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Unconventional quantum phase transitions in a one-dimensional Lieb-Schultz-Mattis system
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We study quantum phases and phase transitions in a one-dimensional interacting fermion system with a Lieb-
Schultz-Mattis (LSM) type anomaly. Specifically, the inversion symmetry enforces any symmetry-preserving
gapped ground state of the system to be a Kitaev chain, following an LSM type theorem that we prove.
Alternatively, via the Jordan-Wigner transformation, this system describes a spin system whose gapped ground
states must break either the inversion or the Ising symmetry associated with fermion parity. We obtain a phase
diagram using analytical methods and variational matrix product state simulations and study the critical behaviors
of the quantum phase transitions therein using entanglement entropy, energy variance, and finite-size scaling
of order parameters. In particular, we observe a continuous phase transition between two ordered phases that
are beyond the Ginzburg-Landau-Wilson paradigm, in analogy to the deconfined quantum critical points in
two spatial dimensions. We show this type of a 1D deconfined quantum critical point is described by the
Tomonaga-Luttinger liquid theory and extract its Luttinger parameter and critical exponents. We also identify a
gapless phase that emerges from a deconfined quantum critical point between two ordered phases, which cannot
be described by a U(1) Luttinger liquid.
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I. INTRODUCTION

A paradigm beyond the Landau theory of spontaneous
symmetry breaking is the deconfined quantum critical point
(DQCP). It was firstly proposed for the Neel order to va-
lence bond solid (VBS) transition on a two-dimensional
square lattice [1,2], as a type of continuous quantum
phase transition between two ordered phases that can-
not be related by symmetry breaking. Compared to the
Ginzburg-Landau-Wilson paradigm, a DQCP features many
novel aspects such as emergent symmetries and self-duality
[3].

Recently a lot of interests arise for revisiting one spatial
dimension (1D) to realize the deconfined quantum criticality.
In particular, the 1D spin-1/2 chain with both nearest- and
second-neighbor anisotropic exchange interactions have been
extensively studied [4–7], which exhibits a DQCP between
a (anti)ferromagnetic order and a VBS phase. The critical
behaviors of this DQCP has also been carefully examined
and compared to field-theory predictions. The phase transition
between these two gapped orders is a direct second-order
quantum phase transition, whose long-wavelength low-energy
theory is expected to exhibit an emergent U(1) symmetry.
On the other hand, this 1D DQCP is closely related to the
Lieb-Schultz-Mattis (LSM) theorem [8–16], which forbids
a gapped symmetric ground state that preserves both trans-
lation and the discrete Z2 × Z2 spin rotational symmetries
[5].

In this paper, we study a 1D lattice model of interacting
fermions, with a different LSM-type anomaly. In particular,
any gapped ground state that preserves a site-centered inver-
sion symmetry must be a Kitaev chain, with an odd number of

Majorana bound states on each boundary. Through a Jordan-
Wigner transformation, it becomes a spin-1/2 chain, whose
gapped ground states must break either the inversion symme-
try or the Ising symmetry associated with the fermion parity.
We prove such an LSM type theorem and study a generic 1d
fermion model with nearest-neighbor couplings that preserves
this inversion symmetry. The phase diagram of our model has
a rich structure: there are DQCPs between different ordered
phases beyond the Landau theory, as well as stable gapless
phases separating the ordered phases.

The rest part of this paper is organized as follows. In
Sec. II, we show our model and discuss its symmetries. In
Sec. III, the numerical methods used to study the model are
discussed. In Sec. IV, the phase diagram of the model is
obtained, using analytical solutions in the noninteracting limit
and numerical results for the interacting model. In Sec. V,
the critical behaviors at the phase boundaries are carefully
analyzed, focusing on the DQCP described by the Luttinger
liquid theory, and a stable gapless phase. Finally, the conclud-
ing remarks are given in Sec. VI.

II. THE MODEL

A. Lattice model and its symmetries

We consider the following 1D model of interacting
fermions

H =
∑

j

(−) j[(tc†
j c j+1 + H.c.) + (�c†

j c
†
j+1 + H.c.)]

