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Scrutinizing the Debye plasma model: Rydberg excitons unravel the properties of low-density
plasmas in semiconductors
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For low-density plasmas, the classical limit described by the Debye-Hückel theory is still considered as an
appropriate description even though a clear experimental proof of this paradigm is lacking due to the problems
in determining the plasma-induced shift of single-particle energies in atomic systems. We show that Rydberg
excitons in states with a high principal quantum number are highly sensitive probes for their surrounding
making it possible to unravel accurately the basic properties of low-density nondegenerate electron-hole plasmas.
To this end, we accurately measure the parameters of Rydberg excitons such as energies and linewidths in
absorption spectra of bulk cuprous oxide crystals in which a tailored electron-hole plasma has been generated
optically. Since from the absorption spectra exciton energies, as well as the shift of the single-particle energies
given by the band edge, can be directly derived, the measurements allow us to determine the plasma density
and temperature independently, which has been a notoriously hard problem in semiconductor physics. Our
analysis shows unambiguously that the impact of the plasma cannot be described by the classical Debye model,
but requires a quantum many-body theory, not only for the semiconductor plasma investigated here, but in
general. Furthermore, it reveals an exciton scattering mechanism with coupled plasmon-phonon modes becoming
important even at very low plasma densities.
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I. INTRODUCTION

Plasmas, a notion coined by Langmuir [1], have been
central to the physics of matter in the last 100 years. Since
plasmas, consisting in general of electrically charged and
neutral particles, represent the most common state of matter
in the universe, a profound understanding of their properties
is important in many fields ranging from the evolution of the
universe, star formation, and fusion to a vast number of tech-
nological and even medical applications (for recent reviews
see Refs. [2–4]).

An important question in this field is the formation and
nature of bound states in a plasma, as their observation al-
lows investigating the properties of a plasma from within [5].
The retroactive effects of plasmas on the bound states are
threefold: (i) shift of the binding energies, (ii) broadening of
the absorption and emission lines, and (iii) lowering of the
two-particle scattering continuum edge. The issues (i) and (iii)
together lead to a lowering of the ionization energies with
increasing density, and, therefore, finally to the vanishing of
the bound states. This behavior is usually referred to as the
Mott effect [6,7].

The fundamental interaction law between the charged
particles in a plasma was derived already by Debye and
Hückel in 1923 [8], in the framework of classical statisti-
cal thermodynamics, leading to the famous screened Debye

potential

VD(r) = 1

4πε0εr

e−κDr

r
, (1)

with the inverse Debye screening length

κD =
(

ρe2

ε0εrkBT

)1/2

. (2)

Here ρ denotes the particle density, T the plasma tempera-
ture, and εr the relative dielectric constant of the medium. All
other symbols have their usual meaning.

This screened interaction leads to a shift of the single-
particle energies which amounts to

�Esp = −1

2

e2

4πε0εr
κD. (3)

However, it was not until 1956 that Ecker and Weizel
solved the Schrödinger equation for the two-particle problem
with interaction (1) modified by the subtraction of the shift
of the single-particle energies (3) and found for small κD for
the shift of energies of the bound states �EX (n) ∝ n2RyX κ2

D
with the principal quantum number n [9]. In this model,
they were able to explain many open questions of plasma
physics like the vanishing of bound states in dense plasmas.
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Since then it has been a paradigm of plasma physics that
nondegenerate plasmas can approximately be described by
the Debye-Hückel-Ecker-Weizel theory, in short, the “Debye”
model [6,7]. For these plasmas, the product of density ρ

and thermal de Broglie length �th =
√

(2π h̄2)/(μkBT ) to the
power of the dimension, ρ�d

th (here, μ is the reduced mass of
the plasma constituents), is much smaller than unity, and the
distribution function of the plasma constituents is the classical
Boltzmann distribution.

While many areas of plasma physics are founded on con-
cepts of classical physics [2–4], an in-depth description of
plasmas can only be achieved within a full quantum many-
body theory. This was first achieved by various authors in the
1970s [10–14]; for reviews see Refs. [6,7,15]. Currently, this
subject is discussed under the topic of “ionization-potential
depression” (IPD), see, e.g., Refs. [16–20]. In this context,
the question arises whether the “classical limit” of these
many-body theories is still given by the Debye plasma model.
Unfortunately, the validity of the Debye description for atomic
plasmas is extremely difficult to test, as here the determination
of the shift of the absolute single-particle energies [Eq. (3)]
and bound-state energies is impossible; only relative values
can be measured as IPD [3,21,22] or as an energy difference
between bound states in spectroscopic measurements [3].

After the early years of plasma physics, it became obvi-
ous that not only atomic systems like hydrogen have plasma
phases, but most interacting systems. A prominent example is
the system of interacting quarks and gluons in the early state
of the universe [23,24]. Also plasma phases in semiconductors
formed from interacting quasiparticles, electron-hole plasmas
(EHPs), have gained huge interest [25–32]. For example, the
important field of light emission from semiconductors (lasers
and light-emitting diode, LED) is determined by the prop-
erties of the EHP produced in these devices. Compared to
atomic systems, the main advantage of these EHPs is that they
not only can be produced “at will,” e.g., by shining light of
photon energy in the continuum, i.e., above the semiconductor
band edge, onto the sample, but one can obtain both the
absolute position of the single-particle ground state, which per
se is identical with the band-edge energy Eg and the absolute
bound-state energies, i.e., the excitons, by a simple measure-
ment of the absorption spectrum [26,27]. Indeed, systematic
investigations in the 1970s and 1980s and ongoing up to now
have led to great insights into the physics of semiconductors
[25–32].

So far the investigations of the effects of plasmas on
bound states in semiconductors have been restricted almost
exclusively to the study of the lowest bound state, which is
the analog of the 1S state of the hydrogen atom. To obtain
observable plasma effects in this case, densities far beyond
the degeneracy limit are required and a thorough theoretical
treatment of these plasmas is only possible within quantum
many-particle theories [25,28,29]. To investigate the nonde-
generate limit at moderate temperatures would require very
low densities, e.g., for GaAs at T = 10 K much smaller than
1014cm−3, which has been below the experimental accessibil-
ity so far [26].

The recent observation of Rydberg excitons, i.e., electron-
hole bound states with very high principal quantum numbers
up to 30, in cuprous oxide [33–36], opened up the possibility

to study the interaction of such weakly bound excitons with
Bohr radii on the order of 1μm with plasmas of low density,
where the Debye model is expected to be a good description.
Indeed, the first study [37] of Rydberg excitons in the presence
of an EHP with densities around 1010cm−3 showed a quench-
ing of the absorption of P states with high quantum numbers.
However, interpreting the experimental results within the De-
bye model raised several problems, which could not be solved
unambiguously. The first one was the observation that even
without any additional pumping the area of the P absorption
lines decreases with quantum number much faster than ex-
pected from exciton theory [38]. Recently, this effect could
be explained, at least qualitatively, by the inclusion of un-
compensated residual charged impurities, which are present
in all real crystals and produce a reduction of the oscillator
strength of Rydberg states and an increase of the linewidth
with high quantum numbers by ionizing these states in their
static random electric field [39]. Since a similar reduction in
the oscillator strength is also predicted in the Debye model
[37,40], the effects of EHP and charged impurities are diffi-
cult to separate. However, a unique signature of the impurity
effect is the occurrence of an Urbach tail, i.e., an absorption
band that continues the continuum absorption towards lower
energies with an exponential line shape. Whenever such a
tail occurs, the effects of charged impurities have to be con-
sidered. The second and much more severe discrepancy was
that between the shift of the band edge, which could be mea-
sured with great accuracy, and the lack of the corresponding
energy shift of the exciton states, which is predicted in the
Debye model [37,40]. However, the plasma created in that
experiment is a rather complex one. It consists of electrons
and holes created directly by the pump laser with photon
energy above the band edge as well as those created indirectly
by the Auger decay [41,42] of excitons, resulting in quite
different temperatures of the components. As the temperature
cannot be obtained independently from the experiments, but
directly influences both band-edge and exciton-energy shifts,
the comparison between theory and experiment is very dif-
ficult. As a consequence, the important question of how the
plasma quenching competes with the simultaneously expected
excitonic blockade effect [33,40] could not be decided from
these studies.

