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Tunneling spin current in systems with spin degeneracy
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We study theoretically spin current generation from band insulators with PT symmetry, which is associated
with Zener tunneling in strong dc electric fields. Each band in these systems is doubly degenerate with opposite
spins, but spin rotational symmetry is not preserved in general. We consider the condition for spin current
generation in connection with the nature of the wave function, which ultimately depends on a geometric quantity
known as the shift vector. From an analysis of a two-band model, we find that the shift vector is necessary for
spin current generation in PT-symmetric systems. We also present zigzag chain models that have shift vectors,
and confirm from numerical calculations that a nonzero tunneling spin current occurs in spin-degenerate systems.
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I. INTRODUCTION

Spin current generation by the application of an electric
field has been extensively studied for crystals with various
kinds of symmetries [1–3] and for the linear and nonlinear
[4,5] response regimes. Even in nonmagnetic centrosymmet-
ric crystals, it is possible to generate spin current provided
spin rotational symmetry is broken by spin–orbit coupling
(SOC). The intrinsic spin Hall effect [6] in metals and semi-
conductors is an example of this mechanism.

We can extend this idea to band insulators with both in-
version and time-reversal symmetries. Here, spin current is
associated with Zener tunneling [7] by a strong dc elec-
tric field. This tunneling is considered to be a nonadiabatic
process, and the Landau–Zener formula [8–10] is useful for
evaluating the tunneling probability of Bloch electrons across
a band gap. In this formula, the tunneling probability is given
by the electric field, band gap, and slope of the band disper-
sion. The tunneling spin current is then obtained from the
difference in tunneling probabilities between two electrons
with opposite spins [the definition is given in Eq. (10) below].
As mentioned above, spin current generation by an electric
field is also allowed in the presence of SOC.

However, it is not obvious how a tunneling spin current
arises in crystals with both inversion and time-reversal sym-
metries. This can be understood from the band dispersion:
the combination of the space inversion and the time reversal
operations, i.e., a PT operation, transforms the wave number
k and spin σ that characterize the energy eigenvalues, as
(k, σ ) → (k,−σ ), and each band is doubly degenerate with
opposite spins, as shown in Fig. 1. Thus, focusing on the
shape of the dispersions, it seems that the tunneling prob-
abilities of two electrons with opposite spins are the same,
and that no spin current is allowed in this system. The same
consideration holds for insulators with PT symmetry that is
invariant under the PT operation.
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This naive estimate based on the band structure is, on the
other hand, too restrictive for the spin current generation,
compared to the results from the symmetry analysis. For 32
PT-symmetric point groups in 122 magnetic point groups [11],
spin current can be associated with applied electric field in
most cases, even in linear response regime; the tensor forms
of spin Hall conductivity are listed in Ref. [[3], Table VII],
where more than one component can remain finite even for
PT-symmetric cases [12]. Thus, spin degeneracy in the band
structure does not prevent spin current as a response to electric
field, but its mechanism has not been identified for the Zener
tunneling cas

We need to determine the origin of the tunneling spin
current in a system with spin degeneracy. This is a challenge
to the conventional idea that spin currents hardly arise in
spin-degenerate crystals, and sheds light on the spin transport
in these crystals.

The key to solving the problem is the nature of the wave
function, rather than degenerate energy bands. Indeed, even
in crystals with both global inversion and time-reversal sym-
metries, wave functions with opposite spins can be spatially
shifted from each other [13,14]. In particular, it has recently
been revealed that the geometric nature of the wave function is
reflected in the tunneling process [5,15–17] and this effect can
be reduced to a quantity called the shift vector, which is seen
in the asymptotic formula of the tunneling probability [15,16].
The shift vector, known for the shift current in the photovoltaic
effect [18–20], is a gauge-invariant quantity constructed from
Berry connections of two bands. We expect that this quantity
plays an important role in the nature of the tunneling phe-
nomenon that cannot be explained from the band structure.
One example that validates this idea is nonreciprocal tunnel-
ing in time-reversal systems [5,16].

In this paper, we consider tunneling spin current generation
in PT-symmetric systems, in connection with the shift vector.
Our discussion also applies to crystals with inversion and
time-reversal symmetries.

This paper is organized as follows. In Sec. II, we show that
it requires a nonzero shift vector to generate tunneling spin
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FIG. 1. Schematic picture of the tunneling process in a system
with spin degeneracy. When an electric field is applied, a wave packet
characterized by wave number k0 and spin σ tunnels from the valence
band (ε−) to the conduction band (ε+) with probability Pσ

k0
.

current from the analysis of the time-dependent Schrödinger
equation. In Sec. III, we confirm the generation of a tunneling
spin current in a zigzag chain model with a finite shift vec-
tor, based on numerical calculations. The discussion in this
section is generalized to a PT-symmetric system in Sec. IV.
Finally, we provide a summary of our results and discuss how
they can be generalized in Sec. V.

II. FORMULATION

A. Tunneling probability and current

We consider a one-dimensional lattice system with PT
symmetry. First, we suppose that no external electric field is
applied. For simplicity, we assume that a certain spin com-
ponent σ̂ is an exceptionally good quantum number of the
system. Then, the Hamiltonian in crystal momentum space
Ĥ (k) is described as follows:

Ĥ (k) = Ĥ↑(k) ⊕ Ĥ↓(k), (1)

Ĥσ (k)
∣∣uσ

n (k)
〉 = εσ

n (k)
∣∣uσ

n (k)
〉

(2)

where the symbols ↑,↓ correspond, respectively, to the eigen-
values of the spin σ = +1,−1. As we have seen in Sec. I,
PT symmetry leads to ε↑

n (k) = ε↓
n (k) ≡ εn(k) for any k. From

now on, we focus on two gapped bands n = ± where ε+(k) >

ε−(k) holds.
We then consider a dc electric field E applied to this system

from time t = 0. The Hamiltonian for t > 0 is obtained as
Ĥσ (k − eEt/h̄) in accordance with the Peierls substitution.
(In this paper the charge of an electron is written as −e.)
Suppose that the valence band εσ

