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Spin and valley ordering of fractional quantum Hall states in monolayer graphene
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We study spin and valley ordering in the quantum Hall fractions in monolayer graphene at Landau level filling
factors νG = −2 + n/3 (n = 2, 4, 5). We use exact diagonalizations on the spherical as well as toroidal geometry
by taking into account the effect of realistic anisotropies that break the spin/valley symmetry of the pure
Coulomb interaction. We also use a variational method based on eigenstates of the fully SU(4) symmetric limit.
For all the fractions we study, there are two-component states for which the competing phases are generalizations
of those occurring at neutrality νG = 0. They are ferromagnetic, antiferromagnetic, charge-density wave, and
Kékulé phases, depending on the values of Ising or XY anisotropies in valley space. The varying spin-valley
content of the states leads to ground-state quantum numbers that are different from the νG = 0 case. For filling
factor νG = −2 + 5/3, there is a parent state in the SU(4) limit that has a flavor content (1, 1/3, 1/3, 0) where
the two components that are one-third filled form a two-component singlet. The addition of anisotropies leads
to the formation of new states that have no counterpart at νG = 0. While some of them are predicted by the
variational approach, we find notably that negative Ising-like valley anisotropy leads to the formation of a state
that is a singlet in both spin and valley space and lies beyond the reach of the variational method. Also fully spin
polarized two-component states at ν = −2 + 4/3 and −2 + 5/3 display an emergent SU(2) valley symmetry
because they do not feel point-contact anisotropies. We discuss implications for current experiments concerning
possible spin transitions.
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I. INTRODUCTION

The fractional quantum Hall effect [1] (FQHE) occurs in
two-dimensional electron systems in a strong perpendicular
field, and it is characterized notably by a gap for all charged
excitations at some fractional filling ν of the Landau levels.
Such gaps are due to electron-electron Coulomb interactions.
In this regime, there are excitations with fractional charges
and also statistics, Abelian or even non-Abelian in some cases.
There are possible opportunities for fabrication of new elec-
tronic devices using the non-Abelian statistics for quantum
computation [2] or the interlayer phase coherence that occurs
in bilayer systems for dissipationless devices [3].

For many years after its discovery, the FQHE was studied
almost only in the special two-dimensional electron gases
formed in GaAs/GaAlAs heterojunctions. In this setup, the
electron Landé g-factor and the dielectric constant of the host
material conspire to reduce the Zeeman energy with respect to
the Coulomb energy scale. As a consequence, the spin degree
of freedom in the lowest Landau level cannot be considered
as frozen by the external magnetic field, and FQHE ground
states as well as their excited states are not always fully
spin-polarized. This leads notably to quasiparticles that have
nontrivial spin textures called skyrmions [4,5]. The study of
electron gases in materials such as AlAs [6] added an extra
degeneracy due to the relevance of several valleys for the
electronic states.

The discovery of monolayer graphene has opened an even
richer arena [7–23] for the FQHE since there is also an
additional twofold valley degeneracy that comes into play.

The central N = 0 Landau level of monolayer graphene
is approximately fourfold-degenerate because of spin and
valley degrees of freedom, and it is partially filled for a
range of filling factor −2 � νG � +2. Integer quantum Hall
states [24] also appear at fillings νG = 0,±1, and this is
an instance of quantum Hall ferromagnetism: Coulomb in-
teractions lead to gap opening also at these integer filling
factors.

At neutrality νG = 0 theory predicts [25,26] competing
phases with various patterns of spin and valley ordering.
One can have ferromagnetic, antiferromagnetic, Kékulé, or
charge-density-wave states. While these states are degenerate
if one makes the approximation of full SU(4) symmetry in
spin/valley space, anisotropies will select one of these states
in real samples. Changing parameters like the ratio of Zeeman
energy to Coulomb energy can induce transitions between
such ground states. An appealing scenario has been presented
to explain a transition from an insulator to a quantum spin Hall
state as the transition between the canted antiferromagnetic
state and the ferromagnetic state. When the central Landau
level is partially filled, we expect the formation of FQHE
states, and they will also have some pattern of spin and
valley ordering. The fully SU(4) symmetric case has been
explored in many works [27–36]. Inclusion of anisotropies
has been studied by Abanin et al. [37] at the level of wave
functions, and an extension of Hartree-Fock theory has also
been proposed by Sodemann and MacDonald [38]. While the
results of mean-field theory have been confirmed by exact
diagonalizations [39] for νG = 0, this has not been checked
for the fractional quantum Hall states.
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In this paper, we introduce a set of variational wave
functions constructed out of exact eigenstates of the SU(4)
symmetric limit. The wave functions are dressed by a spin
and flavor configuration that is determined by minimizing
the energy. The anisotropy energy can be expressed solely in
terms of the pair correlation function of the parent symmetric
state. This approach generalizes the mean-field treatment of
quantum Hall ferromagnetism. Within this framework, we
obtain the phase diagrams for the fractions νG = −2 + n/3
(n = 2, 4, 5). We also perform extensive exact diagonaliza-
tions in the spherical [40,41] and torus geometry to check
the validity of the variational approach. For fractions νG =
−2 + n/3 (n = 2, 4, 5) there are two competing ground states
in the SU(4) limit. At νG = −2 + 2/3, we have the fully
polarized particle-hole partner of the νG = −2 + 1/3 as well
as a singlet state with two-component structure, well known
from previous studies [42]. At νG = −2 + 4/3, the competing
states are the two-component particle-hole partner of the sin-
glet with spin-valley content (2/3, 2/3, 0, 0) and a state with
a filled shell by addition to the ν = 1/3 Coulomb ground state
with spin-valley content (1, 1/3, 0, 0). At νG = −2 + 5/3, we
have a two-component state (1, 2/3, 0, 0) where the 2/3 state
is the fully polarized state and there is also a three-component
state (1, 1/3, 1/3) that is built from a filled Landau level
plus a spin-singlet 2/3 state as pointed out by Sodemann and
MacDonald [38]. The phase diagrams from the variational
method are in agreement with the diagonalization results ex-
cept for the fraction νG = −2 + 5/3, where a large portion
of the phase space is occupied by a correlated singlet state
that cannot be reproduced by our set of wave functions. To
clarify its structure, we compute the pair correlation function
for all combinations of spin/valley indices, and we find that
there is an enhanced probability for pair formation of opposite
spin. We discuss possible ways of favoring this new phase
in real samples of graphene. While the regions of stability
of the different patterns in spin and valley configurations are
correctly predicted variationally, the quantum numbers are
different in several important cases involving antiferromag-
netism. Also we observe that fully polarized phases for the
states (1, 1/3, 0, 0) and (1, 2/3, 0, 0) still form SU(2) valley
multiplets even though the Hamiltonian does not have such
a symmetry. This is due to the special point-contact form of
the anisotropies. For all the fractions we have studied there
are in general spin transitions when one varies the magnetic
field. Multicomponent states are preferred at small Zeeman
energies.