Recently, an elaborate many-particle theory has been ap-
plied to Rydberg excitons interacting with an ultracold,
low-density EHP [43,44]. The predictions are quite different
from those of the classical Debye model. First, the effective
band-edge energy shifts with the fourth root of the product of
plasma density and temperature of the EHP instead and not
with the square root of the ratio of density and temperature
[see Eqs. (3) and (2)]. Second, the energetic position and the
oscillator strength of an exciton state remain constant up to
small deviations of less than 5% in the binding energy and
less than 1% in oscillator strength up to the density where the
redshifted band edge crosses the energy of the exciton state.
This density marks the Mott point, which is considered as
the usual criterion for the Mott effect [6,7]). In contrast, the
Debye model predicts not only energetic shifts of the order of
the binding energies but also losses of the oscillator strength
by more than a factor of 2 [27]. We note that such differ-
ences between the results of a more rigorous many-particle
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approach and the Debye model were found in earlier theory
papers [30,31,45,46], but have neither been validated due to
the absence of accurate experimental observations, e.g., of the
band edge, nor taken seriously.

II. EXPERIMENT AND DATA ANALYSIS

In this paper, therefore, we try to avoid the complex-
ity introduced by a multicomponent plasma by creating
a well-defined EHP which solely contains Auger-created
electron-hole pairs. We achieve this in a pump-probe setup
(for details see Ref. [37]), where one tunable single-frequency
laser (power 1 μW) is scanned to measure the transmission
spectrum of the sample T (h̄ω) = Pout/Pin of the yellow P
states, whereby Pin and Pout are the laser powers before and
behind the sample, respectively. The sample with a thickness
of about 32μm has been cut off from a high-quality natural
Cu2O crystal from the Tsumeb mine in Namibia, which has
been used in previous studies of Rydberg excitons [33,35,37].
The sample has been mounted strain-free [47] and has been
immersed into superfluid helium in an optical cryostat pro-
viding T = 1.35 K to provide optimal cooling. The input and
output powers have been obtained by correcting for the reflec-
tion losses due to the cryostat quartz windows.

To produce the plasma, we additionally pump with a sec-
ond laser (power from 0.2 μW to 5 mW) into pure yellow 1S
states (in the phonon-assisted indirect absorption; see the blue
arrow in Fig. 1) at a temperature of 1.35 K. At this energy,
neither free holes nor P excitons are created by the laser.
Since the plasma in this case is simple, we expect it to be de-
scribable by many-body theory allowing a direct comparison
with experiment. To this end, one has to measure accurately
the spectroscopic position of both the band edge and of the
Rydberg states as a function of the plasma density, which
can be varied by changing the pump laser power. Here we
have to ensure that the experiments are performed with high
enough plasma densities that the influence of residual charged
impurities can be neglected, as proven by the nonexistence
of an Urbach tail. On the other hand, the densities have to
be small enough to stay in the nondegenerate regime, i.e.,
ρeh�

3
th � 1.

A closer look at the experimental transmission spectra (full
colored lines in Fig. 1) already reveals that we have achieved
this goal. At very low pump powers (compare the spectra
at 0.2 and 2 μW) the spectra show pronounced dips in the
transmission due to Rydberg excitons up to a maximum prin-
cipal quantum number of n = 23 [48], where the transmission
changes into the smooth continuum response of the scattering
states. The energy of the transition point is marked by a red
arrow and is considered as the shifted apparent band edge.
With increasing pump power the spectra change consistently.
The peaks corresponding to the highest principal quantum
number n lose strength until they vanish in the redshifted
continuum. We attribute this to the effect of the increasing
density of an EHP leading to a redshift of the band edge and
a concomitant shift of the Mott point. The dips at low n seem
to be unaffected by the plasma effect.

To deduce quantitatively the parameters of the exciton
states (energy, oscillator strength, and linewidth) and the
band-edge position from the transmission spectra (for an

(a)

(b)

FIG. 1. Transmission spectra of Rydberg excitons from n = 5
onwards recorded at T = 1.35 K for simultaneous application of a
pump laser at a photon energy of 2.168 883 0 eV (blue arrow) oper-
ated at different powers as shown. The full lines are the experimental
results and the dotted lines show the best fit using the CTM method
[49]. The upper panel shows the spectra at low pump powers, which
were fitted assuming an Urbach-like tail [Eq. (6)]. The black line for
50 μW is a fit without an Urbach tail. The lower panel shows the
spectra for high pump powers, which were fitted assuming only a
broadened continuum [Eq. (5)]. The deviations of the experimental
traces from the fit between the P lines are due to optical absorption
into other angular-momentum states that become allowed through the
effect of the impurity-induced electric fields [39]. Note the nonlinear
scale of the x axis proportional to the square root of energy difference
of nominal band edge Eg0 and photon energy allowing displaying
all lines with equal resolution. The red arrows mark the position
of the apparent band edge Eg, where the absorption lines of the P
states vanish and the transmission goes over to the flat continuum.
The band-edge shifts � = Eg − Eg0 are plotted as black squares in
Fig. 4(a).

overview see Fig. 1) we use the recently developed highly
accurate coherence transfer matrix (CTM) method [49]. The
essence of this way of calculating the transmission spectrum
of a thin plate of semiconductors is to model the spectral
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dependence of the complex dielectric function ε(h̄ω) around
the yellow band edge by assuming contributions from all
relevant optical resonances. Defining appropriate transfer
matrices one can take into account the coherence of the mea-
suring laser beam (coherence length several kilometers), a
spectrally varying reflection coefficient, possible oxide layers
on top of the sample, and scattering due to surface roughness
(for details see Ref. [49]). The results of the fit by this method
are given by the dotted lines in Fig. 1. The almost quantita-
tive agreement of the calculated and measured transmission
spectra demonstrates the high accuracy of this method.

To describe the optical response of Cu2O in the region
around the yellow gap according to established knowledge
from semiconductor physics, the following contributions to
ε(h̄ω) are essential: (i) the contribution of the P exciton
transitions and the corresponding continuum, (ii) the indirect
absorption into the yellow and green exciton states [49,50],
and (iii) the background contribution from exciton states cor-
responding to higher bands [51].

At this point, we give only the imaginary part of the di-
electric functions for the P states (all other contributions to
the dielectric function can be found in Ref. [49]):

εi,P(h̄ω) =
nmax∑
n=2

f̃n
1

π

	n + 2An(h̄ω − En)

(h̄ω − En)2 + 	2
n cosh

( h̄ω−En
3	n

)2 . (4)

In Eq. (4), the sum goes over the P states (principal
quantum number n) and the f̃n are constants proportional to
the oscillator strengths; En are the energies of the P states.
The damping 	n and the asymmetry An are assumed to be
constant for each P state. The factor cosh (ζ )2 with ζ =
(h̄ω − En)/3	n has been introduced to obtain an exponen-
tially damped line shape at energies far from the resonance
(Urbach-like tail) [49]. The maximum quantum number nmax,
up to which excitons exist, is determined by the shift of
the band edge � = Eg − Eg0(Eg0 = 2.172 049 eV being the
nominal gap [52]), since above this energy the Mott effect
appears [6,7,14,15,29]. The P continuum absorption sets in
at the band edge with a steplike increase of the absorption due
to Sommerfeld enhancement but is broadened by a Lorentzian
with damping γc [49]:

εc(h̄ω) = ac

(
1 + h̄ω − Eg

Ry

)[
1

2
+ 1

π
arctan

(
h̄ω − Eg

γc

)]
,

(5)
where ac = 1.645 × 10−3 [49] is a factor describing the
strength of the continuum, Eg is the band edge, and Ry is
the exciton Rydberg energy. We expect γc as a two-particle
property (damping of electron-hole pairs in scattering states)
to be on the order of the exciton damping at the band edge.