−(k) is occupied and the
conduction band εσ

+ is empty for all k, σ . We take a wave
number k0 from the Brillouin zone (BZ) and define |�σ

k0
(t )〉

as the time evolution of a Bloch state in the valence band
|uσ

−(k0)〉 from t = 0. This state satisfies the time-dependent
Schrödinger equation

ih̄∂t

∣∣�σ
k0

(t )
〉 = Ĥσ (k0(t ))

∣∣�σ
k0

(t )
〉

(3)

with k0(t ) = k0 − eEt/h̄, and the initial condition∣∣�σ
k0

(t = 0)
〉 = |uσ

−(k0)〉. (4)
Now, we expand the state with snapshot eigenstates of
Ĥσ (k0(t )) as∣∣�σ

k0
(t )

〉 =
∑
n=±

aσ
nk0

(t )eiγ σ
nk0

(t )∣∣uσ
n (k0(t ))

〉
. (5)

Here, we introduced the coefficients aσ
±k0

and the sum of the
dynamical phase and Berry phase

γ σ
nk0

(t ) =
∫ k0(t )

k0

dk

[
εn(k)

eE
+ Aσ

nn(k)

]
(6)

where the Berry connection Aσ
nm(k) = 〈uσ

n (k) | i∂k | uσ
m(k)〉 ap-

pears. Using these coefficients, the tunneling probability of
the Bloch electron is defined as

Pσ
k0

(E , t ) = ∣∣〈uσ
+(k0(t )) | �σ

k0
(t )

〉∣∣2 = ∣∣aσ
+k0

(t )
∣∣2

. (7)

We can also express the expectation value of the charge
current jc = j↑ + j↓ and that of the spin current js =

h̄
2(−e) ( j↑ − j↓) associated with the tunneling. As in the con-
ventional way, jσ is given as an expectation value of the
velocity operator for all electrons in BZ, and is expressed as

jσ (E , t ) = −e

L

∑
k0∈BZ

〈
�σ

k0
(t ) | v̂σ

k0
(t ) | �σ

k0
(t )

〉
. (8)

Here, L is the system size and v̂σ
k0

(t ) = ∂Ĥσ (k)
h̄∂k |k=k0(t ) is the

velocity operator. Note that this definition of the tunneling
current is given in [5], where the effect of the fermionic heat
bath is also considered in the expression.

If we take the limit L → ∞ with periodic boundary con-
ditions, we find the next expression (shown in Appendix A)

jσ = −e

h̄

∫
BZ

dk0

2π

∂

∂k

[
εgap(k)Pσ

k0
(k)

]∣∣∣∣
k=k0(t )

(9)

where we introduced εgap = ε+ − ε− and considered Pσ
k0

(t ) as
a function of k = k0(t ). In particular, the spin current is given
as

js =
∫

BZ

dk0

2π

∂

∂k

[
εgap(k)

P↑
k0

(k) − P↓
k0

(k)

2

]∣∣∣∣∣
k=k0(t )

(10)

as mentioned in Sec. I.

B. Explicit expression for the time evolution

Substituting Eq. (5) into Eq. (3) gives

i
∂

∂t
aσ

nk0
(t ) = eE

h̄

∑
m( �=n)

∣∣Aσ
nm(k0(t ))

∣∣
ei arg Aσ

nm (k0 )e−i�σ
nm (k0(t ),k0 )aσ

mk0
(t )

(11)

where we introduced

�σ
nm(k, k0) =

∫ k

k0

dk′ εn(k′) − εm(k′) + eERσ
nm(k′)

eE
. (12)

Here,

Rσ
nm(k) = Aσ

nn(k) − Aσ
mm(k) − ∂k arg Aσ

nm(k) (13)

is called the shift vector.
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As Eq. (4) gives (aσ
+k0

, aσ
−k0

)|t=0 = (0, 1), we get a solution of Eq. (11) formally expressed as(
aσ

+k0
(t )e−i arg Aσ

+−(k0 )

aσ
−k0

(t )

)
= T̂ exp

[
i
∫ t

0
|Aσ

+−(k)|
(

0 e−i�σ
+−(k,k0 )

e+i�σ
+−(k,k0 ) 0

)∣∣∣∣
k=k0(t ′ )

−eE

h̄
dt ′

](
0
1

)
. (14)

Here, T̂ is the time ordering operator. This formula shows that
the information contained in the Hamiltonian is based on three
quantities εgap(k), |Aσ

+−(k)| and Rσ
+−(k) that are all found to

be gauge-invariant. Note that Rσ
+−(k) is interpreted as being

the difference in the intracell coordinate of the Bloch elec-
tron between the valence and conduction bands [21]. From
this perspective, the spatial shift Rσ

+− yields the difference
of the electrostatic potential between the two bands eERσ

+−,
which changes the energy to cross the band gap from εgap to
εgap + eERσ

+−. We can find this term in Eq. (12). In real space,
this effect appears as a correction to the depth of the tunnel
barrier [16].

C. Origin of the spin dependence

The Berry connection and shift vector satisfy

|A↑
+−(k)| = |A↓

+−(k)|, R↑
+−(k) = −R↓

+−(k) (15)

in the PT-symmetric system. In a system with both inversion
and time-reversal symmetries, as a special case of PT symme-
try,

|Aσ
+−(−k)| = |Aσ

+−(+k)|, Rσ
+−(−k) = −Rσ

+−(+k) (16)

also holds for σ = ↑,↓ in addition to Eq. (15). These deriva-
tions are given in Appendix B. Note that the shift vector
remains finite in general even in such a highly symmetric
system, though it vanishes if the system has spin rotational
symmetry, in addition [16].

We now consider spin dependence of the tunneling proba-
bility in a PT-symmetric system. Equation (7) shows that the
spin dependence results from the difference between |a↑

+k0
|2

and |a↓
+k0

|2. Here, the formula for aσ
nk0

is given in Eq. (14) and
its spin dependence is reduced to that of |Aσ

+−(k)| and Rσ
+−(k)

in �σ
+−(k, k0). In addition, |Aσ

+−(k)| is spin-independent, as
shown in Eqs. (15). Thus, the spin dependence of the tun-
neling probability is dependent only on the shift vector that
changes its sign depending on its spin. We can also explain
this result in terms of the energy to cross the band gap
εgap + eERσ

+−. This energy is different between electrons with
opposite spins, which leads to the difference in tunneling
probability.