In Sec. II we introduce the Coulomb interactions and
anisotropies that govern the spin/valley ordering of quantum
Hall states. Section III give results for fractions νG < −1. In
Sec. IV we give evidence for similar physics at νG = −2 +
4/3 and νG = 0. The phases for the three-component state at
νG = −2 + 5/3 are discussed in Sec. V. We give a simplified
treatment of spin transitions in Sec. VI and Sec. VII contains
our conclusions.

II. INTERACTIONS AND ANISOTROPIES
IN MONOLAYER GRAPHENE

We now discuss the effective electron-electron interactions
within the N = 0 Landau level of monolayer graphene. The

Coulomb interaction is SU(4) symmetric to an excellent ap-
proximation. It leads to an energy scale that is constructed out
of the magnetic length EC = e2/(ε�), where � = √

h̄/(eB),
and ε is the dielectric permittivity of the system. The unitary
SU(4) symmetry mixing spin and valley degrees of free-
dom is, however, reduced by several phenomena. It has been
proposed to encapsulate these splittings into the following
Hamiltonian [26,43] acting only on the valley degrees of
freedom:

Haniso =
∑

i< j

[
g⊥

(
τ x

i τ x
j + τ

y
i τ

y
j

) + gzτ
z
i τ

z
j

]
δ(2)(ri − r j ), (1)

where the τα
i Pauli matrices operate only in valley space. It

is convenient to parametrize the two coefficients g⊥,z with an
angular variable θ :

g⊥ = gcos θ, gz = g sin θ, (2)

in addition to an overall strength g, which we take as posi-
tive. It is convenient to convert the parameters g⊥,z into two
separate energy scales:

u⊥ = g⊥
2π�2

B

, uz = gz

2π�2
B

. (3)

One can define dimensionless strengths of anisotropies by
factoring out the Coulomb energy scale:

g̃ = (
g
/
�2

B

)
/[e2/(ε�B)]. (4)

One-body energy level splitting occurs through the Zeeman
effect that acts on the spins and sublattice splitting onto the
valley indices:

H1body = −εZ

∑

i

Sz
i + 
AB

∑

i

T z
i . (5)

The Zeeman energy εZ is gμBBT , where BT is the total field,
and the Landé factor g = 2 since spin-orbit coupling is negli-
gible in graphene. The spin Sz is σ z/2 and the valley isospin
T z is τ z/2. We note that the direction of the field is arbitrary
due to spin rotation invariance. On the contrary, the sublattice
symmetry breaking takes place between the two valleys. In the
case of the commonly used hBN substrate, typical values of
the splitting 
AB are of the order of 10 meV and are magnetic-
field-independent. The special Hamiltonian Eq. (1) has
some symmetry properties that are independent of the filling
factor [44].

We note that the magnitude of the couplings gz, g⊥ is still
uncertain. Constraints on their values come from the metal-
insulator transition in a tilted field observed at neutrality [11].

If we consider the integer quantum Hall state at ν = 1, then
there is a set of exact eigenstates of the Coulomb problem with
a closed form given by a single Slater determinant |�ν=1〉 =∏

m c†
mα|0〉, where |α〉 is an arbitrary four-component vector

in spin-valley space [45,46]. The integer m is the index of the
orbital Landau level, and the product runs over all values of m,
corresponding to complete filling of the level. This state is an
exact eigenstate provided one neglects Landau level mixing.
This fact is aptly called quantum Hall ferromagnetism [24].
The arbitrariness in the direction of |α〉 is fixed presumably
by lattice effects beyond the simple continuum models we
consider [43]. Notably, such a wave function vanishes when
electrons coincide in real space, and so it is insensitive to
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perturbations like the anisotropies of Eq. (1). We now discuss
the special case of graphene neutrality ν = 2. At this filling
factor, there are exactly two filled Landau levels. In the fully
symmetric SU(4) limit, one notes that a Slater determinant is
an exact eigenstate:

|�ν=0〉 =
∏

m

c†
mαc†

mβ |0〉, (6)

where the orbital index m (whose precise definition is
geometry-dependent) takes all allowed values correspond-
ing to complete integer filling, and α, β are two orthogonal
vectors. Due to the SU(4) symmetry, these two vectors are
arbitrary. The anisotropies will induce energy differences
among all possibilities and determine the ground-state spin-
valley ordering. The mean-field treatment is performed by
taking the expectation value of the anisotropy Hamiltonian
Eq. (1) in the Slater determinant of Eq. (6). The result is given
by a functional of the two vectors α and β:

εa = 1

Nφ

〈�ν=0|Haniso|�ν=0〉

=
∑

i=x,y,z

ui[tr(Pατi )tr(Pβτi ) − tr(PατiPβτi )], (7)

where we have defined the anisotropy energy per flux quantum
εa, the projectors onto the trial vectors:

Pα = |α〉〈α|, Pβ = |β〉〈β|, (8)

and the couplings are ux = uy = u⊥, uz. By minimization of
this functional, one finds four phases in the absence of Zeeman
energy: ferromagnetic (F), antiferromagnetic (AF), charge
density wave (CDW), and Kékulé (KD).