The analysis of the interaction of Rydberg excitons with
charged impurities [39] shows the existence of an Urbach tail,
which continues the continuum to lower energies, being of the
general form

εUT (h̄ω) = ace(−Eg+h̄ω)/ Eur �(Eg − h̄ω), (6)

with Eur the decay constant of the tail and �(x) the Heav-
iside step function. To obtain a smooth transition from the
continuum to the Urbach tail we broaden it by a Lorentzian
with the same width as the continuum (for details see

Appendix A). Such an Urbach tail should always exist for suf-
ficiently low plasma densities at which the impurity charges
will not be screened. In this model we have tacitly assumed
that the position of the band edge, i.e., the energy where the
continuum of scattering states begins, is identical to the posi-
tion, where the P lines vanish. However, this is not necessarily
the case, as the isolated P lines may already vanish, when the
Stark effect of the impurity fields leads to a redistribution of
oscillator strength to other angular-momentum states, which
then form a broad resonance [47]. Therefore, one should
consider the energetic position where the P lines go over to
the continuum as the apparent band edge that only in case
of complete screening of the impurity charges by the EHP is
identical with the ideal band edge in an excited crystal (see
Sec. IV).

Clearly, the real part of the dielectric function can be ob-
tained by a Kramers-Kronig transform of the imaginary part
[49]. In this way, the whole spectrum of Rydberg states from
n = 2 to the maximum visible P line is taken into account,
even if the corresponding lines are not in the spectral region
of measurement. This is essential because due to the spectrally
far-reaching wings of the asymmetric Lorentzian line shape;
all P states influence the whole spectrum.

III. RESULTS

The results of the fitting procedure can be grouped into
three categories: (1) the parameters of the P lines (reso-
nance energy, oscillator strength, linewidth, and asymmetry),
(2) the parameters of the continuum absorption (band-edge
shift, absorption strength, damping, and a possible Urbach
tail), and (3) parameters describing the fixed quantities (sam-
ple thickness, roughness, and indirect absorption processes).
Since the experiments have been performed with the same
sample used in Ref. [49], we can take all parameters inde-
pendent of the yellow P states (excitons and continuum) from
Ref. [49].

We first discuss the pump-power dependence of the param-
eters for the P lines as obtained from fitting the transmission
spectra of Fig. 1. This gives the oscillator strengths f̃n

[Figs. 2(a) and 2(b)], the linewidths 	n [Figs. 2(c) and 2(d)],
the energies En (Fig. 3), and the asymmetries An (see Ap-
pendix A).

In our fitting strategy, we have to take into account several
constraints. From many-body theory we expect no significant
deviations of the oscillator strength from the law given by
exciton theory: fn ∝ (n2 − 1)/n5 [38]. However, due to the
presence of charged impurities in the sample, we have also to
consider a possible appearance of an Urbach tail accompanied
by a reduction of oscillator strength. Since at high plasma
densities, i.e., at high pump powers, the charges are efficiently
screened and therefore of weak influence on the spectra, we
start the fitting procedure at the highest pump power and con-
tinue to lower pump powers. Indeed, for pump powers above
100 μW [Fig. 1(b)] the spectra can be fitted almost quanti-
tatively by taking the oscillator strength fixed at the value
expected from exciton theory [full colored lines in Fig. 2(b)].
Note that these lines represent a physical value only at the
discrete principal quantum number; in between they should be
regarded as a guide to the eye. As is obvious from the spectra
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FIG. 2. Results of the fit of the transmission spectra for various pump powers. (a), (b): Oscillator strengths for different pump powers
from 0.2 μW to 5 mW grouped into low and high power ranges. The pump powers are the same as in Fig. 1. The colored full lines give the
dependence of oscillator strength on quantum number according to exciton theory as discussed in the text. One must be aware that the lines
represent a physical value only at the discrete principal quantum numbers; in between they should be regarded as a guide to the eye. While in
the HPR [panel (b)] the fit results (within experimental error) all fall onto this line; in the LPR [panel (a)] we see the well-known deviations
due to the effect of charged impurities. Panels (c) and (d) show the dependence of linewidth of the Lorentzians [given as HWHM (half-width
at half maximum) 	n] on principal quantum number n. The different pump powers are represented by the same symbols as in (a) and (b).
The dashed black lines give the expected dependence from phonon scattering, while the colored lines contain an additional contribution as
discussed in the text. The inset in (d) shows the pump-power dependence of the strength factor Cadd. The blue full line gives a pump-power
dependence P0.8.

in Fig. 1(a) such a fit is not possible anymore for pump powers
below 100 μW. Near the band edge there is a reduction in
absorption (see black line in the data for 50 μW as an exam-
ple) that can be attributed to an Urbach-like tail. Therefore,
one can divide the experimental findings as a function of
pump power into two separate regions: one at powers above
100 μW [high-power range (HPR)], where the transmssion
spectra can be described by standard semiconductor theory,
and a second one below 100 μW [low-power range (LPR)],
where a good fit can be obtained only by a reduction of the
oscillator strength below that of exciton theory [see Fig. 2(a)].

Of course, the border line is not sharp but covers a range of 50
μW.

From absorption measurements without an additional
pump, this phenomenon, i.e., the reduction of oscillator
strength and the occurance of an Urbach tail, is already known
(see, e.g., Refs. [27,49]) and has been explained as an effect
of charged impurities [39]. It is reproduced here for pump
powers below 2 μW, as can be seen in the behavior of the
oscillator strengths [Fig. 2(a)], where the datasets are almost
identical and show the characteristic additional decrease of
oscillator strength above n = 9. For pump powers between 5
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FIG. 3. Dependence of energy shifts on the principal quantum
number n for selected pump powers from 20 μW to 5 mW as
indicated. The full lines give the results of many-particle theory
proportional to the fourth power of the principal quantum number
[Eq. (9)]. The proportionality constants allow deducing the plasma
densities and temperatures shown in Figs. 4(b) and 4(c) as blue
triangles.

and 50 μW the dependence of oscillator strength on principal
quantum number seems to be not systematic, showing neither
the variation at low nor that at high pump powers. To under-
stand this, one has to treat the combined effects of impurities
and EHP on the same footing. This requires further studies
which are beyond the scope of this paper.

Surprisingly, the line broadenings 	n [Figs. 2(c) and 2(d)]
also show a different behavior in the different pump-power
ranges. In the HPR [Fig. 2(d)] the linewidths first decrease
with increasing quantum number, reflecting the reduced cou-
pling to phonons, but then start to increase again with a rate
that depends on the pump power. The total linewidth may be
split into two parts:

	tot (n) = 	phon(n) + 	add(n), (7)

where the phonon contribution 	phon(n) ∝ (n2 − 1)/n5 is
given in Figs. 2(c) and 2(d) as dashed black lines. The addi-
tional contribution shows a distinct dependence on principal
quantum number 	add(n) = Cadd (n−1)ζ with ζ = 3.3 ± 0.2;
see the full lines through the points. The strength factor Cadd

obtained from a fit [full lines in Fig. 2(d)] obviously in-
creases with increasing pump power [see inset in Fig. 2(d)].
Therefore, one can speculate that the scattering process re-
sponsible for this broadening is related to the EHP. However,
as the considered many-particle theory does not give such a
strong broadening effect [44], the origin of the latter must
come from processes beyond it. Since Cu2O is a polar semi-
conductor, the difference in dielectric constants due to the
two longitudinal optical phonon modes is about 0.9 [see
Eq. (B12)]. The elementary excitations of an EHP, the plas-
mons, interact strongly with these LO phonons. This will lead
to scattering processes between the Rydberg exciton states
in analogy to the Fröhlich interaction (see, e.g., Ref. [53]).

Indeed, in Ref. [54] it was shown that scattering between
different angular momentum states with the same principal
quantum number by coupled plasmon-phonon modes results
in a line broadening that scales with the quantum number as
(n−1)10/3 with a plasma-temperature dependent strength fac-
tor Cadd = 1.6ρeh/

√
Teh/K μeV μm3 [55]. Accordingly, the

strength factors directly allow deducing the ratios between the
electron-hole densities and the square root of plasma temper-
ature ρeh/

√
Teh.