+ (i�′c†
j c

†
j+1 + H.c.) + V

(
n j − 1

2

)(
n j+1 − 1

2

)
. (1)
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It breaks all the global (onsite) symmetries except for the
fermion parity conservation P f = (−1)F̂ . In fact, assuming
t > 0 is real, this Hamiltonian includes all possible nearest-
neighbor (NN) coupling terms that preserve a site-centered
unitary inversion symmetry defined as follows:

c j
I−→ ic†

− j . (2)

If c j ≡ γ j + iη j is written in terms of Majorana fermions
γ j and η j , this very inversion symmetry permutes these two
Majorana fermions: (

γ j

η j

)
I−→

(
η− j

γ− j

)
. (3)

One can easily check that, for example, the usual constant
hopping term −t

∑
j (c

†
j c j+1 + H.c.) breaks the inversion

symmetry I explicitly thus it is not allowed in Eq. (1). Though
seemingly strange and unfamiliar, the alternating real hopping
t j, j+1 = (−1) jt between nearest neighbors can be transformed
into a uniform hopping strength t by a change of basis c j →
(−1) j( j−1)/2c j . The lattice translation Tx defined as

c j
Tx−→ c j+1 (4)

is clearly not preserved in the model. In a periodic chain with
an even number of sites, the above NN-only model instead
preserves a magnetic translation symmetry T̃x defined as

T̃x ≡ (−1)
∑

j jn̂ j Tx · K, n j ≡ c†
j c j ;

c j
T̃x−→ (−1) j+1c j+1, (5)

where K represents the complex conjugation. This gives rise
to a link-centered antiunitary inversion symmetry Ĩ = I · T̃x:

c j
Ĩ−→ (−1) j+1 ic†

− j−1. (6)

Besides, the model Eq. (1) also exhibits an antiunitary
particle-hole symmetry

C̃ = C · K : c j → (−1) jc†
j , (7)

where C represents the unitary particle-hole transformation.
The generators {I, Ĩ} of the symmetry group satisfy the fol-
lowing algebra:

Ĩ2 = 1, I (−1)F̂I−1 = (−1)L(−1)F̂ , (8)

where L ∈ Z is the system size of the 1d chain. In a periodic
chain of length L = 0 mod 2, the magnetic translation satis-
fies:

(T̃x )L = (P f )L(L−1)/2. (9)

Using the following Jordan-Wigner transformation

c j = (−)
j( j−1)

2

⎡
⎣∏

k< j

(−σ z
k

)⎤⎦σ−
j ,

Sz
j ≡ σ z

j

2
= c†

j c j − 1

2
,

the fermion model Eq. (1) can also be rewritten as a spin- 1
2

chain:

Hspin =
∑

j

(tσ+
j σ−

j+1 + �σ+
j σ+

j+1 + H.c.)

+ (−) j (i�′σ+
j σ+

j+1 + H.c.) + V Sz
jS

z
j+1

=
∑

j

∑
α=x,y,z

JαSα
j Sα

j+1 + (−1) j�
(
Sx

j S
y
j+1 + Sy

j S
x
j+1

)
,

(10)

where the exchange couplings are given by

Jx = 2(t + �), Jy = 2(t − �), Jz = V,

� = −2�′. (11)

This is a familiar XYZ model [4], supplemented by an extra
staggered anisotropic exchange coupling of strength �. The
introduction of � terms has important consequences: it leads
to new gapless phases unobserved in the XYZ model [4,5].

The symmetry group of the spin model1 is generated by

P f = (−1)F̂ = ∏
r

( − σ z
r

)
, (12)

T̃x = Tx · K, (13)

C̃ = (∏
r σ x

r

) · K, (14)

I = (∏
r σ x

r

) · OI , (15)

where OI is the spatial inversion operator, and the Pauli matrix
σ x

r = 2Sx
r . In particular, the inversion symmetry I anticom-

mutes with the Ising symmetry Eq. (12), on a spin chain of an
odd length.

B. A generalized Lieb-Schultz-Mattis theorem
for the Kitaev chain

One significant consequence of the inversion symme-
try Eq. (2) is the following theorem of Lieb-Schultz-Mattis
[8,9,16–19] (LSM) type.