All transitions between these various states are first-order
within mean-field theory, and this is confirmed by exact di-
agonalizations [39]. With nonzero Zeeman energy, the most
notable change is that the AF phase becomes canted (CAF).
The tilted-field experiments of Ref. [11] enable the varia-
tion of the ratio of Zeeman versus Coulomb energy scales.
Since there is a metal-insulator transition in this setup, a
natural explanation is that they observe the CAF-F transition.
To be consistent with this scenario, one deduces bounds on
anisotropies u⊥ � −10εZ , uz + u⊥ > 0.

We now discuss trial wave functions that can be used to de-
scribe the fractional quantum Hall states with spin and valley
degrees of freedom. We first make several remarks that apply
to the SU(4) symmetric limit. Note that any SU(2) Coulomb
eigenstate is also an SU(4) eigenstate. Only the degeneracy
will change. If we have some SU(2) Coulomb eigenstate con-
structed with two spin-valley vectors α and β and filling factor
ναβ , then we can glue a filled ν = 1 complete Landau level
for any vector γ , and obtain another exact eigenstate of the
Coulomb interaction with now filling factor ν = 1 + ναβ . The
energy of this new state is now given by E1+ναβ

= E1 + Eναβ
,

where E1 = −√
π/8EC is the energy of the completely filled

level. In first-quantized language, this gluing operation is the
multiplication by the Vandermonde determinant of the ν = 1
state. Note that this gluing operation also works if we use a
single-component state �̂α instead of �̂αβ .

In addition to the full particle-hole symmetry mapping ν

to 4 − ν, one can also perform a particle-hole symmetry on

only two flavors mapping (ν1, ν2) to (1 − ν1, 1 − ν2), and
the total filling is then transformed from ν to 2 − ν. Under
this operation, the energy becomes E2−ν = Eν + 2(1 − ν)E1.

These mappings allow us to identify at least some of the
eigenstates found by exact diagonalization. Of course there
are also multicomponent states that cannot be generated from
the two-component case. Some of them have been found at
filling factor ν = 2/3 in a previous study [44]. It is possible
also to use these mappings to construct trial wave functions
once we have a one- or two-component state as obtained, for
example, by the composite fermion construction [47,48]. For
the fractions we study, which are most prominent in experi-
ments, we cannot use known multicomponent generalizations
[49,50] of the Laughlin wave function because they lead to
more complicated fractional fillings.

We adhere to the view that anisotropies are not strong
enough to destroy the Coulomb correlations in a given trial
state. This means that the small symmetry-breaking perturba-
tions Eq. (1) will choose the orientation of the free vectors
α, β, γ in a trial state � = {∏m c†

mγ }�̂†
αβ |0〉, where the oper-

ator �̂
†
αβ creates a state with two components α, β. Sodemann

and MacDonald [38] have proposed an approximate scheme
based on an extension of Hartree-Fock theory to estimate the
anisotropy energy as a function of the arbitrary trial vectors.
We note that it is in fact feasible to compute directly the
expectation value of the Hamiltonian for anisotropies in the
trial states, bypassing any Hartree-Fock-like approximation.
Since the anisotropic interactions are purely pointlike, the
expectation value of the Hamiltonian Eq. (1) can be expressed
in terms of the pair correlation function at the origin gαβ (0)
generalizing the formula for ν = 2:

εa =
∑

i=x,y,z

ui

∑

αβ

gαβ (0) [tr(Pατi )tr(Pβτi ) − tr(PατiPβτi )],

(9)
where the pair correlation function is that of the trial wave
function. We define a more compact notation:

εa =
∑

αβ

gαβ (0)Fαβ, (10)

where now the sum over α, β runs over all values involved
in the trial wave function. The sum runs only over distinct
values due to the Pauli principle [gαα (0) = 0]. If we consider
trial states obtained by gluing a filled shell, then there are
no nontrivial correlations between the completely filled shell
and the other electrons: g1α (0) = να . The case with two filled
Landau levels να = νβ = 1 gives the previous formula for the
anisotropy energy Eq. (7). If we take a single-component state
with filling ν2 and glue a ν = 1 shell, then we obtain an energy
that is simply the ν = 2 formula multiplied by a ν2 factor.
Hence without any further calculation, we can be sure that the
phase diagram is identical to that of the ν = 2 case with the
same set of spin-valley vectors. However, since the number
of electrons is different in the two components, the quantum
numbers of the ground state are different from those of the
ν = 2 case.

We now discuss the case with three occupied flavors with
content (1, ν, ν). The trial state is now a two-component state
with flavor content (ν, ν) with a filled shell ν = 1 glued onto
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it. The anisotropy energy is now given by

ε (1,ν,ν )
a = ν[Fαβ + Fαγ ] + gβγ (0)Fβγ . (11)

For the trial states we consider, the partially filled states
will involve the two-component ν = 2/3 and 2/5 spin-singlet
states that have a very small pair correlation between dif-
ferent spin values gαβ (0) ≈ 10−3. This very small number
only slightly changes the phase boundaries and can be safely
discarded.

When discussing trial states, we omit the unoccupied spin-
valley states when displaying the component structure of the
wave function, i.e., (1, 1/3, 0, 0) is written simply (1, 1/3).
However, when describing an irrep we use all four compo-
nents, i.e., (7,4,0,0) stands for an SU(4) irrep defined by its
highest weight.

