be used instead of the linear fitting approach
[20,21]. The size-dependent thermal conductivity in AEMD
and NEMD are represented by red dots and blue triangles,
respectively, in Fig. 1(d). The length L of the simulation sam-
ple is chosen from 10 to 348 nm. Notable differences can be
observed between the size-dependent thermal conductivity of
NEMD and AEMD simulations. For sample size L = 11 nm,
the thermal conductivity in AEMD is 0.64 W/mK, while the
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FIG. 2. (a) The direction of heat flow in AEMD and NEMD.
For AEMD, in the periodic model with length 2L, the heat flows
are in the forward and reverse directions. In the adiabatic model
with length L, the heat flow is only in the forward direction. For
NEMD, the heat flow is in the forward direction from the heat source
to the heat sink. (b) The decay process of temperature differences
between hot and cold blocks in the adiabatic and periodic models.
The red line represents the adiabatic model with length L and the
green line represents the periodic model with length 2L. The length
L of the domain is 54 nm. (c) Thermal conductivity in the adiabatic
and periodic models of AEMD. The red and green dots represent
the thermal conductivity in the adiabatic model with length L and in
the periodic model with length 2L. The error bars are very small and
thus omitted. (d) Comparison of size-dependent thermal conductivity
between NEMD, adiabatic model, and periodic model in AEMD.
The blue triangles, red dots, and green dots represent the NEMD
results, AEMD results with the adiabatic model, and the periodic
model, respectively.

thermal conductivity in NEMD is 12.03 W/mK, around 19×
larger than that in AEMD. For L = 348 nm, the thermal con-
ductivity in NEMD is about twice as large as that in AEMD.

III. DEFINITION OF THE SIZE

In Sec. II, the boundary conditions in AEMD and NEMD
follow the settings of most previous papers [12,21,32,34].
In AEMD, periodic boundary conditions are applied in all
directions, while in NEMD, fixed boundary conditions are
applied in the direction of heat conduction. Such a setting
leads to different heat-flow directions in these two methods.
In AEMD, the heat flow is simultaneously transported in the
forward and reverse directions of the x axis [Fig. 2(a), the
sample of size 2L]. In NEMD, the heat flow is in the forward
direction from the heat source to the heat sink.

Due to the symmetry of the forward and reverse heat flows
in AEMD simulations, we can just consider the middle region
with length L of the simulation domain, and set the adiabatic
boundary conditions by fixing atoms on the boundary, as
shown in Fig. 2(a). We later name the original simulation
setting with size 2L “periodic model” and the one with size
L “adiabatic model.” To prove the equivalence of periodic

model with length 2L and the adiabatic model with length L,
the AEMD simulations with the same initial conditions are
carried out for the two systems, and the results are shown in
Fig. 2(b). The decay of the average temperature difference for
the two models are almost identical.

To extract the thermal conductivity in the adiabatic model,
the heat diffusion equation for the simulation domain is
solved. The expression of thermal conductivity in Eq. (2)
needs to be modified as

κ = L2CV

π2τ ′ , (3)

where τ ′ is the decay time in the adiabatic model. The size-
dependent thermal conductivity in the adiabatic model is
calculated and compared with the periodic model in Fig. 2(c).
The nearly identical results further confirm that the adiabatic
model with length L is equivalent to the periodic model with
length 2L. It is worth mentioning that applying the fixed
boundary in AEMD can reduce computational cost compared
to using the periodic boundary, because only half of the simu-
lation domain is needed when identical results are obtained.

We substitute the adiabatic model for the periodic model in
AEMD and compare its size-dependent thermal conductivity
results with that in NEMD again in Fig. 2(d). The gap between
the two methods has narrowed evidently, but is not eliminated.
At 11 nm, the thermal conductivity in the adiabatic model of
AEMD is 3.69 W/mK. The NEMD result is still about 3×
larger than that in AEMD. The relative difference reduces
with increasing simulation domain length, but is still notable.
These results indicate that there are other differences between
AEMD and NEMD.

IV. PHONON TRANSPORT MECHANISM

Due to the fact that MD tracks atomic trajectories in the
real space, it is difficult to directly extract the phonon trans-
port mechanism. Instead, the phonon Boltzmann transport
equation can be utilized to model phonon transport from
the ballistic to diffusive regime [37,60–63]. In our previous
work, by unifying steady-state mode-resolved BTE (“steady-
state BTE”) and NEMD, we showed that the physics of
size-dependent thermal conductivity in NEMD is due to the
ballistic phonon transport [21]. To understand the phonon
transport mechanism in AEMD, we solve the one-dimensional
(1D) transient mode-resolved phonon BTE (“transient BTE”)
under the relaxation time approximation (RTA). In order to
compare the BTE and AEMD quantitatively, phonon transport
parameters in crystal silicon at 300 K with the Tersoff poten-
tial are extracted from lattice dynamics [64,65]. The transient
BTE and lattice dynamics calculation details can be found in
Appendix B.