Furthermore, we can consider the condition of the spin cur-
rent generation. If Rσ

+− = 0 holds, we then find that P↑
k0

(t ) =
P↓

k0
(t ) and js = 0 hold because of Eq. (10). This result implies

that even in a system with spin degeneracy, tunneling spin
current can be generated unless Rσ

+− = 0.

III. ZIGZAG CHAIN MODEL WITH BOTH INVERSION
AND TIME-REVERSAL SYMMETRIES

In this section, we construct a simulation model with both
inversion and time-reversal symmetries and derive a two-band
Hamiltonian to show that tunneling spin current is induced by

an electric field. Note that the model has previously been in-
troduced in [[22], Sec. 7.2], except that a parameter v is added
in the current study, as will be detailed later. In our model, we
show that the shift vector remains finite since v �= 0, and we
confirm that the shift vector plays an important role in the spin
current generation.

A. Tight-binding Hamiltonian

Let us consider a one-dimensional zigzag chain, shown in
Fig. 2(a), with s, p orbitals at each atomic site. This chain
belongs to the magnetic point group 2/m1′, in other words,
satisfies the following three conditions: (i) it has no magnetic
orders and has time-reversal symmetry; (ii) it has inversion
symmetry and the inversion center is located at the middle
of the neighboring A and B sites; and (iii) it has reflection
symmetry in a plane perpendicular to the z axis, while it
breaks reflection symmetry in a plane perpendicular to the x

FIG. 2. Zigzag chain model and energy splitting diagram at each
site. (a) The dashed gray rectangle shows a unit cell ( jth), with two
sublattices labeled A and B and lattice spacing a. The red vertical ar-
rows denote a staggered internal electric field and the thick/thin solid
lines denote nearest-neighbor hoppings (between two s orbitals),
while the arcs denote next-nearest-neighbor hoppings (between s
and px orbitals). (b) The degeneracy here includes the spin degree
of freedom. CEF and SOC stand for crystalline electric field and
spin–orbit coupling, respectively.
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axis. We also introduce a crystalline electric field (CEF) that
is consistent with the conditions above.

With the given symmetry of the system, we consider the
Zener tunneling driven by an electric field E in the x direction,
and tunneling spin current js that flows along the x direction
with spin polarization along the z direction. This spin current
component can be associated with the electric field unless the
chain violates the three conditions above. Indeed, if the chain
retains the reflection symmetry in a plane perpendicular to the
x axis, which violates the condition (iii), the chain is symmet-
ric under a two-fold rotation about the x axis, which keeps
the electric field E = Ex invariant but changes the sign of the
spin current js. Then js(E ) = − js(E ) = 0 holds immediately.
Thus, breaking of this reflection symmetry is essential for the
existence of the tunneling spin current js. We will later use
this property to verify our calculation in Sec. III B.

Based on the symmetry analysis above, we will construct
a gapped two-band Hamiltonian of this chain, which corre-
sponds to Eq. (1) with the spin quantization axis along the
z direction. To begin with, we focus on the energy levels at
each site as shown in Fig. 2(b). First, the CEF lifts the sixfold
degenerate p orbitals into the energy levels (px, py) and pz.
Then, we consider the splitting of the px, py levels due to the
SOC, which is given as ĤSO = λSO l̂ · σ̂. Here, l̂ and σ̂ are the
orbital and spin angular momentum, respectively. We find that
l̂x, l̂y have no effect on the splitting because the px, py orbitals
are related to the eigenstates of l̂z through

|±1〉 ≡ |l = 1, m = ±1〉 = 1√
2

(|px〉 ± i |py〉) (17)

and 〈±1 | l̂x,y | ±1〉 = 0 holds. Therefore, the term λSO l̂zσ̂z lifts
the degeneracy into two Kramers pairs, (|+1,↑〉 , |−1,↓〉)
and (|+1,↓〉 , |−1,↑〉). We assume that the former pair

|pσ 〉 ≡ 1√
2

(|px, σ 〉 + iσ |py, σ 〉) (σ = σz = ±1) (18)

is at an energy level close to that of the s orbitals |sσ 〉 ≡ |s, σ 〉,
as shown in Fig. 2(b). For simplicity, we take the energy levels
of |sσ 〉 , |pσ 〉 to be +�,−�.

We then focus on the on-site parity mixing due to the
internal electric field as shown in Fig. 2(a), which appears
when the inversion center is not located at a site. To see
this, we introduce the local electrostatic potential V̂in as
follows:

V̂in(y) =
{−Einy near A sites
+Einy near B sites (19)

where the inversion center is placed at y = 0. Here, V̂in satis-
fies the global inversion symmetry and meets the conditions
(i)–(iii). Then, the mixing 〈s | (−e)V̂in | py〉 occurs at each site
and we find from Eq. (18) that

〈sσA|(−e)V̂in|pσA〉 = − 〈sσB|(−e)V̂in|pσB〉 = iσφ. (20)

Here, we introduced a constant φ.
We also introduce the transfer integrals t (±)

s and t ′
sx as

shown in Fig. 2(a). The signs with t ′
sx are determined by the

direction dependence of |s〉 , |px〉. It is also natural to assume
that t (+)

s and t (−)
s have the same sign in this model.

Thus, we get the tight-binding Hamiltonian

Ĥs−p =
∑
j,σ,τ

�(ŝ†
jτσ ŝ jτσ − p̂†

jτσ p̂ jτσ )

+
∑
j,σ

(iσφ)(ŝ†
jAσ p̂ jAσ − ŝ†

jBσ p̂ jBσ )

+
∑
j,σ

(t (+)
s ŝ†

jAσ ŝ j,Bσ + t (−)
s ŝ†

jAσ ŝ j−1,Bσ )

+
∑
j,σ,τ

t ′
sx(ŝ†

jτσ p̂ j+1,τσ − ŝ†
jτσ p̂ j−1,τσ ) + H.c. (21)

where ŝ†
jτσ , ŝ jτσ , p̂†

jτσ , p̂ jτσ are electron creation and annihi-
lation operators on the jth site, labeled with orbital (s, p), spin
(σ = ↑,↓) and sublattice (τ = A, B).