III. FRACTIONS FOR ν < 1

A. The ν = 1/3 state

At filling factor ν = 1/3 the one-component Coulomb
ground state is an exact (in the limit of no Landau level
mixing) eigenstate of the SU(4) symmetric case, and it is a
member of the irrep with highest weight (Ne, 0, 0, 0). This
means that the spatial part of the wave function is multiplied
by a fully symmetrized wave function with all electrons in the
same spin/valley state. The Zeeman field will orient the spin
component, and there will be a residual SU(2) valley symme-
try. Introduction of anisotropies Eq. (1) will have no effect on
this eigenstate since the wave function exactly vanishes when
two electrons coincide because of the Pauli principle, and the
model anisotropies involve only contact interactions. In the
real world, there will also be further anisotropies involving
relative angular momentum 1 and more that will act upon the
eigenstate. However, it is worth mentioning that theoretical
estimates of anisotropies are much smaller than the values
required to explain the tilted-field transition between the F
and CAF states at νG = 0. So this means that presumably
also the anisotropies involving relative angular momentum 1
and higher are not well known and may be larger that naive
estimates, so they could possibly be relevant even in the range
of filling factor ν < 1.

B. The ν = 2/3 state

The situation is richer for ν = 2/3. Several competing
states are known to be present at this filling factor. First of
all, there is the one-component particle-hole symmetric of the
ν = 1/3 state, which is again a one-component state. In the
composite fermion description, this fully polarized state has
negative effective flux, and composite fermions occupy two
effective � levels [48]. With two components, one can also
construct a singlet state where now only one CF � level is
occupied by singlet pairs. For pure Coulomb interactions, the
singlet state has lower energy than the polarized state by ap-
proximately 0.009EC in the thermodynamic limit. These two
states compete directly on the torus geometry, while on the
spherical geometry they have a different shift: the polarized
state is realized for Nφ = (3/2)Ne and the singlet state for
Nφ = (3/2)Ne − 1.

While these two states are well-established in two-
component FQHE systems, we note that there is evidence [44]
for the formation of three-component and four-component
states that are slightly lower in energy by ≈0.002EC . These
enigmatic states are not easily explained by composite-
fermion theory, and finite-size limitations lead to a large
uncertainly in energy difference estimation. Such states are
formed for Nφ = (3/2)Ne − 2 on the sphere, and they also
appear on the torus geometry.

All these pure Coulomb eigenstates can be embedded in the
four-component case giving rise to degenerate SU(4) multi-
plets. Of course the SU(4) singlet [44] observed for Ne = 8 is
unaffected by anisotropies apart from a change in energy. The
polarized 2/3 state does not feel the δ-function interactions of
Eq. (1), but the singlet state has a nonvanishing probability of
having two electrons at the same location provided they have
different flavors: gα �=β (0) �= 0. This probability is small and is
known to be of the order of 10−3 from exact diagonalization or
CF wave functions. As a consequence, the splitting induced by
anisotropies is of order g × gα �=β (0). If we use the variational
approach, we obtain an energy functional that has exactly the
same expression as in the ν = 2 case apart from the overall
scale. This means that the phase diagram is that of ν = 2. We
have checked by exact diagonalization that this phase diagram
is correct beyond perturbation theory. Notably all characteris-
tics of the phase transitions are unchanged between ν = 0 and
2/3. The ground-state quantum numbers of the finite system
with N = 6 and Nφ = 8 are consistent with the pattern of spin
and valley ordering for ν = 2.

IV. THE FRACTION ν = 4/3

We now turn to the richer situation with fractions appearing
for filling factors greater than 1 (and also less than 2 because
of particle-hole symmetry). At the fraction 4/3, we know
that there are exact eigenstates in the SU(4) symmetric limit
obtained by adding a ν = 1 shell to the ν = 1/3 polarized
eigenstate of the Coulomb problem. The flavor content of such
a state is thus (1, 1/3). There is also an eigenstate obtained
by taking a ν = 2/3 singlet involving only two flavors and
making a particle-hole transformation on both flavors so that
its final flavor content is (2/3, 2/3). With the known prop-
erties of the particle-hole transformation in fact we already
know that the (2/3, 2/3) state has lower Coulomb energy
than (1, 1/3) from the energies of the parent states in the
thermodynamic limit. This remark was made in Ref. [38].
Beyond these two exact eigenstates, it is not guaranteed that
there are not intruders implying more components.

A. The (1, 1/3) state

In the torus geometry, there is no shift so these two states
directly compete when we fix the flux and the number of
particles; they differ only by the flavor partitioning. In this
geometry, the state (1, 1/3) is an excited state and it is thus
computationally demanding to study it.

In the sphere geometry for the first candidate (1, 1/3) the
total number of electrons is partitioned into two flavors Ne =
N1 + N2, and N1 electrons fully fill a spherical shell with flux
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FIG. 1. Energy levels as a function of anisotropy for ν = 4/3 on the sphere geometry with Ne = 10 and Nφ = 6. The shift of the sphere
geometry selects the two occupied components (1, 1/3) of the highest-weight state. All these levels fan out from the parent unperturbed SU(4)
irrep, which is (7,3,0,0). In the SU(4) symmetric limit, this irrep is not the ground state but it is the fourth excited state (fifth-lowest-lying
eigenstate). However, it is the lowest-lying state with the expected quantum numbers for the (1, 1/3) state. The vertical lines mark the special
symmetry points of the anisotropic interaction model we use. We identify four different phases. They can be called F.AF.KD and CDW as in
the neutral case with the caveat that the quantum numbers do not match those predicted by simple trial wave functions. Notably, the AF phase is
valley-unpolarized and spin-singlet. Also, the ground state of the F phase is fully spin-polarized as expected but forms SU(2) valley multiplets
with S = 5 and T = 2. Unlike the ν = 2 case, phases AF and KD no longer have the same quantum numbers, and the phase transitions between
them now involve a true level crossings at the SO(5) point.