In contrast, in the LPR the linewidths show a monotonous
decrease, which seems to saturate at high quantum numbers.
The data can be reproduced quite well by adding a constant
contribution 	add(n) = 	r , which amounts to about 6 μeV.
As shown in Ref. [39] the features in the LPR (reduction of os-
cillator strength and existence of an Urbach tail) are a unique
signature of the effects of charged impurities, allowing us to
conclude that in this range these spectra are predominantly
impurity dominated. Therefore, an analysis of the linewidths
and a comparison to theoretical results has been undertaken
only for powers larger than 100 μW(HPR), where we expect
the influence of the EHP to be the dominant contribution.

Finally, the shift of the resonance energies En with
reference to a hypothetical “exact” energy of each P
state in the form of a quantum defect formula is plotted
in Fig. 3 for selected pump powers. Here we use a
quantum defect formula in the two-parameter form
En = −Ry/(n − δ1 − δ2/(n − δ1)2 − · · ·) [49,56] with Ry =
(87.3 ± 0.2) meV, δ1 = 0.225 ± 0.02, and δ2 = −0.702 ±
0.05 allowing an accuracy of 0.6 μeV. While at low power
(<50 μW) no systematic deviation from the low-power
results has been found, the measured redshift at higher pump
powers follows the theoretically expected dependence on the
quantum number given by n4 [43] very well [see Eq. (9)], as
shown by the solid lines.

The other quantity of interest obtained from the fit is the
shift � of the apparent band edge Eg which is indicated by the
red arrows in Fig. 1 and as black squares in Fig. 4(a). Here,
it should be noted that the density of the charged impurities
could be derived from the shift of the band edge at zero pump
power using the results from Ref. [38] to be about 109cm−3.

The asymmetries An and the parameters of the Urbach-like
tail are given for completeness in Appendix A (see Figs. 7
and 8). As the latter originates from the effect of the residual
charged impurities it is relevant only in the LPR, and therefore
is of minor interest in this study.

IV. COMPARISON WITH MANY-BODY PLASMA THEORY

We now compare the experimental results to those of the
many-body plasma theory in the HPR. The parameters that
determine the theoretical results are the electron-hole pair
density ρeh and the effective temperature Teff of the plasma.
We assume that the carriers are in quasithermal equilibrium,
as proven by luminescence measurements [57] which show
under various conditions (excitation energy, pump power) an
exponential tail to higher photon energies in the luminescence
from the EHP.

As the first input, we use the band-edge shift. Using the
theory developed in Ref. [43], we can estimate the band-edge
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(a)

(b) (c)

FIG. 4. Panel (a) shows the shift of the band edge � as a function
of the pump power. Black square symbols are the shifts as determined
from the transmission spectra (red arrows in Fig. 1), while the red
dots and the blue triangles are the shifts calculated by many-body
theory [Eq. (1.4)] from the densities and temperatures obtained
from fitting the linewidth broadening [Fig. 2(b)] and the shift of
the resonance energies (Fig. 3), respectively. In the calculation we
neglected the contribution of the charged impurities, resulting in a
too-small shift at low pump powers, as expected. Panel (b) gives the
effective temperatures of the EHP obtained from the line-energy and
band-edge shifts (blue triangles) and from the line broadening (red
dots) compared to results of the relaxation and cooling model (see
Appendix B) for the phonon-assisted Auger scenario (black line).
Panel (c) shows the dependence of the electron-hole pair concentra-
tion on pump power obtained from the P lines energy shift and the
band-edge shift (blue triangles), from the linewidth broadening (red
dots) and from the rate and cooling model (black line).

shift from

�ehp(ρeh, Teff ) = −6.92 × 102 μeV(ρeh/μm−3)1/4

× (Teff/K )1/4. (8)

This shows that one can determine only the product ρehTeh

from the experimental data. In lack of a rigorous theory for
the effect of charged impurities in the presence of an EHP
on the band-edge shift, we simply used the square root of the
difference of the squares of the measured band-edge shift and
the shift at zero pump power as input in these calculations.
Although this might lead to some error at low powers, the
high-power data are not influenced.

The second input, the shift of the energy levels,

�Eth(n, ρeh, Teh) = −cE n4ρeh
(
1 + b/Teh

1/4
)
, (9)

is also determined by ρeh and Teff with cE = 1.5373 ×
10−2 μeV μm3, and b = 0.32. To derive this equation we
have to extend the calculation in Ref. [43] to a wider tem-
perature range (see Appendix C). So, we can determine from
the energy shifts only the product ρeh(1 + b/Teh

1/4). However,
both relations together allow determining the density and the
temperature of the EHP from the experiments by resolving
the nonlinear temperature connection following from these
relations. The values obtained are plotted as blue triangles in
Fig. 4, where (b) shows the temperature and (c) the density.
The densities obtained range from ρeh ≈ 10−3μm−3 almost
to 1 μm−3 and the temperatures vary between 5 and 20 K by
changing the pump power from 20 μW to 5 mW.

As the third input we take the broadening of the linewidth,
Eq. (7). Using again the band-edge shift, we can obtain a
second independent set of densities and plasma temperatures,
which are shown as the red dots in Figs. 4(b) and 4(c). The
agreement between both results is excellent. This is further
substantiated by the agreement with the results obtained from
the relaxation and cooling model (full lines) presented in Ap-
pendix B. A closer look at Fig. 4(c) reveals that the transition
between LPR and HPR occurs at a pump power where the
plasma density is one order of magnitude larger than that of
the charged impurities (109cm−3), and one expects an efficient
screening of these charges.

V. FAILURE OF THE DEBYE MODEL

In order to account for the influence of many-body effects
on the exciton states, the apparently most simple possibility is
to replace the bare Coulomb potential by a statically screened
one, e.g., the Debye potential [Eq. (1)], with the screening
length given by Eq. (2). Then, the shift of the band edge
is given by Eq. (3), but with doubled value, as there are
two species in the plasma. Simply solving the Schrödinger
equation with this screened Coulomb potential, however, has
long been known to yield an incorrect behavior of the bound-
state energies in such a way that they are strongly blueshifted
towards the (unperturbed) band edge [15]. The subtraction
of the single-particle shift as in Ref. [9] is only heuristically
motivated [14]. A consistent description requires to include
the many-body effects in the calculation of energy shifts on
the same level of approximation in the single-particle and
two-particle energies [43,45,46]. These calculations yield for
the energy shifts

�EthD(n, l, ρeh, Teff ) = −αnl
2e2

0

ε0εst

ρeh

kBTeff
, (10)

with the αnl depending on the quantum numbers n and l . From
the calculations in Ref. [43], we extract for the l = 1(P) ex-
citon states in Cu2O αn1 = 26.5 μeV μm3/Kn3/2. Note that
the dependence on quantum number n differs from the result
of Refs. [9,58], probably because of the approximations that
have been made in these works.

Inserting the parameters for the yellow excitons in Cu2O
(reduced electron-hole mass μ = 0.363 me, εr = 7.51 [49])
into Eq. (3), we obtain for the band-edge shift

�ehp(ρeh, Teff ) = cD(ρeh/Teff )1/2, (11)
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FIG. 5. Breakdown of the Debye plasma model. Panel (a) compares the variations of the line-energy shifts on principal quantum number n
for selected pump powers from 20 to 5000 μW as indicated (same data as in Fig. 3) with the predictions of the Debye plasma model [Eq. (10),
full lines]. The dotted lines give the results of the many-particle theory [Eq. (9)] as taken from Fig. 3. The ratios of density and temperature
obtained from the proportionality constants are plotted as blue dots in (b), while the red triangles show the same quantity obtained from the
band-edge shift [Eq. (11)]. The error bars in (b) are obtained from the fits in case of energy shifts and from the accuracy in the determination
of the band edge of about 20 μeV.

with cD = −1.434 × 103 eV K1/2 μm−3/2. Here, we see that
both the shift of the band edge and of the energy levels depend
only on the ratio ρeh/Teff , albeit on different powers. This
will provide a strong consistency check of the static screening
model.