Comparing size-dependent thermal conductivity in the
transient BTE and AEMD from 10 to 1100 nm in Fig. 3(a),
we find an agreement of the thermal conductivity in the two
methods, with a maximum difference of 14%. The difference
is possibly due to the RTA in the BTE model [66,67]. Due to
the lower computational cost of BTE, we further calculate the
thermal conductivity of the entire ballistic to diffusive regime
using BTE, with similar settings as the AEMD and NEMD
simulations.
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FIG. 3. (a) Thermal conductivity in AEMD and transient BTE
from 10 to 1100 nm. The red dots represent the AEMD results and
the blue line represents the BTE results. (b) Comparison of size-
dependent thermal conductivity in steady-state and transient BTE
from 10 nm to 6 μm. The blue and red lines represent the steady-
state BTE and transient BTE, respectively. (c) Schematic diagram of
diffusive and ballistic phonon transport in NEMD. The trajectories of
ballistic transport and diffusive transport are represented by dashed
lines and solid lines, respectively. In NEMD, phonons of ballistic
transport emitted from the heat source are absorbed by the heat sink
and contribute to the thermal conductivity. (d) Schematic diagram
of diffusive and ballistic phonon transport in AEMD. Some phonons
of ballistic transport emitted from the hot block bounce back to the
hot block without scattering with other phonons, which does not
contribute to the thermal conductivity.

The size-dependent thermal conductivities in steady-state
BTE and transient BTE sampled from 10 nm to 6 μm are
shown in Fig. 3(b). At 6 μm, the obtained thermal conduc-
tivity in transient BTE is 231.8 W/mK, which is close to
232.5 W/mK in steady-state BTE. The consistency is due
to the identical phonon behavior in the two methods at the
diffusive limit, when Fourier’s law is valid.

The relative difference of thermal conductivity increases
with decreasing size. For example, at 6 μm the ratio of thermal
conductivity values in transient BTE over that in steady-state
BTE is 0.99. However, the ratio is 0.57 at 109 nm and is only
0.30 at 11 nm. It indicates that the phonon transport mecha-
nisms in the two methods are not identical under the limited
size. When the length of the system is comparable to a phonon
mean-free path, the phonon experiences ballistic transport.
Figure 3(c) shows the typical phonon transport process in
NEMD. The phonons emitted from the heat source move
through the simulation domain and are eventually absorbed by
the heat sink. Those phonons with large mean-free paths may
directly transport from the heat source to the heat sink without
scattering, which contributes to heat flux. In comparison, in
AEMD, a phonon with large mean-free path generated from
the hot block can move through the cold block, and returns
to the hot block by specular reflection at the boundary, as
shown in Fig. 3(d). Therefore, some phonons with large mean-
free paths in AEMD do not contribute to the heat flux. This

TABLE I. Proportion of different phonons in MC simulations.

Simulation Ballistic Ballistic phonons with no
size (nm) phonons (%) contribution to κ (%)

100 68.8 34.7
500 6.6 27.8

explains why the thermal conductivity in AEMD is smaller
than that in NEMD with the same size. When the simula-
tion length increases, phonons have a smaller probability of
ballistic transport, and the difference is becoming smaller
and eventually diminishes at the diffusive limit. Based on the
above considerations, we can draw the following conclusions.
First, the size effect of AEMD also originates from ballistic
phonon transport. Second, the different size-dependent ther-
mal conductivities between AEMD and NEMD simulation
are due to the different contributions of the ballistic phonon
transport.

To provide a simple demonstration of the phonon trans-
port behavior in AEMD, we simulate the phonon transport in
crystal silicon with the Tersoff potential using the simplified
gray model with 1D phonon Monte Carlo (MC) simulation
[68–70]. The mean-free path is set as 142 nm, which is av-
eraged from all phonon bands in BTE. The MC simulations
have been validated with the analytical solution of gray BTE
[37,71]. The chosen simulation sizes are 100 and 500 nm with
the same boundary conditions and initial conditions as our
AEMD simulations. We simulate the process from the initial
state to the state where the average temperature difference
between the hot block and cold block is 20 K. The simulation
time is 22 ps in the 100-nm domain and 151 ps in the 500-nm
domain. During the simulation process, if a phonon does not
experience any scattering, it is called a ballistic phonon. As
shown in Table I, it is found that the proportion of ballistic
phonons decreases with increasing simulation size, from 68.8
to 6.6%. Among the ballistic phonons, we count the number of
phonons whose initial and final positions are both in the hot
block. These phonons do not contribute to the thermal con-
ductivity (κ). Their proportion decreases with increasing size,
from 34.7 to 27.8%. The results corroborate our conclusion
that the size effect in AEMD originates from ballistic phonon
transport.