Nφ while N2 electrons form the usual ν = 1/3 state:

Nφ = N1 − 1, Nφ = 3(N2 − 1), (12)

so that the flux-number of particles relationship is given by

Ne = 4
3 Nφ + 2. (13)

Hence we can use the sphere geometry to study separately the
two states (1, 1/3) and (2/3, 2/3). We have performed exact
diagonalizations of the system with Ne = 10 and Nφ = 6.
While there is definitely a low-lying state with zero angular
momentum L = 0 and irrep (7,3,0,0) as expected, it is not
the ground state. Indeed, the true ground state spans the irrep
(4,4,1,1) with L = 0, and the irrep (7,3,0,0) is only the fourth
excited state at this system size. At these rather small system
sizes, we consider that these states that lie below (7,3,0,0)
are likely quasiparticle states with flavor changing excitations.
The irrep (7,3,0,0) is split by the anisotropies as shown in
Fig. 1. We have used a small value g̃ = 10−4 so that the
states are not mixed with the nearby irreps. The low-lying
states centered onto the parent symmetric state (7,3,0,0) are
displayed in Fig. 1. There are four distinct phases separated
by first-order transitions. The range of existence of these four
phases is similar to the case for ν = 2. However, the quantum

numbers we find are not always those predicted by the varia-
tional approach:

(i) For −π/4 < θ < +π/2, there is a phase with S = 5
and T z = 2 as expected for a ferromagnetic state. Since the
two valleys should be populated by, respectively, seven and
three electrons, one can have indeed the maximum possible
spin S = 5 while T z is given by the difference in valley
occupation. However, this is not the whole story since we
observe that states with T z = 0, 1, 2 are exactly degenerate
while the full Hamiltonian does not have SU(2) symmetry in
the whole phase but only at the special point θ = π/4. This is
not predicted by the wave function in Eq. (6).

(ii) For +π/2 < θ < +3π/4, we find a phase with S = 0
and T z = 0, which is natural to call antiferromagnetic. How-
ever, it is definitely not in agreement with the variational
quantum numbers (S = 2 and T z = 2).

(iii) For +3π/4 < θ < +5π/4, the ground state has S = 2
and T z = 0. The value of T z points to XY valley order, and
these values are those predicted variationally. So we call this
phase a Kékulé phase.

(iv) Finally, for +5π/4 < θ < +7π/4, we find S = 2 and
T z = 5. The maximal value of T z means that all electrons
reside in a single valley, i.e., a given sublattice as in a
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FIG. 2. Energy levels as a function of anisotropy for ν = 4/3 on the sphere geometry with Ne = 8 and Nφ = 5. The shift of the sphere
geometry selects the SU(2) two-component singlet (2/3, 2/3) of the two occupied components of the highest-weight state. The parent
unperturbed SU(4) irrep is (4,4,0,0), which is the ground state in the symmetric limit. The vertical lines mark the special symmetry points of
the anisotropic interaction model we use. We identify four different phases. The quantum numbers are exactly the same as in the neutrality case
ν = 2. We thus observe that the transition between AF and KD phases does not involve a ground-state level crossing but presumably happens
through the collapse of a tower of states.

charge-density-wave state, and the total spin is correctly pre-
dicted by the variational wave function.

The most intriguing result is the appearance of exact valley
multiplets when the state is completely polarized. This can be
explained by the following line of reasoning: when we have
full spin polarization, the electrons occupy the two valleys,
and in the case of the (1, 1/3) state one of these valleys is
completely filled. If we perform a two-component particle-
hole transformation on the populated valleys, we obtain a
state (0, 2/3) that is fully polarized since only one valley
is occupied by holes. As a consequence, there is no effect
of anisotropies since they involve only a contact interaction,
requiring space coincidence of electrons (as is the case of the
ν = 1/3 state discussed in Sec. III A). This does not imply that
such states have energies independent of gz, g⊥ parameters
because they appear in the one-body terms in the particle-hole
transformation. So there is a subset of states that do not feel
degeneracy-lifting anisotropies when they are simply given by
contact interactions. Note that this argument is also valid for
excited states as long as they are also fully spin-polarized.

The total spin and valley polarizations certainly led us
to name these phases F, AF, KD, and CDW as in the ν =
2 case. So the symmetry-breaking pattern is the same as
the neutrality case. However, one of these four phases (AF)
cannot be described by trial product wave functions if we
use for the spinors α and β the spinors that describe the
ν = 2 phase diagram. Another difference with respect to the

neutrality case is that AF and KD phases do not have the
same quantum numbers, so the first-order transition between
them involves a ground-state level crossing unlike the ν = 2
case [39].

B. The (2/3, 2/3) state

The well-known SU(2) singlet state for ν = 2/3 is ob-
tained with a unit shift on the sphere geometry Nφ =
(3/2)Ne − 1 with Ne = N↑ + N↓. If we make the particle-
hole transformation N↑,↓ → Nφ + 1 − N↑,↓, we obtain the
relation Nφ = (3/4)Ne − 1. When embedded in the four-
component space, we expect to find an irrep with highest
weight (Ne/2, Ne/2, 0, 0) as the ground state. The degeneracy
is then lifted by the anisotropy: in Fig. 2 we present results
of exact diagonalizations in the sphere geometry for Ne = 8
electrons and Nφ = 5. The important conclusion from this
calculation is that the ground-state quantum numbers are now
exactly the same as in the ν = 2 case. So the phase diagram
is the same as in the ν = 2 case with the same behavior at the
phase transition points. Notably, the AF/KD phase transition
has no ground-state level crossing.