In the crystal momentum space, the Hamiltonian is ex-
pressed as follows:

Ĥs−p =
∑
kσ

Ĉ†
kσ

H s−p
kσ

Ĉkσ , (22)

H s−p
kσ

=

⎛
⎜⎜⎜⎝

� αk β
(+)
kσ

0
αk

∗ � 0 β
(−)
kσ

β
(+)
kσ

∗
0 −� 0

0 β
(−)
kσ

∗
0 −�

⎞
⎟⎟⎟⎠. (23)

Here, we introduced

αk = t (+)
s e+ika + t (−)

s e−ika, β
(±)
kσ

= 2it ′
sx sin(2ka) ± iφσ

(24)
and Ĉ†

kσ
= (ŝ†

kAσ
, ŝ†

kBσ
, p̂†

kAσ
, p̂†

kBσ
) obtained from the

Fourier transformation of ŝ†
jτσ , p̂†

jτσ . Let us now assume that
φ, t (±)

s , t ′
sx � � and derive the effective Hamiltonian for |sσ 〉.

We divide 4 × 4 matrix H s−p
kσ

into 2 × 2 blocks as

H s−p
kσ

=
(

Hs
kσ H1

kσ

H1
kσ

†
H p

kσ

)
(25)

and obtain the effective Hamiltonian

H̃ s
kσ � Hs

kσ + 1

2�
H1

kσ H1
kσ

† = Hσ (k) + (scalar) (26)

where we can neglect the scalar term since it has no effect on
the tunneling process. We find that

Hσ (k) =
( −uσ sin(ka) cos(ka) w cos(ka) − iv sin(ka)

w cos(ka) + iv sin(ka) uσ sin(ka) cos(ka)

)

= dσ (k) · τ (27)

with Pauli matrices τ = (τx, τy, τz ). This two-band Hamilto-
nian is characterized by the following:

u = −4t ′
sxφ

�
, v = t (−)

s − t (+)
s , w = t (+)

s + t (−)
s , (28)

dσ (k) = (w cos(ka), v sin(ka),−σu sin(ka) cos(ka)). (29)

Let us examine each component of dσ (k). The first com-
ponent always remains finite since t (+)

s and t (−)
s have the same

sign, as mentioned above. The second component with v,
however, disappears if the model recovers reflection symme-
try in a plane perpendicular to the x axis, since t (+)

s = t (−)
s

holds in this case. Thus, we can consider this component to
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FIG. 3. Numerical results for time variation of tunneling probability and charge/spin current in the zigzag chain model with both
inversion and time-reversal symmetries. (a) Tunneling probability (upper row) across the energy levels (lower row) with the parameters
(k0a, u/w, v/w, E/E0) = (π/6, 5, 0.4, −2). The dashed vertical lines show where the band gap is locally minimum. (b) Charge and spin
currents with the parameters (u/w, v/w, E/E0) = (0.7, 0.4, 0.8). (c) Electric field dependence of the spin current shortly after application
of electric field with the parameters (u/w, v/w) = (0.7, 0.4). The dashed curves represent js(E , t ) from the analytical formula (32).
(d) Spin current shortly after the application of an electric field for different values of antisymmetric SOC parameter u, with the parameters
(v/w, E/E0) = (0.4, 0.8). The dashed curves represent js(E , t ) from the analytical formula (32).

be the result of reflection symmetry breaking. We also find
that the third component of dσ (k) emerges due to the lack of
local inversion symmetry, since φ = 0 holds if an inversion
center can be placed at each lattice site. This term is known as
the antisymmetric spin–orbit interaction in lattice structures
such as zigzag [23,24], honeycomb and diamond structure,
which are all globally centrosymmetric systems but break the
inversion symmetry at lattice sites [25]. Note that it is easy
to see that this component corresponds to SOC when the
SOC splitting is small enough to satisfy λSO � �. In this
case, we should take into account the additional energy level
just below |pσ 〉 shown in Fig. 2(b). The parameter u is then
modulated as

u = −4t ′
sxφ

�
→ −4t ′

sxφ

(
1

�
− 1

� + λSO

)
� −4t ′

sxφλSO

�2

(30)

and is indeed proportional to λSO.
Now, we check if the shift vector in this model remains

finite. From the Hamiltonian (27), we can express it as

follows:

Rσ
+−(k)

= (dσ × ∂kdσ ) · (∂2
k dσ )

(dσ × ∂kdσ )2

√
(dσ )2

= 3

2
uvw sin(2k)

√
u2 sin2 k cos2 k + v2 sin2 k + w2 cos2 k

v2w2 + u2w2 cos6 k + u2v2 sin6 k
σ

(31)

where we used the formula given in [16] and take a = 1.
Equation (31) shows that Rσ

+−(k) �= 0 holds when u, v,w �= 0.

B. Numerical calculations

From the Hamiltonian (27), the behaviors of Pσ
k0

(t ),
jc(E , t ), and js(E , t ) are obtained numerically as shown in
Fig. 3. Here, we introduced t0 = h̄/w, E0 = w/(ea), jc

0 =
(−e)w/h̄, and js

0 = w/2 as a typical time length, electric field,
charge current, and spin current, respectively.

In Fig. 3(a), we can see that the probabilities with opposite
spins are different from each other, which is expected since
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u �= 0 breaks spin rotational symmetry in our model. Note
that Pσ

k0
(t ) has a steep rise and fall in the vicinity of k = k0(t )

where the band gap is locally minimum. This behavior is
characteristic of tunneling. We also find from Fig. 3(b) that a
nonzero spin current is associated with an electric field in this
model. This spin current generation purely originates from
a nonzero shift vector, i.e., the geometric effect of the wave
function, since each band is doubly degenerate with opposite
spins.