Figure 5(a) shows a comparison of the energy shifts of the
P states as a function of the principal quantum number for
different pump powers to the predictions of the Debye model.
While results from the dynamically screened model certainly
are a better match to the experimental results, the experimental
accuracy does not allow us to unambiguously rule out the
Debye model based solely on the energy shifts, at least for the
data below 500 μW. However, the ratios of plasma density
and temperature obtained from the slopes within the Debye
model as blue dots in Fig. 5 differ by more than an order
of magnitude from those determined from the experimental
band-edge shifts [Fig. 4(a)] using Eq. (11) [see red triangles
in Fig. 5(b)], even if considering the error in these results. In
a consistent physical theory they must be identical. The origin
of this inconsistency can be traced back to the dependence
of the shift of the single-particle energies with density and
temperature, which turns out to be wrong in the Debye plasma
model. Therefore, the Debye model, if applied to a low-
density EHP, gives an inadequate description. However, as this
dependence is a generic feature of the Debye model, this casts
considerable doubts on the application of the Debye model for
other plasmas at low temperatures and densities as well.

VI. CONCLUSIONS

To sum up, the recent observation of Rydberg excitons,
i.e., the solid-state analog to Rydberg atoms, have allowed
to critically test the predictions of plasma theory on the de-
pendence of single-particle and bound-state energies, directly
measurable by optical absorption, on density and temperature
of low-density plasmas.

In our investigations we have found two quite distinct
regimes in the response of Rydberg excitons to an addition-
ally present electron-hole plasma. For pump powers below
100 μW(low-power region), the effects are dominated by
the influence of charged impurities leading to a reduction
of the oscillator strength approaching the Mott transition,
as observed earlier [33,37,39]. For pump powers above
100 μW(high-power range), however, we found the behavior
predicted by many-body theory: (i) a clearly observable en-
ergy shift of the P absorption lines in the μeV range, which
agrees quantitatively with the predictions of many-particle
theory on quantum number, plasma density, and temperature;
(ii) a dependence of oscillator strength that follows the predic-
tions of many-particle theory, thus keeping the (n2 − 1)/n5

dependence of exciton theory [38]. In addition, we found
an increase of the optical linewidth with the plasma density
showing a characteristic dependence on quantum number.
Such an effect does not occur in many-particle theory, which
only gives a small additional contribution to the linewidth
[44]. We have given evidence that this line broadening origi-
nates from the interaction of Rydberg excitons with coupled
plasmon-phonon modes of the polar crystal Cu2O, as re-
cently predicted [54]. The plasma-induced line broadening
then gives rise to an increasing overlap of the P lines with
increasing quantum number thus leading to the background
on which the lines sit. In a previous analysis [37] this has been
erroneously interpreted as an Urbach-like tail reaching down
in energy from the band edge, which in reality is not present
in the high-power range, however. The many-body analysis
of the energy shifts allows obtaining the plasma density and
temperature independently, whereby the measured shift of the
band edge is in quantitative agreement with the calculated
shift.

Finally, we could show from our analysis that the stan-
dard Debye description for nondegenerate plasmas, which
is generally thought to be a good approximation, is
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inadequate for the understanding of the presented experimen-
tal data.
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APPENDIX A: TRANSMISSION SPECTRA
AND FITTING RESULTS

1. Examples of a fit of the transmission spectra

In Fig. 6 we show a detailed comparison of the experi-
mental transmission spectrum (red line) for a pump power
of 0.2 μW [Fig. 6(a)] and 1000 μW [Fig. 6(b)] with a fit
using the CTM method (for details of the method we refer to
Ref. [49]). In addition to the theoretical transmission spectrum
(blue line), we also show the theoretical reflection spectrum
(magenta line). This shows a considerable spectral variation
around the P lines, which cannot be neglected. The difference
between experimental and theoretical transmission spectra is
given by the green line. The most prominent deviations are
due to absorption into higher angular-momentum states. The
sharp structures above the P lines are the well-known l = 3
(F ) states [59]. Other structures are due to l = 2 (D) states
becoming allowed due to the electric field of ionized residual
impurities [39].

FIG. 6. Comparison of the measured transmission spectrum (red)
with the fit according to CTM theory (blue). For low [panel (a)] and
high [panel (b)] pump power as indicated. The difference between
both transmission spectra is shown as the green line. While one
clearly sees residual absorption lines into F states (from n = 5 to 7)
[59], the deviations at higher principal quantum numbers (n > 10)
are due to states that become allowed by the electric field of resid-
ual charged impurities [39] and to interference effects of the setup
[49]. The magenta line gives the corresponding theoretical reflection
spectrum (shifted by 0.15). Pump laser: photon energy 2.168 883 eV.

2. Results for the asymmetry parameters

It is well known that the absorption lines of the yellow
P states are sitting on top of a phonon background. Because
both processes are leading to the same final state, we observe
for the P lines an asymmetric Lorentzian line shape given by
Eq. (4) [60]. One should note that at present a quantitative
calculation of the dependence of the asymmetry on principal
quantum number is not available [61]. We therefore only show
the results for the asymmetry parameters obtained from the fit
of the transmission spectra in Fig. 7.

3. Parameters of the Urbach tail

To ensure a smooth transition from the continuum to the
Urbach tail, the sharp spectral dependence given by Eq. (1.3)
has to be convoluted by a Lorentzian with the same width as
that for the continuum. The result is

εUT (h̄ω, Eur )

= −ac
i

2π
exp

(−iγc + z

Eur

)[
Ei

(−iγc + z

Eur

)

− exp

(
2iγc

Eur

)
Ei

(
iγc + z

Eur

)]
, (A1)

with z = −Eg + h̄ω.
In the actual fit, we assumed a two-component expression

for the Urbach tail:

εUT tot (h̄ω)

= (AurεUT (h̄ω, Eur1)

+ (1 − Aur )εUT (h̄ω, Eur2))�(Eg − h̄ω), (A2)

with Aur being a weighting factor normalized to unity.

FIG. 7. Overview of the asymmetry parameters from the fits of
the transmission spectra. The pump powers are given at the left of the
curves. The full lines are guides to the eye; the dotted lines gives the
constant value of A = −0.275 at low principal quantum numbers for
all measurements. For increasing pump power the lines are shifted
by 0.1 from dataset to dataset.
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FIG. 8. Urbach tail decay parameters from Eq. (A2). Eur1(red
squares), Eur2 (blue diamonds), and Aur(green dots) on pump power
in the LPR. The lines are guides to the eye.

The parameters of the Urbach tail obtained from the fitting
procedure are shown in Fig. 8. Note that only for pump powers
below 100 μW the Urbach tail is relevant in the spectra. So,
we do not discuss it further here.

APPENDIX B: RELAXATION AND COOLING MODEL

1. Rate model

Here we discuss the rate model by which the relaxation
processes of the different species are described.

In the past years, we have developed a rate model for
analyzing continuous-wave and pulsed time-resolved mea-
surements of 1S yellow excitons in Cu2O [41,42], which can
be applied also for the excitation scenario in this paper, as
one primarily excites only yellow 1S ortho-excitons at large
wave vectors. These relax by phonon emission towards the
band minimum and convert into 1S paraexcitons. Both de-
cay by a bimolecular Auger process into electron-hole pairs.
This limits the relaxation and conversion processes to: (i)
Acoustical and optical phonon scattering of 1S excitons; (ii)
Relaxation of electron-hole pairs into excitons. We consider
this as a bimolecular process, mediated either by 	−

3 phonons
or as a direct capture into Rydberg exciton states with high
principal quantum numbers; (iii) Trapping of all species at de-
fects and due to the small thickness of the sample also surface
recombination. These processes contribute to the decay rate of
the species, which therefore becomes sample dependent. (iv)
Conversion of ortho- into para-excitons; and (v) Auger decay
of ortho- and para-excitons. Of course, other relaxation pro-
cesses are imaginable, like Auger recombination of electrons
or holes. However, signatures for such processes, which would
scale with the third power of the carrier concentration, have
not been found.