V. DISCUSSION

Based on the equivalence of AEMD and the mode-resolved
transient BTE, transient BTE can replace AEMD to obtain
the size-dependent thermal conductivity in the same process.
Recently, Hua et al. [72] derived the analytical expression
of mode-level phonon heat flux related to temperature gradi-
ent, boundary condition, and heat generation from transient
BTE with the RTA. The analytical expression provides a re-
lationship between thermal conductivity and simulation size.
Following this work, we derive an expression for AEMD to
extrapolate the bulk thermal conductivity,

κ (L) = κ1

1 + 4π2�2
1

L2

+ κ2

1 + 4π2�2
2

L2

, (4)

075301-4



SIZE EFFECT AND TRANSIENT PHONON TRANSPORT … PHYSICAL REVIEW B 105, 075301 (2022)

FIG. 4. Comparison of different extrapolation formulas fitting
the AEMD results. The red dots represent the AEMD results. The
blue solid line represents the formula in Eq. (4). The purple dotted-
dashed line represents the formula in Eq. (5). The yellow dashed line
represents the formula in Eq. (6). The gray dotted line represents the
bulk thermal conductivity from NEMD. It can be seen intuitively that
the extrapolation result from our work is the closest to the reference
result.

where κ1, κ2, �1, and �2 are unknown parameters. �1 and
�2 are associated with phonon mean-free path and the ex-
trapolated bulk thermal conductivity is represented by κbulk =
κ1 + κ2. The unknown parameters are determined by fitting
the AEMD results. Detailed derivations are provided in Ap-
pendix C.

In Fig. 4, the bulk thermal conductivity of crystal silicon
at 300 K is obtained by fitting the AEMD data with Eq. (4)
(blue solid lines). The extrapolated thermal conductivity value
is 227 ± 24 W/mK (within a 95% confidence interval), which
is almost consistent with the bulk thermal conductivity 245
W/mK from NEMD [21]. We also compare our method with
methods used in previous studies. Equation (5) is raised by
Zaoui et al. [34]:

κ (L) = κbulk

(
1 −

√
�0

L

)
, (5)

where L is the simulation length and �0 is an unknown param-
eter related to phonon mean-free paths. Another extrapolation
method proposed by Sellan et al. [30] was initially proposed
for NEMD extrapolation, but later also adopted in AEMD
extrapolation [34]:

κ (L) = κbulk

/(
1 + a1

L
+ 1

2

(a2

L

)2
)

, (6)

where a1 and a2 are the unknown parameters to be determined
in the fitting process.

The fitting curves from Eq. (5) and Eq. (6) can also be
found in Fig. (4). Equation (5) is approximately consistent
with the AEMD results when the simulation length is larger
than 200 nm, but a significant difference appears in the ballis-
tic regime. The extrapolated thermal conductivity is 288 ± 25
W/mK, which is larger than 245 W/mK. Equation (6) seems to
also match the AEMD data well in the samples of length from
10 to 1100 nm. However, this is a mathematical coincidence.
If larger sizes are considered, Eq. (6) does not match the

BTE-predicted thermal conductivity values well. These data
are not shown here for brevity. Moreover, the extrapolated
thermal conductivity is 273 ± 13 W/mK, which is also larger
than the result from NEMD.

To ensure the accuracy of our extrapolation, we rec-
ommend that the simulation size range is from 1 to 6×
the average mean-free paths. For silicon with the Tersoff
potential, whose average mean-free path is 142 nm, the rec-
ommended size range for extrapolation is from 150 to 900
nm, which has a reasonable computational cost. The extrapo-
lated thermal conductivity is 242 ± 30 W/mK (within a 95%
confidence interval) and almost the same as the result from
NEMD. Using data from smaller domain sizes will affect the
results of the extrapolation [51], while using data from lager
domain sizes will not further improve the extrapolation result
and will unnecessarily increase the computational cost.