This is exactly what we find with the variational approach.
Indeed with the particle-hole symmetry of the singlet state,
we have now gαβ (0) of order unity and an energy func-
tional Eq. (9) equal to that of ν = 2 except from an overall
factor.
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FIG. 3. Energy levels vs anisotropy angle θ for filling factor ν = 5/3 on the sphere geometry with Ne = 11 and Nφ = 6 selecting the
(1, 2/3) state. The parent SU(4) irrep is (7,4,0,0). This state is not the absolute ground state in the SU(4) limit: it is the sixth excited state. One
finds four phases consistent with the ν = 2 phase diagram but with distinct quantum numbers. There is a ferromagnetic phase for −π/4 < θ <

+π/2 with S = 11/2 and T z = 1/2, 3/2, so there is an emergent SU(2) valley symmetry, an antiferromagnetic phase for +π/2 < θ < +3π/4
with S = T z = 3/2, a Kékulé phase for +3π/4 < θ < +5π/4 with S = 3/2 and T z = 1/2, and a charge-density-wave phase for +5π/4 <

θ < +7π/4 with S = 3/2 and T z = 11/2. All transitions are first-order with level crossings.

While the (2/3, 2/3) state is below the (1, 1/3) state at zero
Zeeman energy, there may be a transition between these states
that will be sensitive to the precise phase that is realized. This
is discussed in Sec. VI.

V. THE FRACTION ν = 5/3

Two possible candidates at this fraction are now (1, 2/3),
which a two-component state, and (1, 1/3, 1/3), which is a
genuine three-component state.

A. The two-component state (1, 2/3)

The first state is obtained by adding the polarized, i.e., one-
flavor, ν = 2/3 state to a filled level. This polarized state with
ν = 2/3 is the one-component particle-hole transform of the
polarized Coulomb eigenstate at ν = 1/3. The flux-number of
particles is thus given by

Nφ = N1 − 1, Nφ = 3/2 × N2, Ne = N1 + N2,

Nφ = 3
5 (Ne − 1).

We have performed sphere exact diagonalizations for Ne = 11
and Nφ = 6. In the SU(4) limit there is a lowest-lying state
with (7,4,0,0) irrep and L = 0 as expected for the state ob-
tained from gluing a complete shell to the 2/3 state, but it
is not the ground state. This is the same phenomenon that
we observe at ν = 4/3. We posit that these extra states are

flavor-changing quasiparticle excitations, and we focus only
on the fate of the (7,4,0,0) multiplet. By using a small value
of the anisotropy g̃ = 10−4, the irrep is split in many levels,
but they do not mix with other multiplets. The result of this
calculation is displayed in Fig. 3.

As in the case of the (1, 1/3) state, the quantum numbers
are exactly those expected from using the spinors α and β

describing the various orderings of ν = 2 F, AF, KD, CDW.
Also since AF and KD do not have the same quantum num-
bers, there is a level-crossing phase transition at the SO(5)
point between the AF and KD phases.

In the fully polarized sector, we observe also the appear-
ance of degeneracies due to the SU(2) valley symmetry not
only at the special point θ = π/4 but in the whole F phase.
The manifold of S = 11/2 states involves indeed T z = 1/2
and 3/2, while the variational prediction is that we should ob-
serve only T z = 3/2. This is due to the same phenomenon we
found for the ferromagnetic phase in the case of the (1, 1/3)
state. The two-component particle-hole symmetric state of the
fully polarized states has valley content (0, 1/3), so the holes
being polarized do not feel the point-contact anisotropies.

B. The three-component state

For the three-component state, one now replaces the ν =
2/3 polarized state by the two-component singlet state at the
same filling factor leading to a flavor content (1, 1/3, 1/3).
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FIG. 4. Energy levels vs anisotropy angle θ for filling factor ν = 5/3 on the sphere geometry with Ne = 10 and Nφ = 5. This special shift
favors the singlet state for the two partially occupied Landau levels so that the flavor content is (1, 1/3, 1/3). The parent SU(4) irrep is (6,2,2,0)
and it is the ground state. The magnitude of the anisotropy is g̃ = 10−2. We observe five phases whose quantum numbers are displayed in Fig. 5.
The five quantum phase transitions are first-order with true level crossings.

We call N1 the number of electrons in the fully filled LL, and
N2, N3 are the electron numbers in the two flavors forming
the singlet state. We obtain thus a shift on the sphere that is
different from that of the previous state:

Nφ = N1 − 1, Nφ = 3/2 × (N2 + N3) − 1,

Ne = N1 + N2 + N3, Nφ = 3
5 Ne − 1.

We have studied in detail the case Ne = 10, Nφ = 5. In the
SU(4) limit we are already certain that this state is lower in
energy than (1, 2/3) since the ν = 2/3 singlet is lower in
energy than the polarized state at the same filling factor. We
are also certain that there is such an eigenstate of the SU(4)
symmetric Coulomb problem.

The only remaining question is if there are some states
that are lower in energy. Indeed, it may very well be that by
spreading the electrons into more flavors, one can reduce the
energy cost of Coulomb repulsion. If we consider the possible
existence of an SU(3) singlet state at filling 2/3 with shift
2 on the sphere [44], then it implies the existence of a state
with flavor content (1, 2/9, 2/9, 2/9) and a flux given by
Nφ = (3/5)Ne − (7/3). We observe on the sphere geometry
that the ground state for Ne = 14 and Nφ = 7 is spanned by
the irrep (8,2,2,2). Since we already know [44] that there is
a SU(3) singlet (2,2,2) for Ne = 6 and Nφ = 8, this is in fact
only a consistency check. Due to the severe size limitations
of exact diagonalizations, we cannot shed further light on
this issue, and we limit ourselves to the states (1, 2/3) and
(1, 1/3, 1/3). If there are states like (1, 2/9, 2/9, 2/9), they
are relevant only at small Zeeman energy.

Our exact diagonalization results on the sphere geometry
are presented in Fig. 4. We find now a phase diagram different
from the neutrality case. There are five phase transitions, and
all of them involve level crossings in the finite systems. The
five phases we observe have quantum numbers displayed in
Fig. 5. Some of them may be captured by the variational
approach, but not all.