The resulting system of rate equations is then given by

dnOex

dt
= ηLG(t ) − 	relO1SnOex − 	O1SnrnOex − 	OPnOex

− 2aOOn2
Oex − aOOnOexnO1S

− aOPnOexnP1S + 	raugn2
aug, (B1)

dnO1S

dt
= 	relO1SnOex − 	O1SnrnO1S − 	OPnO1S

− 2aOOn2
O1S − aOPnO1SnP1S − aOOnOexnO1S, (B2)

dnP1S

dt
= 	OP(nO1S + nOex)βD − 	P1SnrnP1S

− 2aPPn2
P1S − (aOPnOexnP1S + aOPnO1SnP1S)βD,

(B3)
dnaug

dt
= aPPn2

P1SβD + aOOn2
O1S + aOOnOexnO1S

+ aOPnOexnP1SβD + aOPnO1SnP1SβD

− 	raugn2
aug − 	augnrnaug. (B4)

The rate constants are given in Table I.
To calculate the excitation densities from the pump laser

power, we consider an excitation spot with a Gaussian inten-
sity

I (ρ) = I0 exp

(
−

(
ρ

ρ0

)2)
, (B5)

with waist parameter ρ0 = 180μm, which is related to the full
width at half maximum beam diameter 2R0 by R0 = √

ln 2ρ0.
The beam power is given by PL = πρ2

0 I0. Since the probe
beam has only a diameter of ρP = 90μm, it senses only the
central part. The overlap parameter defined as

covl(ρ0, ρP ) = 2

ρ2
P

∫ ∞

0
ρ exp

(
−

(
ρ

ρ0

)2)

× exp

(
−

(
ρ

ρP

)2)
dρ (B6)

is 0.923, which allows for linear processes to assume a rectan-
gular beam profile with diameter ρ0 and power covlPL. We note
that the absorbed fraction of laser power ηL cannot be obtained
in the usual way from Lambert’s law, but must follow from an
analysis of the transmission by the CTM method as shown in
Ref. [49]. This gives for the sample at the excitation photon
energy ηL = 0.2, which includes all losses by scattering and
reflection of the sample and also of the quartz windows.

To include diffusion, which however affects only the 1S
para-excitons due to their long lifetime and high diffusivity
(D > 1000 cm2/s [62]), we introduce a factor βD = R2

0/(R2
0 +

D/	P1Snr ) in all para-exciton outscattering rates. G(t ) is given
by

G(t ) = covlPL
1

πρ2
0 EL

ns f (t ). (B7)

For a cw pump we set f (t ) = 1. EL is the laser photon energy.
In Fig. 9 a typical result for the dependence of the species’

concentrations on pump power is shown. Obviously, the rate
model allows reproducing the experimentally found plasma
density quite accurately.

2. Cooling of an electron-hole plasma

The properties of an EHP strongly depend on its density
and temperature. As information on these quantities is not
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TABLE I. Parameters of the rate model. The parameters marked by (*) are either sample dependent or not known, so have to be obtained
from a fitting procedure.

Rate constant Meaning Value Ref.

	rOO1S (*) Relaxation rate into 1S ortho-exciton
ground state

100/ns Fit

	OP Ortho-para conversion rate 0.2/ns [41]
aOO Ortho-ortho Auger rate 5 × 10−5 μm3/ns [41]
aOP Ortho-para Auger rate aOO/4 [42]

aPP Para-para Auger rate 4 × 10−6 μm3/ns [41]
	O1Snr (∗)
	P1Snr

Nonradiative decay rate of ortho- and
para-excitons

1/500 ns Fit

Fraction of absorbed photons αO Absorption of ortho-excitons due to
phonon process

0.2 [49]

	augnr (*) Nonradiative decay rate of hot
Auger-generated electrons and
holes

1/500 ns Fit

	raug (*) Recombination rate of hot
Auger-generated electron-hole pairs
into excitons

1 μm3/ns Fit

easily available directly, one has to model the relaxation be-
havior of the primarily excited electrons and holes applying
kinetic equations. This approach has a long tradition in semi-
conductor physics (see, e.g., Ref. [53]).

FIG. 9. Results of the rate model. The curves give the con-
centrations of the following species: primarily excited ortho-
exciton (dashed black line), para-excitons at k = 0 (full blue
line), Auger-created electron-hole pairs (magenta line). The dot-
ted lines of the same color give the results of the effective rate
model used to simulate the cooling behavior (see Sec. B5). The
red dots and blue triangles give the results of the analysis of
the experimental data (see main text).

The first step in such a treatment is a dedicated descrip-
tion of the generation and scattering processes the carriers
undergo. Here one has to consider the following processes:
(i) scattering of carriers by phonons; (ii) carrier-carrier scat-
tering by Coulomb interaction; (iii) scattering and trapping of
carriers by impurities; and (iv) recombination of carriers into
excitons. In addition, one has to know the distribution of the
carriers over the band states excited by optical absorption or
by the Auger-like decay process of excitons.

3. Scattering by phonons

Here we have to distinguish scattering by acoustical
phonons (deformation potential AC) and optical phonons
(Fröhlich interaction, LO).

For the AC process, the scattering rates are given in
Ref. [53]. In the limit of low carrier concentration and low
temperatures we have

	x,ph(k) = D2

2ρuL

1

(2π )

m∗κ2

h̄2k

8

3

(√
E

Eph
− 1

)3

= 2

3π

D2

ρvS

m∗κ2

h̄2

1√
E

Eph

(√
E

Eph
− 1

)3

, (B8)

with deformation potential D, sound velocity uL, Eph =
h̄2

2m∗ κ
2, and κ = 2m∗ uL/h̄.
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For LO scattering we have [53]

	c,LOi = e2
0

ε0

(
1

ε∗
i

)
1

4π h̄2

√
m∗h̄�LOi

2

1√
E (k)/h̄�LOi

�(E (k)

− h̄�LOi ) ln

[
1 + √

1 − h̄�LOi/E (k)

1 − √
1 − h̄�LOi/E (k)

]
. (B9)

Here h̄�LOi denote the different phonon energies, ε∗
i denotes

the effective dielectric constants for the different phonon
modes given as

1

ε∗
i

= 1

ε
up
i

− 1

εlow
i

, (B10)

where ε
up,low
i denote the dielectric constants above and below

the phonon mode which can be calculated from Toyozawa’s
rule [63]:

ε(ω)

ε∞
=

∏
i

(
ω2

LOi − ω2
)

(
ω2

TOi − ω2
) . (B11)

For Cu2O the corresponding values are [41]

ETO1 = 18.8 meV ELO1 = 19.1 meV

ETO2 = 78.5 meV ELO2 = 82.1 meV, (B12)

from which we have to determine the effective ε∗
i . We use

εstat = 7.37, εint = 7.14, ε∞ = 6.53, (B13)

resulting in ε∗
1 = 233, ε∗

2 = 76. As electron and hole mass
we use the polaron masses m∗

c = 0.985me, m∗
v = 0.575me

[64].
In Cu2O the uppermost valence band has a significant

nonparabolicity [65]. To take this approximately into account,
one may divide the valence band into two sections. The part
at low wave vectors has the usual mass given above, while the
upper part corresponds to a mass of m∗

v2 = 3.5me; the energy
difference between the bands is 70 meV. If initially the holes
are excited with high kinetic energies, they will follow the
upper band and as soon as they reach the energies below the
crossing point at 85 meV, they switch to the lower band.

In Fig. 10 the scattering rates of the electrons [part (a)] and
of the holes [part (b)] are plotted. We show both the rates for
the lower and for the upper band. Fortunately for the upper
band scattering by LO2 phonons is dominant, so we need to
consider only this process. Due to the low particle concentra-
tion, the carrier-carrier scattering is very small. Accordingly,
the carriers reach very quickly the energies where scattering
with LO2 modes is no longer possible at low temperatures.

4. Excitation processes

In the experiments to be analyzed the carriers are excited
only by Auger decay of yellow 1S ortho- and para-excitons
[41,42,66]. This can proceed via a direct process (type I),
whereby monoenergetic electrons and holes are excited as
determined by momentum and energy conservation. The car-
riers then relax down via Fröhlich scattering. However, in the
literature, there is general agreement that the phonon-assisted

FIG. 10. Scattering rates of electrons (a) and holes (b) vs kinetic
energy. Blue lines denote scattering by the LO2 mode via Fröhlich
interaction, red lines that of the LO1 mode. In (a) scattering by
acoustic phonons is denoted by the magenta line. In (b) scattering
by the LO2 mode in the lower part of the valence band is denoted
by a dashed magenta line, while scattering by acoustical phonons by
a black line. The dashed black line gives the acoustical scattering in
the upper part of the valence band (note the multiplication by a factor
of 10).