Figure 3(b) also shows an oscillating behavior in the charge
and spin currents, the reason for which can be explained as
follows: the Hamiltonian of this model Ĥσ (k0(t )) is time-
periodic with period T ≡ 2π h̄/(e|E |a), and we can consider
that the Schrödinger equation (3) describes a kind of Rabi
cycle driven by an external field with period T . Thus, we
see an oscillation in the population |aσ

nk0
(t )|2 and that of the

currents js(t ). For more details, see Appendix C. Here, T
corresponds to the period of the Bloch oscillation, though it is
hard to observe the oscillation in experiments since T is large.
Thus, we focus on the time period shortly after application of
the electric field, i.e., t � t0.

In this region, the tunneling spin current can be approxi-
mated as

js(E , t )/ js
0

� −5

12π

(
1

a3w2

∫
BZ

dkεgap(∂kεgap)|A↑
+−|2R↑

+−

)
( E

E0

)3( t

t0

)4

, (32)

and is scaled by the integral containing the shift vector R↑
+−.

This expression is derived in Appendix D. In Fig. 3(c), this
formula fits the numerically obtained js(t ) for each value of
E/E0. The relation js(−E ) = − js(+E ) also holds in both
Fig. 3(c) and Eq. (32), which is expected from the inversion
symmetry of the model.

As we mentioned in Sec. II C, this spin current disappears
when the shift vector goes to zero. This means that js = 0
holds if the antisymmetric SOC vanishes (u = 0) or the reflec-
tion symmetry is restored (v = 0) in our zigzag chain model.
The curve of u = 0 in Fig. 3(d) demonstrates this behavior.
Moreover, Fig. 3(d) shows a trend of the spin current increas-
ing as u moves away from zero. In the Supplemental Material
[26], we check that the same trend holds for the parameter
v. Note that this relation between js = 0 and the existence of
reflection symmetry v = 0 is consistent with the symmetry
analysis as mentioned in Sec. III A. These results and the
integral in Eq. (32) indicate that as long as u, v are small
enough, the shift vector is increased by the antisymmetric
SOC and reflection symmetry breaking, which enhances the
tunneling spin current in the zigzag chain model.

IV. GENERAL ZIGZAG CHAIN MODEL
WITH PT SYMMETRY

We now generalize the zigzag chain model in Sec. III by
introducing staggered magnetic order on each site. In this
model, illustrated in Fig. 4(a), the magnetic point group is
given as 2′/m where inversion and time-reversal symmetries

are both broken, but PT symmetry is preserved. Introducing
the magnetic order may seem to be artificial, but it is known
that for a zigzag chain model, which has itinerant electrons
and localized spins, the staggered antiferromagnetic order
along the chain is stabilized near half filling [27].

Now, the molecular field from the magnetic order is ex-
pressed as

ĤAF =
∑
kσ

Ĉ†
kσ

⎛
⎜⎝

φsσ

−φsσ

φsσ

−φsσ

⎞
⎟⎠Ĉkσ . (33)

We add this term to the Hamiltonian (22) and derive the
effective Hamiltonian Hσ (k) for |sσ 〉 in the same way as in
Sec. III. Then, we obtain

Hσ (k) = d̃
σ

(k) · τ (34)

with

d̃
σ

(k) = (w cos(ka), v sin(ka), σ [φs − u sin(ka) cos(ka)])
(35)

where u, v,w are the same as those defined in Eq. (28).
In this model, the expression for the shift vector is rather

complicated, and we focus on whether a spin current can be
generated from this model. Figure 4(b) plots charge and spin
currents computed from the Hamiltonian (34). The nonzero
spin current shown here ensures that tunneling spin current
occurs even in insulators with spin degeneracy by the appli-
cation of an electric field. Again, oscillating behaviors of the
charge and spin currents are evident, and we give the reason
for this in Appendix C.

Let us focus on the time period shortly after the application
of the electric field. Then, the tunneling spin current from this
model is approximated as

js(E , t )/ js
0

� 2

3π

(
1

a2w2

∫
BZ

dkε2
gap|A↑

+−|2R↑
+−

)( E

E0

)2( t

t0

)3

(36)

in the PT-symmetric model. We derive this expression in
Appendix D. In Fig. 4(c), this formula fits the behavior of
js(t ) for each value of E/E0. We also find from Fig. 4(c)
that this spin current satisfies nonreciprocity, i.e., the relation
js(−E ) �= − js(+E ), which is expected from the lack of in-
version symmetry in this model.

V. DISCUSSION AND CONCLUSIONS

We investigated whether a tunneling spin current is induced
by an electric field in connection with the shift vector. We
focused on a system with PT symmetry but without spin
rotational symmetry, including a system with both inversion
and time-reversal symmetries. First, we find from the analytic
calculations for a two-band model in Sec. II that a shift vector
is necessary for spin current generation. Then, in Sec. III, we
demonstrate a model that has a shift vector and calculated the
spin current numerically. We confirm that even in a system
with inversion and time-reversal symmetries, a spin current
can be generated because of the shift vector. We extend this
discussion to the general PT-symmetric system, where tunnel-
ing spin current also arises, in Sec. IV.
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FIG. 4. Generalized model with PT symmetry and numerical results for tunneling charge/spin current from this model. (a) Zigzag chain
model with PT symmetry. The components in the model are the same as those in Fig. 2(a), except for the staggered magnetic order on each
site (shown as blue circles �, ⊗). (b) Time variations of charge and spin currents in the zigzag chain model with PT symmetry. We used
the parameters (u/w, v/w, φs/w, E/E0) = (0.7, 0.4, 0.2, 0.8). (c) Electric field dependence of the spin current shortly after the application
of an electric field. The dashed curves represent js(E , t ) from the analytical formula (36). We used the parameters (u/w, v/w, φs/w) =
(0.7, 0.4, 0.2).

To summarize, we have exactly identified the microscopic
origin of the spin current in PT-symmetric insulators, asso-
ciated with Zener tunneling; that is shift vector, a purely
geometric quantity, which yields the spin-dependent tunneling
process in the spin-degenerate system. Since our analysis in
Sec. II is not limited to specific systems, this result holds
for any one-dimensional PT-symmetric insulators where we
can neglect both spin flip in the tunneling process and tran-
sitions from/to other states than the valence and conduction
bands.