FIG. 5. Phase diagram for the ν = 5/3 with Ne = 10 and Nφ =
5. The parent SU(4) irrep is (6,2,2,0). This is valid on the sphere
geometry. On the torus geometry, the quantum numbers are slightly
different since the number of states per Landau level differs by one
unit. While A, B can be captured plausibly by the variational method,
this is not the case of the singlet phase C. The E1,2 phases are found
to be degenerate variationally, while our results show that they differ
by the type of valley ordering. The Zeeman energy has been set to
zero.
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Since we are dealing with a three-component state, it is no
longer possible to have full spin or valley polarization. The
maximal value of the spin is observed in the range −π/4 <

θ < +3π/4. In this regime, we observe two phases A and B
that differ by the valley T z value.

(i) The A phase has no valley XY order, and it can be
described by {α, β, γ } = {|K ↑〉, |K ′ ↑〉, |K ′ ↓〉} with T z = 1
and S = 3.

(ii) The B phase or −π/4 < θ < +π/4 has T z = 0, and
it is plausibly described by a state with {α, β, γ } = {|t⊥ ↑〉,
| − t⊥ ↑〉, | − t⊥ ↓〉}. Due to the three-component nature of
the state, it is not possible to obtain T z = 0 by using states
with definite projections onto |K〉, |K ′〉, but one has to use XY
valley ordered states.

The transition between A and B phases is thus associated
with the change of the valley order from Ising-type in A to
XY -type in B.

The region 3π/4 < θ < 3π/2 has now only partial spin
polarization and is divided into two phases that differ by a
change in the value of the valley polarization.

(i) We find a phase E1 for 3π/4 < θ < 5π/4 with the
maximal value of T z. {α, β, γ } = {|K ↑〉, |K ↓〉, |K ′ ↓〉}.

(ii) In the lower quadrant 5π/4 < θ < 3π/2, we have a
phase E2 with T z = 0 indicative of XY valley ordering whose
candidate ordering pattern is given by {α, β, γ } = {|t⊥ ↑〉,
| − t⊥ ↓〉, |t⊥ ↓〉}. The transition between E1 and E2 corre-
sponds to changing the valley order from the Ising-like z-axis
to the valley XY plane. A variational treatment does not
distinguish between Ising or XY character in this range of
anisotropies. Indeed, all states are degenerate with trial energy
in Eq. (9).

(iii) Finally there is a fifth phase that we call C for 3π/2 <

θ < 7π/4, which is a spin singlet S = 0 as well as valley
unpolarized T z = 0. It is not possible to capture such a phase
with the class of variational states discussed above. If we look
at the full set of degenerate states in the SU(4) limit, one
notes that the irrep (6,2,2,0) that we study contains notably
symmetric states like (3,2,2,3) from which one can construct
states with zero spin and zero isospin values. It is an open
question to obtain explicitly a wave function with the correct
quantum numbers for the C phase.

To shed some more light on the nature of the C phase,
we have computed the pair correlation function gαβ (r) of the
exact ground state in the sphere geometry. With a ground state
having zero spin and T z = 0, there are only four independent
combinations of spin-valley that are plotted in Fig. 6. At short
distance, the leading correlation is gK↑K↓(0) = gK ′↑K ′↓(0).
This function has a maximum at the origin while all other
cases have a deep minimum as expected from Coulomb re-
pulsion. This may point to the formation of spin S = 0 singlet
pairs in each valley. On the contrary, the antiferromagnetic-
like repulsion between K ↑ and K ′ ↓ is maximal at a finite
distance ≈2.5�.

VI. SPIN TRANSITIONS

In the case of filling factor ν = 2/3, it is well known
[42] that one can induce a spin transition between the singlet
state and the fully polarized state. Indeed, while the polarized

FIG. 6. The various pair correlation functions gαβ (r) calculated
in the middle of the singlet C phase for θ = 3π/2 + π/8. The sphere
geometry is used with Ne = 10, Nφ = 5. The chord distance r varies
from zero up to

√
10�. Since we have Sz = 0 and T z = 0 in this

phase, there are only four distinct correlations.

state has a higher Coulomb energy, increasing the Zeeman
energy will lower it eventually below the singlet state. The
crossing happens when the Zeeman energy equals the energy
difference between the two states:


E = εZBcrit. (14)

This prototypical transition is simple because of the well-
defined magnetization of the two competing states. Here in
monolayer graphene, the situation is richer since the com-
peting states that we have studied above can have various
magnetizations according to the value of the anisotropy
parameters. The Coulomb energy scales as ∝√

B, while
anisotropy energies and the Zeeman energy scale linearly
with B. The energy per particle of a state i has thus three
contributions:

εi = ECi + aiB + εZm, (15)

where we have defined the magnetization per particle m and
the Coulomb energy ECi. A spin transition between two states
0 and 1 arises when the Coulomb energy difference is equal
to the contribution from anisotropies and Zeeman energy:


ε01(Bcrit ) = (a0 − a1 + z)Bcrit. (16)

The Zeeman factor z depends upon the magnetization of the
two competing states, and in the case of monolayer graphene it
takes different values in different parts of the anisotropy phase
diagram.

We now give a simplified description of spin transitions
for the fractions we have studied. We limit ourselves to situ-
ations with only a perpendicular field, and also we ignore the
possibility of spin canting. Indeed, the effect of the canting
is restricted to low enough fields. At large enough values of
the field, one obtains a fully polarized state or a collinear
antiferromagnet depending on the filling fraction. Certainly
spin canting may drive interesting transitions, but detailed
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predictions are hampered by our lack of knowledge about the
values of anisotropies.