Auger process (type II) is strongest (see Ref. [41] and ref-
erences therein). This proceeds predominantly via the blue
exciton [42,67] so that we have the following scenario: The
electrons are excited in the 	−

8 band, from which they relax to
the bottom. From there they are scattered by interband scatter-
ing via the odd-parity optical phonon (the dominant process is
that with the 	−

3 mode [42]) to the 	+
6 conduction band with

a kinetic energy of about 440 meV (difference of band edge
minus phonon energy), from where the relaxation begins with
LO2 scattering, the rate of which is very large [see Fig. 5(a)].
In contrast, the holes are excited to all valence-band states
only restricted by energy and momentum conservation. The
starting energies for slow cooling are therefore for electrons
30 meV and for holes 40 meV.

5. Hydrodynamic cooling model

For the following hydrodynamic model for carrier cooling,
we assume that (a) the system is homogeneous, and (b) the
carriers are in quasi-equilibrium with effective temperature
T and chemical potential μ so that the carrier distribution is
given by a Fermi distribution:

f (�k) = 1

exp
(−(

1
kBT

)(
h̄2k2

2mi
∗ − μ

)) + 1
. (B14)

Under these assumptions, the quantum Boltzmann equa-
tion can be solved by considering only the zeroth moment
(carrier density) and the second moment (energy density)
[68,69].

The equation for the zeroth moment becomes the usual rate
equation,

dn

dt
= 	

(0)
X-ph + 	

(0)
E ,V . (B15)

The second moment gives the equation for the total energy
density,

dE

dt
= 	

(2)
X-ph + 	

(2)
E -V . (B16)
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The moments for scattering by phonons for a parabolic
band are [69]

	
(n)
X-ph = −2π

h̄
V

∫
d3k

(2π )3

∫
d3k′

(2π )3 |Mph(�k′ − �k)|2�n(�k)

× {[
f�k

(
1 + f ph

�k−�k′

)
(1 − f�k′ )−(1 − f�k ) f ph

�k−�k′ f�k′
]

× δ
(
ε�k − ε�k′ − h̄ω

ph
i

) + [
f�k f ph

�k′−�k (1 − f�k′ )

− (1 − f�k )
(
1 + f ph

�k′−�k
)

f�k′
]
δ
(
ε�k − ε�k′ + h̄ω

ph
i

)}
,

(B17)

where Mph(�k′ − �k) is the carrier phonon scattering ma-
trix element [53] and �n(k) denotes �0(k) = 1, �1(k) =
h̄�k, �2(k) = h̄2k2/2m. The phonon distribution is given by
(with the lattice temperature Tphon assumed to be constant)

f ph
q = 1

exp
( h̄uLq

kBTphon

) − 1
. (B18)

For scattering by acoustical phonons via deformation po-
tential one obtains [53]

	
(2)
X-ph = D2m2

2ρ(2π )3

kBT

h̄3

∫
dqq3

(
f ph
q − f B

�(q)

)

×
(

ln

[
e−β( h̄2

8m (q−κ )2−μ) + 1

e−β( h̄2
8m (q+κ )2−μ) + 1

])
. (B19)

For scattering with optical phonons via the Fröhlich inter-
action we can analogously derive

	
(2)
X-ph = Cih̄�LOi

(2π )3

m

2h̄3

2mkBT

h̄2

(
f ph
�LO

− f B
�LO

) ∫
dqq−1

×
(

ln

[
e−β( h̄2

8m (q−κ2
0 /q)2−μ) + 1

e−β( h̄2
8m (q+κ2

0 /q)2−μ) + 1

])
, (B20)

with the matrix element

M2
LOi = Ci/V |�k − �k′|2 , Ci = e2

0

2ε0
h̄�LOi

(
1

ε∗
i

)
. (B21)

The zeroth- and second moment for excitation and decay
processes are simply given as

	(0)
exc = G(t ), 	

(0)
dec = −	ehn(t ), 	(0)

rec = −	rcn(t )2

	(2)
exc = Eexc(t ), 	

(2)
dec = −	ehE (t ), 	(2)

rec = −	rcnE (t ),
(B22)

with Eexc = EstartG0, where Estart is the initial excess energy as
provided by, e.g., the Auger process.

E (t ) is the total energy of the plasma, which is given by

E =
∫

d3k

(2π )3

h̄2k2

2m
f�k . (B23)

The stationary solution of the hydrodynamic equations is
obtained from

dn

dt
= 0 = G0 − 	ehn0 − 	rcn2

0. (B24)

FIG. 11. Temperatures of the EHP vs excitation laser power.
The blue triangles and red dots denote the values derived from the
analysis of the line shifts and line broadening, respectively (see main
text). The black line gives the result of the calculation for the average
temperature if we assume that the phonon-assisted Auger scattering
is dominant (see text). The blue dashed line gives the temperature
of the electrons alone, while the dashed-dotted blue line gives the
temperature of the holes.

and

dE

dt
= 0 = 	

(2)
X-ph(n0, T0) + Eexc − 	ehE (n0, T0)

− 	rcn0 · E (n0, T0). (B25)

T0 is then taken as the effective temperature of the electrons
or holes.
Equation (B24) can be solved directly giving

n0 = − 	eh

2	rc
+

√(
	eh

2	rc

)2

+ G0

	rc
. (B26)

Equation (B25) gives

E (n0, T0) = 	
(2)
X-ph(n0, T0) + Eexc

	eh + 	rcn0
, (B27)

which is an implicit relation for T0 that is solved numerically.
In these equations, the zeroth- and second moments of the

creation and destruction of Auger created eh pairs have to
be inserted. Since it seems impracticable to incorporate the
complete rate model into the hydrodynamic equations, we
try to approximate the whole system by taking into account
only the relevant particles, the 1S para-excitons, and the EHP.
These would follow the following simplified rate equations:

dnP1S

dt
= αSG(t ) − 	0PnP1S − 2a0PPn2

P1S , (B28)

dnaug

dt
= a0PPn2

P1S − 	0augnrnaug − 	0raugn2
aug . (B29)

Here the rates are effective rates that have to be adjusted to
reproduce the results from the extended rate model.
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The stationary solutions are easily obtained as

n0P(PL ) = − 	0P

4a0PP
+

√(
	0P

4a0PP

)2

+ G0(PL )

2a0PP
α0eff

n0aug(PL ) = − 	0augnr

2	0raug
+

√(
	0augnr

2	0raug

)2

+ a0PP

	0raug
n0P(PL )2.

(B30)

An example is shown in Fig. 9, where the mod-
eling for the scenario described in the main paper
is displayed. The following parameters give the best
approximation:

	0P = 2.67 × 10−3/ns, a0PP = 3 × 10−6μm3/ns,

α0eff = 2.15 × 10−9, 	0augnr = 1

150 ns
, 	r0aug = 4/ns.

(B31)

Due to the low densities of the EHP, the Coulomb interac-
tion between electrons and holes is very weak so that they cool
down independently. Therefore, Eq. (B27) has to be solved
for electrons and holes separately, leading to the temperatures
shown in Fig. 11 by the blue lines. The effective temperature
of the EHP was then taken as the arithmetic mean of both
temperatures and shows rather good agreement.

APPENDIX C: RESULTS OF THE MANY-BODY THEORY

In Table II we give the results for the energy shifts of P ex-
citons with principal quantum numbers from n = 4 to n = 12
due to an electron-hole plasma calculated by the theory of Ref.
[42]. From these data Eq. (9) has been derived by multivariate
regression.