Theorem. In an one-dimensional spinless fermion system
preserving the inversion symmetry (2), any gapped symmetric
ground state must be a Kitaev chain.

This theorem is closely related to the family of LSM
theorems for symmetry protected topological (SPT) phases
[20,21] discussed recently [12,14,15,22], but differs in the
sense that here any gapped symmetric ground state is enforced
to be a nontrivial invertible phase [23], i.e. the Kitaev chain
[24], rather than SPT phases.

Below we prove the theorem in two aspects. First we show
that when restricted to a noninteracting fermion system with
translation symmetry, we can use the polarization formula of
BdG bands to show a gapped ground state must have a non-
trivial Z2 topological invariant, hence belonging to a Kitaev
chain. Next, we will show that in a generic interacting open

1Strictly speaking, the symmetry operators (15) in the spin model
differs from the inversion symmetry (2) in the fermion model, since
the latter is not a locality-preserving unitary. This subtlety is dis-
cussed in detail in Appendix A.
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chain with inversion symmetry, a gapped ground state must
be a Kitaev chain with Majorana zero modes at the boundary.

Firstly, we consider a periodic fermion chain with an even
number of sites. Since each unit cell includes two sites, they
transform as (

c2r

c2r+1

)
I−→ i

(
c†
−2r

c†
−2(r+1)+1

)
. (16)

In the basis of Majorana fermions

c2r = χr + iηr

2
, c2r+1 = χ ′

r + iη′
r

2
, (17)

they transform as follows under inversion

	k ≡

⎛
⎜⎝

χ (k)
η(k)
χ ′(k)
η′(k)

⎞
⎟⎠ I−→

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 e i k

0 0 e i k 0

⎞
⎟⎟⎠	−k (18)

in the momentum space. In other words, the inversion sym-
metry is implemented by unitary rotation

RI (k) =
(

1 0
0 e i k

)
�τ
⊗ μx, (19)

where �τ and �μ are Pauli matrices for the sublattice and Majo-
rana indices, respectively. A generic quadratic Bogoliubov-de
Gennes (BdG) Hamiltonian has the following form:

Ĥfree =
∑

0�k�π

ψT
−kh(k)ψk, (20)

where Hermitian matrix h(k) satisfies particle-hole and inver-
sion symmetries:

hT (k) = h∗(k) = −h(−k), (21)

RI (k)h(k)R−1
I (k) = h(−k). (22)

The Z2-valued topological invariant [25,26] for such a BdG
Hamiltonian in symmetry class D is given by the quantized
polarization of the filled BdG bands:

ν = e i
∫

dkA(k) = ±1,

A(k) = i
∑

εn(k)<0

〈ψn(k)|∂kψn(k)〉, (23)

where A(k) is the Berry connection of the filled bands. The
quantized ν = ±1 is a consequence of the particle-hole sym-
metry (21), and inversion symmetry (22) constrains the Berry
curvature as follows:

A(−k) = − i
∑
ε<0

〈ψn(k)|R†
I (k)∂kRI (k)|ψn(k)〉 − A(k)

=
∑
ε<0

〈ψn(k)|1 + τz

2
|ψn(k)〉 − A(k). (24)

Particle-hole symmetry (21) and inversion symmetry (22) fur-
ther indicate that∑

ε<0

〈ψn(k)|1 + τz

2
|ψn(k)〉 =

∑
ε>0

〈ψn(−k)|1 + τz

2
|ψn(−k)〉

=
∑
ε>0

〈ψn(k)|1 + τz

2
|ψn(k)〉

= 1

2
Tr

(
1 + τz

2

)
= 1,

and hence∫ π

0
dkA(k) = π

2
Tr

(
1 + τz

2

)
−
∫ π

0
dkA(−k)

�⇒
∫ π

−π

dkA(k) = π mod 2π (25)

�⇒ ν = e i
∫

dkA(k) = −1. (26)

Therefore, for a gapped BdG Hamiltonian with a well-defined
polarization, the Z2 invariant must be nontrivial, and hence it
must be a Kitaev chain with Majorana edge modes.