VI. CONCLUSION

In this paper, we investigate the thermal transport mech-
anism in AEMD by comparing the size-dependent thermal
conductivity of AEMD, NEMD, and transient BTE, using
silicon with the Tersoff potential as an example. From a
comparison of AEMD and NEMD, we find a large differ-
ence between results obtained from the two methods. We
demonstrate two reasons for this difference. The first is the
mismatched direction of heat flux between the two methods.
By adopting the fixed boundary to replace the periodic bound-
ary in AEMD and reducing the size to one-half of the original
one, we unify the direction of heat flux in AEMD and NEMD
and narrow the difference of size effect between AEMD and
NEMD. The second is the different thermal transport mecha-
nism. By comparing the AEMD and transient BTE, we reveal
that the phonon transport mechanism that leads to the size-
dependent thermal conductivity in AEMD is ballistic phonon
transport. Nevertheless, the mechanism is not completely the
same as in NEMD, because some phonons with long mean-
free paths do not contribute to the heat conduction. Based
on this understanding, we propose an extrapolation method
for AEMD which performs better than other extrapolation
methods. The extrapolated thermal conductivity of the Tersoff
silicon is 242 ± 30 (W/mK), which is almost identical to
the bulk value. We recommend using simulation data from
1 to 6× the average mean-free path, which will improve the
extrapolation results. The understanding of AEMD not only
benefits for future MD simulations, but also helps researchers
to better appreciate the differences between steady state and
transient thermal transport at nanoscale.
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APPENDIX A: DETAILED PROCESS OF AEMD
SIMULATION

In this section, we show the AEMD and NEMD calcula-
tions in detail. For AEMD simulation, in all three directions of
the simulation domain, the boundaries are set as periodic. The
cross section is set as 16 × 16 silicon supercells to mimic an
infinitely large cross section after a convergence test. The time
step of the whole simulation is 1 fs to resolve all the phonon
frequencies. Initially, the simulation domain is set under an
NPT ensemble (constant mass, pressure, and temperature)
to relax the system from 50 ps to 1 ns depending on the
simulation domain. Then, the system is divided into hot block
and cold block, each part heated under 320 and 280 K, respec-
tively, with Nosé-Hoover chain thermostats for 50 ps until the
step-difference temperature distribution is established. Sub-
sequently, the whole system converts to the NV E ensemble
(constant mass, volume, and energy). In the NV E ensemble,
the temperature distribution along the x axis is sampled every
4000 steps until the system gradually returns to equilibrium.
One can then obtain the thermal conductivity of the sample by
fitting the decay curve of the average temperature difference
between the hot block and cold block with the solution of the
heat diffusion equation.

For NEMD simulations, in the transport direction, two
fixed layers of silicon supercells are placed at the boundaries.
Heat source region and heat sink region are divided at both
ends of the simulation domain. The cross section is set as
periodic boundaries with 8 × 8 silicon supercells to mimic
an infinitely large cross section after a convergence test. The
time step of the whole simulation is 1 fs. The whole system is
initially relaxed under the NPT ensemble for 1 ns. Then, the
Langevin thermostats are applied to the heat source and the
heat sink regions, 320 and 280 K, respectively. The simulation
domain is set under the NV E ensemble for 20 ns. In the
last 5 ns, the energy deposited to the heat source and energy
extracted from the heat sink are averaged to calculate the
transferred energy �E , and the heat flux q is calculated by
[29,51]

q = �E/(S�t ), (A1)

where �E/�t is the energy transfer rate and S is the
cross-sectional area perpendicular to the x axis. The NEMD
simulation method has been well discussed by Hu et al. [21].

APPENDIX B: DETAILED SETTINGS OF TRANSIENT BTE

The 1D transient BTE with RTA [73] is given by

∂gμ(x, t )

∂t
+ vμ∇gμ(x, t ) = −gμ(x, t ) − g0(T (x, t ))

τμ

,

(B1)
where gμ(x, t ) is the deviational energy distribution from
the given equilibrium at position x and time t for a certain
phonon mode μ (frequency ωμ and polarization p), and τμ

is the phonon relaxation time. g0(T (x, t )) = 1
4π

Cμ(T − T0) is
the equilibrium energy distribution at a certain temperature
T , where Cμ is the heat capacity per unit volume and T0

is the reference temperature, 300 K. The transient BTE is
numerically solved by the finite-volume method [74]. The
specular boundary condition is set to simulate the fixed bound-

ary in AEMD [21]. The initial condition settings are also the
same as AEMD. All the results in transient BTE are obtained
after convergence tests on the time step, number of meshes,
number of angles, and number of phonon bands. In order to
compare the BTE and AEMD quantitatively, phonon transport
parameters in the crystal silicon at 300 K with the Tersoff
potential are extracted from harmonic and third-order anhar-
monic lattice dynamics [64,65], including the group velocity
vμ, the relaxation time τμ, and the heat capacity Cμ for every
phonon mode. Considering the computational cost, phonon
modes are integrated into sufficient phonon bands after con-
vergence tests. It is worth mentioning that the phonons should
follow the Bose-Einstein distribution f0(T ) = 1

e(h̄ω)/(kBT )−1 [75].
However, in MD simulations, since all phonon modes have
been excited, the phonons follow the classical Maxwell-
Boltzmann distribution f MB