TABLE II. Energy shifts of the P exciton states (in μeV) calculated by the theory of Ref. [42]. The table is arranged so that the columns
give the values for different electron-hole plasma temperatures Teh (in K) as given by the first column, while the densities are given in 1010 cm−3

in the first row. The error of the fit formula is less than 0.1 μeV.

n = 4
Teh/ρeh 0.01 0.016 0.025 0.04 0.063 0.1 0.158 0.251 0.398 0.631 1.000

1 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002
2 −0.003 −0.003 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004
4 −0.004 −0.005 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006
6 −0.007 −0.008 −0.009 −0.009 −0.009 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01
8 −0.011 −0.013 −0.014 −0.015 −0.015 −0.015 −0.015 −0.015 −0.016 −0.016 −0.016
10 −0.017 −0.02 −0.022 −0.023 −0.024 −0.024 −0.024 −0.024 −0.025 −0.025 −0.025
12 −0.027 −0.031 −0.035 −0.036 −0.037 −0.038 −0.038 −0.039 −0.039 −0.039 −0.039
14 −0.043 −0.049 −0.055 −0.058 −0.059 −0.06 −0.061 −0.061 −0.062 −0.062 −0.062
16 −0.068 −0.078 −0.087 −0.091 −0.093 −0.095 −0.096 −0.097 −0.098 −0.098 −0.099
18 −0.106 −0.123 −0.137 −0.144 −0.148 −0.15 −0.152 −0.154 −0.155 −0.156 −0.156
20 −0.167 −0.193 −0.216 −0.227 −0.233 −0.238 −0.241 −0.243 −0.245 −0.246 −0.248

n = 6
Teh/ρeh 0.01 0.016 0.025 0.04 0.063 0.1 0.158 0.251 0.398 0.631 1.000

1 −0.013 −0.014 −0.014 −0.015 −0.015 −0.015 −0.015 −0.015 −0.015 −0.015 −0.015
2 −0.021 −0.022 −0.023 −0.023 −0.023 −0.023 −0.023 −0.024 −0.024 −0.024 −0.024
4 −0.034 −0.035 −0.036 −0.036 −0.037 −0.037 −0.037 −0.037 −0.038 −0.038 −0.038
6 −0.053 −0.056 −0.057 −0.058 −0.058 −0.059 −0.059 −0.059 −0.06 −0.06 −0.06
8 −0.084 −0.088 −0.09 −0.091 −0.092 −0.093 −0.093 −0.094 −0.094 −0.095 −0.095
10 −0.133 −0.14 −0.143 −0.144 −0.146 −0.147 −0.148 −0.148 −0.149 −0.15 −0.15
12 −0.21 −0.221 −0.225 −0.228 −0.23 −0.232 −0.234 −0.235 −0.236 −0.238 −0.238
14 −0.331 −0.349 −0.356 −0.361 −0.364 −0.367 −0.37 −0.372 −0.374 −0.376 −0.376
16 −0.521 −0.55 −0.563 −0.57 −0.576 −0.58 −0.584 −0.588 −0.592 −0.595 −0.595
18 −0.819 −0.867 −0.888 −0.9 −0.909 −0.917 −0.924 −0.93 −0.936 −0.941 −0.941
20 −1.285 −1.365 −1.4 −1.42 −1.435 −1.448 −1.459 −1.469 −1.478 −1.487 −1.487

n = 8
Teh/ρeh 0.01 0.016 0.025 0.04 0.063 0.1 0.158 0.251 0.398 0.631 1.000

1 −0.046 −0.048 −0.049 −0.049 −0.05 −0.05 −0.051 −0.051 −0.051 −0.052 −0.052
2 −0.072 −0.075 −0.077 −0.078 −0.079 −0.08 −0.08 −0.081 −0.081 −0.082 −0.082
4 −0.114 −0.119 −0.122 −0.124 −0.125 −0.126 −0.127 −0.128 −0.129 −0.129 −0.13
6 −0.179 −0.188 −0.193 −0.196 −0.198 −0.2 −0.201 −0.203 −0.204 −0.205 −0.206
8 −0.283 −0.296 −0.306 −0.31 −0.313 −0.316 −0.319 −0.321 −0.323 −0.324 −0.326
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TABLE II. (Continued.)

10 −0.444 −0.467 −0.482 −0.49 −0.495 −0.5 −0.504 −0.507 −0.511 −0.513 −0.516
12 −0.698 −0.735 −0.761 −0.773 −0.782 −0.79 −0.797 −0.802 −0.808 −0.812 −0.816
14 −1.093 −1.156 −1.2 −1.22 −1.235 −1.248 −1.258 −1.268 −1.276 −1.284 −1.29
16 −1.706 −1.814 −1.888 −1.923 −1.948 −1.969 −1.987 −2.002 −2.016 −2.029 −2.039
18 −2.654 −2.838 −2.966 −3.026 −3.068 −3.103 −3.133 −3.159 −3.182 −3.202 −3.219
20 −4.111 −4.427 −4.648 −4.753 −4.826 −4.885 −4.935 −4.978 −5.016 −5.049 −5.078

n = 10
Teh/ρeh 0.01 0.016 0.025 0.04 0.063 0.1 0.158 0.251 0.398 0.631 1.000

1 −0.123 −0.125 −0.127 −0.128 −0.129 −0.13 −0.131 −0.131 −0.132 −0.132 −0.123
2 −0.194 −0.198 −0.201 −0.203 −0.205 −0.206 −0.207 −0.208 −0.209 −0.21 −0.194
4 −0.306 −0.313 −0.318 −0.321 −0.324 −0.326 −0.328 −0.329 −0.331 −0.332 −0.306
6 −0.483 −0.495 −0.502 −0.508 −0.512 −0.516 −0.519 −0.521 −0.523 −0.525 −0.483
8 −0.761 −0.78 −0.793 −0.802 −0.809 −0.816 −0.821 −0.825 −0.828 −0.831 −0.761
10 −1.196 −1.231 −1.251 −1.266 −1.279 −1.289 −1.297 −1.304 −1.309 −1.314 −1.196
12 −1.878 −1.938 −1.972 −1.998 −2.018 −2.035 −2.048 −2.059 −2.068 −2.076 −1.878
14 −2.94 −3.046 −3.104 −3.148 −3.182 −3.21 −3.232 −3.25 −3.265 −3.279 −2.94
16 −4.59 −4.776 −4.878 −4.952 −5.01 −5.057 −5.094 −5.125 −5.15 −5.172 −4.59
18 −7.138 −7.47 −7.648 −7.776 −7.876 −7.955 −8.019 −8.072 −8.114 −8.151 −7.138
20 −11.05 −11.65 −11.96 −12.18 −12.36 −12.49 −12.6 −12.69 −12.77 −12.83 −11.05

n = 12
Teh/ρeh 0.01 0.016 0.025 0.04 0.063 0.1 0.158 0.251 0.398 0.631 1.000

1 −0.257 −0.263 −0.268 −0.272 −0.274 −0.276 −0.278 −0.279 −0.28 −0.281 −0.281
2 −0.404 −0.415 −0.424 −0.43 −0.434 −0.437 −0.44 −0.442 −0.443 −0.444 −0.445
4 −0.635 −0.654 −0.669 −0.679 −0.686 −0.691 −0.696 −0.699 −0.701 −0.703 −0.704
6 −0.997 −1.029 −1.055 −1.072 −1.084 −1.093 −1.099 −1.105 −1.108 −1.112 −1.114
8 −1.561 −1.617 −1.663 −1.691 −1.711 −1.725 −1.737 −1.745 −1.752 −1.757 −1.761
10 −2.437 −2.535 −2.615 −2.663 −2.697 −2.722 −2.741 −2.755 −2.766 −2.775 −2.783
12 −3.79 −3.964 −4.106 −4.189 −4.246 −4.289 −4.321 −4.345 −4.364 −4.379 −4.392
14 −5.865 −6.178 −6.431 −6.576 −6.675 −6.747 −6.802 −6.844 −6.877 −6.903 −6.924
16 −9.025 −9.588 −10.04 −10.30 −10.47 −10.60 −10.69 −10.76 −10.82 −10.87 −10.90
18 −13.79 −14.81 −15.63 −16.08 −16.38 −16.60 −16.77 −16.90 −17.00 −17.08 −17.14
20 −20.89 −22.72 −24.21 −25.01 −25.55 −25.94 −26.23 −26.46 −26.63 −26.78 −26.90
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