Secondly, we consider a generic interacting Hamiltonian
preserving inversion symmetry Eq. (2), on an open chain with
an odd number of sites L = 1 mod 2. In this case, there is one
single inversion center on the middle site, and the inversion
symmetry acts as a supersymmetry which changes the fermion
parity:

I (−1)F̂I−1 = −(−1)F̂ . (27)

This implies at least twofold degeneracy for all energy levels,
hence two degenerate ground states on an open chain with op-
posite fermion parities. If the bulk is gapped, this necessarily
leads to zero modes on the edge. Since there is no extra global
symmetry in the system to protect the edge modes, they can
only be an odd number of Majorana zero modes (MZMs) on
each edge. This indicates the ground state is an open Kitaev
chain. And its total fermion parity is flipped by the inversion
symmetry, which exchanges the MZMs on the two edges.

Therefore we have shown that a gapped ground state pre-
serving inversion symmetry Eq. (2) must be a Kitaev chain
with an odd number of MZMs on each open boundary. This
generalized LSM theorem for Kitaev chain in the fermion
context can also be translated into the spin chain language, via
Jordan-Wigner transformation Eq. (10). In the spin language,
it manifests as the more familiar LSM theorem:

Theorem. In an one-dimensional spin-1/2 chain with both
Ising symmetry Eq. (12) and inversion symmetry Eq. (15),
its ground state is either gapless or spontaneously breaks
symmetries.

In other words, the spin-1/2 chain with both Ising and
inversion symmetries do not admit any short-range entangled
ground state.

III. NUMERICAL METHODS

A. Spin chain representation and order parameters

For the convenience of numerical simulation, we use the
traditional Jordan-Wigner transformation:

c j =
[

j−1∏
k=0

(−σ z
k

)]
σ−

j ,

σ z
j = 2c†

j c j − 1, (28)
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to rewrite the fermionic model Eq. (1) as a spin chain

H =
∑

j

(−) j (tσ+
j σ−

j+1 + H.c.)

+ ([(−) j� + i�′]σ+
j σ+

j+1 + H.c.)

+ 1

4
V σ z

j σ
z
j+1, (29)

where σ± = (σ x ± iσ y)/2. σ x,y,z are Pauli matrices. Note that
this Jordan-Wigner transformation differs from Eq. (10) by a
(−1) j( j−1)/2 sign, hence a different form of the Hamiltonian
(29) compared to (10). In this representation, the symmetry
generators of Hamiltonian (29) writes:

P f = (−1)F̂ =
∏

r

( − σ z
r

)
,

T̃x =
( ∏

r=odd

σ z
r

)
Tx · K,

C̃ =
(∏

r

σ x
r

)
· K,

I =
(∏

r

σ x
r

)
·
( ∏

r=odd

σ z
r

)
· OI .

The on-site matrix product operator (MPO) for the Hamil-
tonian (10) can be written as a 5 × 5 matrix V [ j] =⎛

⎜⎜⎜⎜⎝
1 0 0 0 0
σ+ 0 0 0 0
σ− 0 0 0 0
σ z 0 0 0 0
0 t jσ

− + �̃ jσ
+ t jσ

+ + �̃∗
jσ

− 1
4V σ z 1

⎞
⎟⎟⎟⎟⎠,

(30)

where we define t j ≡ (−) jt, �̃ j ≡ (−) j� + i�′. The bound-
ary vectors for the open boundary condition (OBC) are vL =
(0, 0, 0, 0,1) and vR = (1, 0, 0, 0, 0)T .

Recall that P f → −P f under the inversion operation I
in an open chain of an odd length, according to (27). As
indicated by the LSM theorem earlier, a gapped ground state
either breaks inversion I or the parity symmetry P f . If P f is
preserved while I is broken, it can be characterized by the
nonvanishing order parameters such as

MFM-z ≡ 1

L

N∑
j=−N

σ z
j ,

MAFM-z ≡ 1

L

N∑
j=−N

(−) jσ z
j , (31)

which are invariant under the symmetry P f whereas
I−1M(A)FM-zI = −M(A)FM-z. Their MPOs can be written in the
form as

V [ j]
FM-z =

(
1 0
σ z 1

)
, V [ j]

AFM-z =
(

1 0
eiπ jσ z 1

)
. (32)