0 (T ) = e−[(h̄ω)/(kBT )] [65]. One can
decrease the Planck constant ћ in the Bose-Einstein distri-
bution to approach the classical limit [65]. The details of
anharmonic lattice dynamics can be found in previous studies
[21,65,76,77].

APPENDIX C: DERIVATION OF EXTRAPOLATION
FORMULA

Hua et al. [72] derive the “generalized Fourier law” from
the mode-level transient BTE with RTA. To make it easier for
readers, we first repeat the derivation. It starts with

∂gμ(x, t )

∂t
+ vμ · ∇gμ(x, t ) = −gμ(x, t ) − g0(T (x, t ))

τμ

+ Qμ(x, t ), (C1)

where gμ(x, t ) = h̄ωμ[ fμ(x, t ) − f0(T0)] is the deviational
energy distribution from the given equilibrium at position x
and time t for a certain phonon mode μ (frequency ωμ), τμ

is the phonon relaxation time, and Qμ is the heat generation
term. g0(T (x, t )) is given by

g0(T (x, t )) = h̄ωμ[ f0(T (x, t )) − f0(T0)] = Cμ�T (x, t ),
(C2)

where T0 is the given equilibrium temperature, �T is the tem-
perature derivation from the equilibrium, and Cμ is phonon
mode-level heat capacity which does not change with tem-
perature. In order to describe the transport process in our
AEMD simulation, only one direction needs to be considered.
A Fourier transform in time t is performed on Eq. (C1):

�μx
∂ g̃μ

∂x
+ (1 + iητμ)g̃μ = Cμ�T̃ + Q̃μτμ, (C3)

where η is the Fourier temporal frequency and �μx is the
phonon mean-free path along the x direction. Equation (C3) is
a first-order partial differential equation which can be solved
by integration to get the expression of g̃μ(x, η). The mode-
level heat flux q̃μx = υμxg̃μ along the x direction is

q̃μx = −
∫

�

Cμυμx�μx
e−(1+iητμ )|(x−x′ )/�μx |

(1 + iητμ)|�μx|
∂T̃

∂x′ dx′

+
∫

�

Q̃μ(x′)e−(1+iητμ )|(x−x′ )/�μx |dx′, (C4)
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where

� ∈
{

(−∞, x) if υμx > 0,

(x, ∞) if υμx > 0.

It is assumed the temperature profile has a spatial depen-
dence of eiζx. ζ = 2π/L, L is the simulation length. Based
on the derivations above, we find that the usage scenario of
Eq. (C4) is completely the same as AEMD if the thermal
excitation is not considered (the complete derivation can be
found in Ref. [72]),

q̃(x, η) = iζ T̃ (η)eiζx
∑

μ

κμ

1 + �μ
2ζ 2

. (C5)

Equation (C5) degenerates into Fourier’s law when the
simulation length approaches the diffusive limit. In this way,
q = −κ ∂T

∂x , which agrees with Eq. (C5) if we define the ther-
mal conductivity

κ =
∑

μ

κμ

1 + �2
μζ 2

(C6)

In Eq. (C6), the apparent thermal conductivity is related to
mode-level phonon mean-free path �μ, thermal conductivity
κμ, and the simulation size. This formula is based on the
same phonon transport mechanism as AEMD and can be used
as a fitting formula to extrapolate bulk thermal conductivity
from finite-size thermal conductivity. Lack of phonon infor-
mation in the AEMD simulation, the thermal conductivity
of a certain phonon mode κμ, and phonon mean-free path
�μ are treated as fitting parameters in our extrapolation. It
is verified that the more phonon modes are selected, the
more accurate the result will be. However, the number of
fitting parameters increases with the selected phonon modes,
which leads to larger uncertainty. To balance accuracy and
certainty, we choose two phonon modes and the extrapolation
formula is

κ (L) = κ1

1 + 4π2�2
1

L2

+ κ2

1 + 4π2�2
2

L2

(C7)

This is the formula used in the main text of the paper.
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