A. ν = 2/3

At filling factor 2/3, the polarized state is insensitive to
anisotropies while the singlet state can be in any of four phases
F, AF, CDW, and KD as shown in Sec. III B. In KD or CDW,
the state is a spin singlet so it is insensitive to the Zeeman
coupling. We thus expect a spin transition toward the fully
polarized state at some field value Eq. (16). The AF state
turns into a canted antiferromagnetic state that becomes fully
polarized beyond some field value. Once in this fully polarized
state, as is the case of the F phase, the state lowers its energy
at the same rate as the polarized ν = 2/3 state so that there
will be no crossing, hence there will be no spin transition in
the AF or F phases.

B. ν = 4/3

The phase diagrams for the states (1, 1/3) and (2/3, 2/3)
are similar: there is the same number of phases with their
domain of stability having the same range of anisotropy angle
θ . but the difference is now in their total magnetization. In
the F phase, the two states have the same total spin value,
so they never cross under Zeeman coupling. In the KD and
CDW phases, the situation is different. In the state (2/3, 2/3)
there is zero net magnetization in both cases KD and CDW,
while in the state (1, 1/3) the KD phase has now a net mag-
netization equal to 1/3 of the saturation value, and the CDW
phase has an even smaller magnetization (but nonzero). So we
deduce that there can be a spin transition in both phases KD
and CDW.

C. ν = 5/3

The situation is more complex since now the phase dia-
grams of the two competing states (1, 2/3) and (1, 1/3, 1/3)
do not overlap exactly as a function of anisotropy. We de-
scribe the situation by using as a reference the phases of the
(1, 2/3) state. In the F phase, the state (1, 2/3) is fully polar-
ized with magnetization M = Msat, while A and B phases of
(1, 1/3, 1/3) have only M = Msat/ν so we expect a spin tran-
sition. In KD and CDW phases, the higher-lying state (1, 2/3)
has M = Msat/3 while the competing phases in (1, 1/3, 1/3)
are the C and E2 phases (see Fig. 5). In the singlet C phase
we have M = 0, and in the E1 and E2 phases M = Msat/5,
so there will be a spin transition. Its location Bcrit will be
phase-dependent because there are (still unknown) contribu-
tions from anisotropies in the value of the critical field in
Eq. (16).

The general picture is that states with maximal spread-
out of electrons in various spin-valley components will be
favored only at small Zeeman energies. Notably graphene
experiments with large Zeeman splittings and large sublattice
effects like measurements in Ref. [20] will involve only states
like (1, 1/3) and (1, 2/3) as well as their generalizations to
other fractions. Genuine multicomponent states will require a
minimal effect of the one-body fields.

VII. CONCLUSION

We have studied the impact of anisotropies relevant to the
description of monolayer graphene in the regime of the frac-
tional quantum Hall effect. At neutrality, the phase diagram
involves four phases F, AF, KD, and CDW. Simple general-
izations of this diagram apply for ν = (1/3, 1/3), (2/3, 2/3),
and (1, 2/3) states. This is found from exact diagonaliza-
tions on the sphere geometry, and it is also confirmed by a
variational approach involving parent Coulomb eigenstates.
The two spin-valley vectors α, β that characterize the spin-
valley order in the variational approach are identical to the
neutral case. Since the occupations of the two filled states
are in general not equal, it means that the quantum num-
bers of the ground state are now different from the neutral
case. As a consequence, all first-order transitions involve
level crossings. Indeed, there is no evidence for exotic phase
transitions [51].

In the case of ν = (1, 1/3), there are also four phases
whose range of stability is the same as the neutral case, but
the quantum numbers are not all predicted by the variational
method. While CDW and KD-like phases have spin and val-
ley quantum numbers correctly predicted, we find that the
antiferromagnetic phase is a spin singlet with no net valley
polarization. Interestingly, we find that the fully polarized
states partly escape effects of anisotropy and still form SU(2)
valley multiplets even though this is not a symmetry of the
Hamiltonian (their energies still depend upon gz and g⊥). This
emergent symmetry also appears in the polarized eigenstates
of the (1, 2/3) state.

The case ν = (1, 1/3, 1/3) is different. We observe five
phases. Two of them can be described variationally. There are
two distinct phases in our diagonalizations that differ by Ising
valley order versus XY valley order while they are degenerate
variationally. There is also a phase in which a spin singlet with
presumably XY valley order occurs for negative Ising-like
anisotropy. It is an open question how to write a wave function
to describe this phase. The pair correlation function gαβ (0)
shows an enhanced probability for electrons for opposite spins
but in the same valley to be at the same location. This inter-
esting situation requires, however, low Zeeman energy to be
realized experimentally.

In present experiments, it is likely that one observes the
two-component states (1, 1/3) and (1, 2/3). If they are fully
polarized (the F phase), then we predict that they should
escape degeneracy-lifting anisotropies of the form given in
Eq. (1) and thus feature an emergent valley SU(2) symmetry.
Invalidating this valley symmetry would invalidate the simpli-
fied model of Eq. (1), which is a crucial piece of our present
understanding of IQHE and FQHE in graphene systems.

Recent experiments using scanning tunneling microscopy
[52,53] have given evidence for a more complex picture
at neutrality ν = 0 than previously thought. Notably, there
is evidence for phases beyond the four states F, AF, KD,
and CDW.

There are at least two possible explanations. It may very
well be that the anisotropies are not small in comparison
to Coulomb and that the simple model Eq. (1) is not ad-
equate. It may also mean that the Landau level mixing is
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strong enough to change the phase structure. Such a pos-
sibility would invalidate standard theoretical treatments that
focus on a fixed Landau level from the start. Also some
of the experiments [52] favor a Kékulé state, which is
at odds with the explanation of the metal-insulator transi-
tion [11]. This may mean that the anisotropy parameters
are not in the range estimated in Ref. [11], in which case
the explanation for the tilted-field transition becomes more
elusive. It may be that the edge of the sample lies in a

different phase from the bulk, as observed in Hartree-Fock
studies [54].
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