To detect possible symmetry breaking of P f , we use the
following inversion-symmetric order parameter

Mx = 1

L

N∑
j=−N

(−)
j( j+1)

2 σ x
j . (33)

Since P−1
f MxP f = −Mx, nonvanishing 〈Mx〉 implies the

spontaneous symmetry breaking of P f . Although spontaneous
symmetry breaking (SSB) cannot really occur on a finite
chain, DMRG tends to select a minimally entangled ground
state, which means |〈M〉| could be a good estimation for the
SSB. However, it can be very unstable near a quantum critical
point, where a macroscopic superposed cat state becomes
possible. To overcome this difficulty, we can add an explicit
symmetry-breaking term such as Hh = h(σ z

−N + σ z
N ) on the

boundary to split the degenerate ground states. Alternatively,
we can use root mean square order parameter

√
〈M2〉 instead

of the order parameter |〈M〉| itself to detect SSB [27,28]. In
addition to these order parameters, another alternative way
to detect spontaneous symmetry breaking is to look at the
two point correlation function associated with the correspond-
ing order parameter [29]. The advantage of the correlation
function is that it can be used in finite systems where the
expectation value of the order parameter is zero.

B. Matrix product state, variance, and entanglement

For Eq. (10) on a finite chain consisting the number of
sites L under OBC, its many-body wave function can be
represented by a matrix product state (MPS) as

|ψ〉 =
∑
{s}

(As0 As1 . . . AsL−1 )|s0, s1, . . . , sL−1〉. (34)

As0,sL−1 are two boundary vectors with dimensions 1 × d and
d × 1, respectively. Here d = 2 denotes the dimension of the
local Hilbert space. The exact MPS requires the largest bond

dimension χmax = √
d

L
at the center of the chain. However,

it is not practically achievable therefore we need to put a
fixed cutoff χ to compress the wave function. Written in the
Schmidt basis [30] in terms of subsystems A and B, the wave
function can be decomposed as

|ψ〉 =
χ−1∑
α=0

e− ωα
2 |α〉A ⊗ |α〉B, (35)

where {ω} is the entanglement spectrum, which is the eigen-
value spectrum of the local entanglement Hamiltonian HA

defined by the reduced density matrix ρA = e−HA . |α〉A,B are
the orthogonal Schmidt basis. By using the variational method
[31,32], we can obtain the ground state of the correspond-
ing Hamiltonian iteratively. We have tested that both random
initial MPS and the method of growing the system from a
smaller length to initialize [33] provide accurate ground states.
A generic and effective numerical criterion to estimate how
accurately the wave function is approximated by a MPS with
a fixed bond dimension is the variance [34,35]

v2 = 〈ψ |H2 − E2
0 |ψ〉, (36)

which is easy to compute in the MPS-MPO framework [32].
It is known that v is proportional to the truncation error in
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the density matrix renormalization group (DMRG) method
[34]. Moreover v is essentially determined by the distribu-
tion of the entanglement spectrum [36]. For a gapped state,
it tends to be exponentially small given a sufficient but not
too large χ . When the system is approaching criticality and
becoming long-range entangled, v would increase rapidly
since the correlation length ξ becomes as large as the system
size and the entanglement spectrum is much more densely
distributed, resulting in a much larger entanglement entropy
(EE) SA = −tr(ρA ln ρA) ∝ ln ξ in comparison to gapped ones
[37,38]. Variance can be used to distinguish different phases
and identify the critical points between them.

Because of the translational symmetry breaking by the
OBC on a finite lattice, the open ends can induce dimerization
and hence oscillations in bond energy and EE in 1d quantum
many-body systems [39,40]. Therefore the bipartite EE for
subsystem A has the following form [4]

SA(l ) = Su
A(l ) + (−)l So

A(l ) + S0, (37)

where l = 0, . . . , L − 2 denotes the links. Su
A(l ) is the uni-

form part and So
A(l ) is the oscillation part of the EE. So

A(l )
is phenomenologically proportional to the oscillatory part of
the bond energy as So