Indeed, there are some other recent works on the Zener tun-
neling that examined the geometric effect on it. In particular,
the authors of Refs. [5,16] made it clear that the shift vector
corrects the charge/spin transport calculated from the band
structure. However, they considered time-reversal symmet-
ric but noncentrosymmetric insulators, not the PT-symmetric
ones. Also, they focused on nonreciprocity of the transport
due to the shift vector, not on the spin current generation
itself. Thus, it is unique to our paper that the Zener tunneling
in PT-symmetric insulators is studied, and that the relation
between the spin current generation and the shift vector are
clarified.

We can summarize this paper from a different point of
view. In the beginning of Sec. III A, we have discussed the
symmetry requirement for the zigzag chain model to have
a nonzero tunneling spin current. Such symmetry analysis
offers a qualitative approach to estimate such nonlinear spin
current response. On the other hand, we have described the

mechanism of the tunneling spin current in Sec II, which of-
fers a quantitative approach. We can evaluate the spin current
based on the approximated formula such as Eq. (32) or (36)
which depends on the shift vector. We can make use of both
such qualitative and quantitative evaluations provided in this
paper to design or to search for insulators with a relatively
large tunneling spin current.

Now, we would like to refer to how our results can be
generalized. We have so far considered the spin current as-
sociated with dc electric field in one-dimensional two-band
PT-symmetric insulators where spin in a certain direction is
conserved. We will first describe how to extend our analysis
to two- or three-dimensional insulators. Next, we will con-
sider the case when an ac electric field, instead of dc one, is
applied to the system. At the end, we will discuss the implica-
tions of our results for multi-band systems, non-PT-symmetric
systems, and systems where spin is no longer a conserved
quantity.

First, we can apply our results obtained in one-dimensional
lattice systems to two- or three-dimensional ones. In these sys-
tems, the Bloch electron with wave vector k at the time t = 0
is driven by the field to have k − eEt/h̄ = (k⊥, k‖ − eEt/h̄),
where k⊥, k‖ is the component perpendicular, parallel to the
external electric field E, respectively. We then slice the crystal
momentum space into one-dimensional ones along the electric
filed, labeled with different k⊥. The Zener tunneling takes
place in each slice [28]. We find that the Hamiltonian of each
slice is still PT symmetric, and can define tunneling probabil-
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ity, spin current, and shift vector of each slice as the same way
as in Sec. II. Thus, as we have found in the one-dimensional
lattice systems, the shift vector plays an important role in the
spin current generation even in the two- or three-dimensional
systems.

It is also interesting to consider the spin current as a
response to ac electric field from the same PT-symmetric
system. It is known that tunneling, as a response to a strong
dc electric field, undergoes a crossover in response to a weak
ac electric field in the plane of the field strength and fre-
quency [[29], Sec. IIIA]. For example, in noncentrosymmetric
crystals, there are known two effects both caused by shift
vectors, namely shift current [18–20] and nonreciprocal Zener
tunneling [5,16] in ac and dc responses, respectively. In the
same way, as a counterpart of the tunneling spin current we
studied here, there is a mechanism of shift spin current driven
by ac electric field in PT-symmetric insulators, which has been
listed in Ref. [[30], Table 2].

Returning to the case of the Zener tunneling under dc elec-
tric field, our results has importance even when more than two
bands are involved in the non-adiabatic transitions, when PT
symmetry is broken, or when spin is no longer conserved. In
these systems, two-level transition picture is no longer valid,
and we have to consider the multilevel transitions of elec-
trons from occupied bands and the Pauli exclusion principle
between them. Then, the time evolution of a Bloch electron
under the driving field is described with field operators [5,28]
as ĉα (k0) → ∑

β aβk0 (t )eiγβk0 (t )ĉβ (k0(t )). Here, α, β are band
indices and γβk0 (t ) is a sum of the dynamical phase and Berry
phase, defined similarly to Eq. (6). The coefficients aβk0 (t )
also obeys a similar equation as Eq. (11) in which expression
shift vector Rαβ is included and modulates the energy to cross
the band gap from εα − εβ to εα − εβ + eERαβ . As a result,
the shift vector contributes to the tunneling process even in
these systems. In particular, the shift vector is spin-dependent
quantity even in spin-degenerate systems, as we have seen.
Thus, the shift vector still provides a substantial contribution
to the spin-dependent Zener tunneling in many insulators.

This idea to examine spin current in connection with the
shift vector may be important to explain the outstanding
spin dependent transport in some chiral molecules. Recent
experiments have revealed that the chiral molecules make
electrons transmitted through themselves spin polarized with-
out magnetic fields, which is referred to as chirality-induced
spin selectivity (CISS) effect [31,32]. However, microscopic
theory of this spin filter effect is still under debate [33]. One
approach to this problem is to assume that the transport is elec-
tron tunneling, and to analyze the spin-dependent tunneling
process in such chiral structures [5]. In this way, the geometric
contribution to the tunneling spin current that is stressed here
may provide hints for the unexplained spin transport in the
chiral molecules.
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APPENDIX A: EXPRESSION FOR THE TUNNELING
CURRENT

Here, we derive Eq. (9) from the definition (8). First, we
find from the Schrödinger equation (3) that

∂

∂t

〈
�σ

k0
(t ) | Ĥσ (k0(t )) | �σ

k0
(t )

〉
= 〈

�σ
k0

(t )
∣∣ Ĥσ (k0(t ))

∣∣∂t�
σ
k0

(t )
〉 + c.c.

+〈�σ
k0

(t ) | ∂Ĥσ (k0(t ))

∂t
| �σ

k0
(t )〉 (A1)

= 1

ih̄

〈
�σ

k0
(t )

∣∣ [Ĥ (k0(t ))
]2∣∣�σ

k0
(t )

〉 + c.c.

+ ∂k0(t )

∂t

〈
�σ

k0
(t )

∣∣ ∂Ĥσ (k)

∂k

∣∣∣∣
k=k0(t )

∣∣�σ
k0

(t )
〉

(A2)

= −eE
〈
�σ

k0
(t ) | v̂σ

k0
(t ) | �σ

k0
(t )

〉
(A3)

where v̂σ
k0

(t ) is the velocity operator introduced in Sec. II A.
Then, Eq. (5) leads to〈

�σ
k0

(t ) | Ĥσ (k0(t )) | �σ
k0

(t )
〉

= ε+(k0(t ))
∣∣aσ

+k0
(t )

∣∣2 + ε−(k0(t ))
∣∣aσ

−k0
(t )

∣∣2
(A4)

= εgap(k0(t ))Pσ
k0

(t ) + ε−(k0(t )), (A5)

using the conservation of probability 〈�σ
k0

(t ) | �σ
k0

(t )〉 =
|aσ

+k0
(t )|2 + |aσ

−k0
(t )|2 = 1. Finally, combining Eq. (A3) and

Eq. (A5), we have

−e
〈
�σ

k0
(t ) | v̂σ

k0
(t ) | �σ

k0
(t )

〉
= 1

E

∂

∂t

[
εgap(k0(t ))Pσ

k0
(t )

] + 1

E

∂ε−(k0(t ))
∂t

. (A6)

We then integrate both sides of Eq. (A6) over the BZ. The
second term in the right-hand side of Eq. (A6) vanishes and
we obtain Eq. (9).

APPENDIX B: SYMMETRY CONSIDERATIONS OF THE
BERRY CONNECTION AND SHIFT VECTOR

In this Appendix, we consider the symmetry of the Berry
connection and shift vector reflecting the discrete symmetry
of the spinful system. Note that the case when the system has
spin rotational symmetry is considered in [16]. Let us focus on
a system that is invariant under a discrete transformation, such
as space inversion �̂, time-reversal �̂, or PT transformation
�̂�̂. The Hamiltonian of this system satisfies

ÔĤ (k) = Ĥ (χk)Ô (B1)

with (Ô, χ ) = (�̂,−1), (�̂,−1), (�̂�̂,+1).
The eigenstates of the Hamiltonian are introduced as

Ĥ (k) |uα (k)〉 = εα (k) |uα (k)〉 where α = (n, σ ) is a combina-
tion of band and spin indices. We then find from Eq. (B1)
that Ô |uα (k)〉 is one of the eigenstates of Ĥ (χk) with energy
εα (k). We consider this state labeled with another band index
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α̃ such that

|uα̃ (χk)〉 = e−iθα (k)Ô |uα (k)〉 , εα̃ (χk) = εα (k) (B2)

where the difference in the phase θα (k) remains in general.
From the definition of the Berry connection and Eq. (B2),

we find that

Aα̃β̃ (χk) = 〈uα̃ (χk) | i∂χk | uβ̃ (χk)〉 (B3)

= χ [〈Ôuα (k) | Ôi∂kuβ (k)〉
+ (∂kθβ )〈Ôuα (k) | Ôuβ (k)〉]ei(θα (k)−θβ (k)). (B4)

Here, Ô = �̂ is a unitary operator and Ô = �̂, �̂�̂ are antiu-
nitary operators. These operators obey

〈Ôψ | Ôφ〉 =
{〈ψ | φ〉 if Ô is unitary (U)
〈φ | ψ〉 if Ô is antiunitary (A)

(B5)

for arbitrary states |ψ〉 , |φ〉. Hereafter, we substitute (U), (A)
for unitary or antiunitary Ô, respectively.

Then, we find from Eq. (B4) that

Aα̃β̃ (χk) =
{
χ [+Aαβ (k) + (∂kθβ )δαβ]ei(θα (k)−θβ (k)) (U)

χ [−A∗
αβ (k) + (∂kθβ )δαβ]ei(θα (k)−θβ (k)) (A)

.

(B6)

Furthermore, the shift vector Rα̃β̃ (χk) (α �= β) satisfies

Rα̃β̃ (χk)

= Aα̃α̃ (χk) − Aβ̃β̃ (χk) − ∂χk arg Aα̃β̃ (χk) (B7)

=
{+χ [Aαα (k) − Aββ (k) − ∂k arg Aαβ (k)](U)
−χ [Aαα (k) − Aββ (k) − ∂k arg Aαβ (k)](A) .(B8)

where θα,β vanishes because of the gauge invariance of the
shift vector.

From Eqs. (B6) and (B8), we find the following relations:

|Aα̃β̃ (χk)| = |Aαβ (k)| (α �= β ), (B9a)

Rα̃β̃ (χk) =
{+χRαβ (k) (U)
−χRαβ (k) (A) . (B9b)

Let us now consider a PT-symmetric system. In this case,
Ô = �̂�̂ is antiunitary (A) and χ = +1. If we take α, β =
(n,↑), (m,↑), we then find α̃, β̃ = (n,↓), (m,↓). Taking
these into account, we immediately obtain Eqs. (15) from
Eqs. (B9).

Similarly, in a system with both inversion and time-reversal
symmetries, we obtain∣∣Aσ

nm(−k)
∣∣ = ∣∣Aσ

nm(k)
∣∣, Rσ

nm(−k) = −Rσ
nm(k), (B10a)

from the inversion symmetry, and∣∣A↑
nm(−k)

∣∣ = ∣∣A↓
nm(k)

∣∣, R↑
nm(−k) = +R↓

nm(k) (B10b)

from the time-reversal symmetry. Combining Eqs. (B10a)
and (B10b), we get Eqs. (15) and (16).

APPENDIX C: REASON FOR TUNNELING
CURRENT OSCILLATION

We consider the components of the Hamiltonian of the
zigzag chain models shown in Eqs. (27) and (34). We find
that in both models, Ĥσ (k0(t )) is time-periodic with period

T = 2π h̄/(e|E |a). In this case, Floquet theory [[34], Sec. 3.6]
gives some conditions for |�σ

k0
(t )〉 as a solution of Eq. (3).

Note that we also have to pay attention to conservation of
probability 〈�σ

k0
(t ) | �σ

k0
(t )〉 = 1. Then, we obtain the expres-

sion ∣∣�σ
k0

(t )
〉 =

∑
ν=1,2

bσ
νk0

e−iεσ
ν t/h̄

∣∣�σ
νk0

(t )
〉
. (C1)

Here, |�σ
νk0

(t )〉 is a time-periodic state with period T , and the
Floquet exponent iεσ

ν is imaginary. We also introduced the
coefficients bσ

νk0
. Note that εσ

ν is independent of k0 because
Eq. (3) shows that the difference in k0 is reduced to the shift of
the origin of time, which has no effect on the Floquet exponent
of the solution.

Furthermore, when the system has time-reversal symme-
try, εσ

ν is also independent of σ because the time-reversal
operation (antiunitary) and the subsequent change of variable
t → −t converts the Schrödinger equation (3) and the solution
(C1) with the label (k0, σ ) into those with (−k0,−σ ), but the
Floquet exponent is unchanged.

Now, we find〈
�σ

k0
(t )

∣∣ Ĥσ (k0(t ))
∣∣�σ

k0
(t )

〉
=

∑
μ,ν

bσ
μk0

∗bσ
νk0

ei(εσ
μ−εσ

ν )t/h̄
〈
�σ

μk0
(t )

∣∣ Ĥσ (k0(t ))
∣∣�σ

νk0
(t )

〉
= P0(t ) + P1(t ) cos

(
ωσ

12t
) + P2(t ) sin

(
ωσ

12t
)

(C2)

where P0,1,2(t ) are all real periodic function with period
T , and ωσ

12 ≡ |εσ
1 − εσ

2 |/h̄. Thus, we get from Eq. (8) and
Eq. (A3),

jσ = 1

EL

∑
k0∈BZ

∂

∂t

〈
�σ

k0
(t )

∣∣ Ĥσ (k0(t ))
∣∣�σ

k0
(t )

〉
(C3)

= Q0(t ) + Q1(t ) cos
(
ωσ

12t
) + Q2(t ) sin

(
ωσ

12t
)

(C4)

where Q0,1,2(t ) are all periodic with period T and jσ has no
dc component. As we mentioned above, ω

↑
12 = ω

↓
12 also holds

in time-reversal symmetric systems.

APPENDIX D: APPROXIMATION OF TUNNELING
CURRENT SHORTLY AFTER APPLICATION

OF ELECTRIC FIELD

In the adiabatic limit, Eq. (14) leads to(
aσ

+k0
(t )e−i arg Aσ

+−(k0 )

aσ
−k0

(t )

)
�

[
1 + i

∫ k0(t )

k0

|Aσ
+−(k)|

(
0 e−i�σ

+−(k,k0 )

e+i�σ
+−(k,k0 ) 0

)
dk

](
0
1

)
.

(D1)

For convenience, we write A0 ≡ |Aσ
+−|, R0 ≡ R↑

+−, q ≡
−eEt/h̄ and λ ≡ (εgap/eE ) + σR0. We assume that t is small
enough to satisfy |q|a � 1 where a is the lattice constant,
hereafter taken as a = 1. We also consider the band parameter
w shown in Eq. (28) as a typical energy scale, and set w = 1
for simplicity. By using the Taylor expansion with q, we find
that

Pσ
k0

(E , t ) = ∣∣aσ
+k0

∣∣2
(D2)
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=
∣∣∣∣
∫ k0+q

k0

dk A0 exp

(
−i

∫ k

k0

dk′ λ
)∣∣∣∣

2

(D3)

=
∣∣∣∣A0(k0)

q1

1!
+ (∂k − iλ)A0|k=k0

q2

2!

+ (∂k − iλ)2A0

∣∣
k=k0

q3

3!
+ (∂k − iλ)3A0

∣∣
k=k0

q4

4!
+ · · ·

∣∣∣∣
2

(D4)

≡ Pσ
k0

(E , q). (D5)

The tunneling current Eq. (9) is expressed as

jσ = −e

h̄

∫
BZ

dk0

2π

∂

∂q

[
εgap(k0 + q)Pσ

k0
(E , q)

]
. (D6)

We expand this formula with q by using Eq. (D5) and
the expansion εgap(k0 + q) = εgap(k0) + ∂kεgap|k=k0 q1/1! +
· · · . Then, we find

εgap(k0 + q)Pσ
k0

(E , q)/q2 = c0,0 + c1,0q1

+ [c2,2(E/E0)−2 + c2,1(E/E0)−1σ + c2,0]q2

+ [c3,2(E/E0)−2 + c3,1(E/E0)−1σ + c3,0]q3

+O((t/t0)4) (D7)

where we introduced E0 = w/(ea) and t0 = h̄/w. The coeffi-
cients cl,m consist of εgap, A0 and R0, for example,

c0,0 = εgapA0
2
∣∣
k=k0

, c2,1 = − 1
6 εgap

2A0
2R0

∣∣
k=k0

, (D8)

c3,1 = 1

12

[
εgap(∂kεgap)A0

2R0 − ∂k (εgap
2A0

2R0)
]∣∣

k=k0
. (D9)

Then, the leading term of the charge current jc = j↑ + j↓ is
given as follows:

jc(E , t ) � 2
−e

h̄

∫
BZ

dk0

2π
c0,02q1 (D10)

= − 2

π
jc
0

(
1

aw

∫
BZ

dk εgapA0
2

)( E

E0

)1( t

t0

)1

. (D11)

Here, we reinserted the powers of a and w from dimen-
sional analysis. The leading term of the spin current js =
(h̄/2(−e))( j↑ − j↓) in a PT-symmetric system is also given
as follows:

js(E , t ) � 2
h̄

2(−e)

−e

h̄

∫
BZ

dk0

2π
c2,1

( E

E0

)−1

4q3. (D12)

This equation leads to Eq. (36).
However, in a system with both inversion and time-

reversal symmetries, the integral in Eq. (D12) vanishes
because the coefficient c2,1(k) is an odd function of k.
In general, cl,m(−k0) = (−1)l+mcl,m(k0) holds because the
expansion (D7) is valid regardless of the inversion transforma-
tion (E , σ, q) → (−E ,+σ,−q). Therefore, the leading term
of js in this system is given as

js(E , t ) � 2
h̄

2(−e)

−e

h̄

∫
BZ

dk0

2π
c3,1

( E

E0

)−1

5q4, (D13)

which leads to Eq. (32).
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