A(l ) = αEo(l ) [39]. The bond energy
behaves as Eb(l ) ≡ 〈hl〉 = Eu

b + (−)lEo
b (l ) where Eu

b is a con-
stant, which can be extracted as Eu

b = 1
2 [Eb(L/2) + Eb(L/2 +

1)]. Once Su
A(l ) is extracted by fitting and finding the optimal

α, on a finite lattice with the number of bonds L = L − 1,
Cardy’s formula under OBC reads [37]

Su
A(l ) = c

6
ln

[
2L
π

sin
π (l + 1/2)

L

]
+ S0, (38)

where c is the central charge characterizing the corresponding
conformal field theory (CFT) which describes the gapless
system, and l = 0, . . . ,L − 1. However, for our system on a
1d chain consisting of an odd number of sites, EE will develop
plateaus stemming from the incommensurate oscillations [41]
and exact-zero modes in our LSM system, which may cause
an underestimated central charge. We demonstrate this issue
with a simpler example, the 1d XY model, in the Appendix B.

IV. THE PHASE DIAGRAM

Before discussing the phase diagram of the 1d system, we
first restrict the phase space to be studied by symmetry analy-
sis. In the fermion model (1) parametrized by (t,�,�′,V ), it
is straightforward to verify the following symmetries:

H∗(t,�,�′,V ) = H (t,�,−�′,V ),

TxH (t,�,�′,V )T −1
x = H (−t,−�,�′,V ),

e i π
2

∑
r n̂r H (t,�,�′,V )e− i π

2

∑
r n̂r = H (t,−�,−�′,V ).

In other words, changing the sign of hopping t , or real pairing
�, or imaginary pairing �′ does not affect the spectrum of the
1d chain, in the thermodynamic limit. Therefore we set t = 1
to be a positive constant, and restrict our numerical studies to
the parameter regime � > 0, �′ > 0. Below we present our
results on the phase diagram of 1d model as Eqs. (1) or (10).

A. The noninteracting limit

If V = 0, Eq. (1) is a noninteracting model that can be
solved exactly, and it provides a good starting point to un-
derstand the full phase diagram of the interacting model.
We consider a closed 1d chain of N = 2N sites (or N unit
cells) under periodic boundary condition (PBC), where we
label the sites by j ∈ {0, . . . ,N − 1}. Note that there are two
inversion centers at j = 0,N /2 in this 1d chain. There are
N = N /2 unit cells, labeled as l = 0, · · · , N − 1, with the
site index j = 2l + α, l = 0, . . . , N − 1, α = 0, 1. Therefore
the quadratic fermion BdG Hamiltonian can be rewritten as

H0 =
∑
α,l

[(−)αtc†
2l+α

c2l+α+1 + H.c.]

+
∑
α,l

([(−)α� + i�′]c†
2l+α

c†
2l+α+1 + H.c.). (39)

Fourier transformations are defined as

dk,α = 1√
N

N−1∑
l=0

eikl c2l+α. (40)

In the spinor basis of ηk = (dk,0, d†
−k,0, dk,1, d†

−k,1)T , H0

has the following form in momentum space:

H0 =
∑
k�0

η
†
k�(k)ηk, (41)

with

�(k) =

⎛
⎜⎝

0 0 t (k) �(k)
0 0 −�∗(−k) −t (k)

t∗(k) −�(−k) 0 0
�∗(k) −t∗(k) 0 0

⎞
⎟⎠, (42)

where we define t (k) ≡ t (1 − eik ) = −2it sin( k
2 )eik/2

and �(k) ≡ [�(1 + eik ) + i�′(1 − eik )] = 2[� cos( k
2 ) +

�′ sin( k
2 )]eik/2. Note that t (−k) = t∗(k). We can obtain the

four-band dispersion relations as ±ε(±k), where

ε(k) = 2

[√
t2 sin2

(
k

2

)
+ �2 cos2

(
k

2

)
+ �′ sin

(
k

2

)]
.

(43)

We denote the two positive eigenvalues as ε0(k) �
ε1(k) � 0, ∀k � 0. Therefore the Hamiltonian will be
diagonalized to the form H0 = ∑

k�0 γ
†
k �(k)γk , in

which �(k) = diag{ε0(k),−ε0(k), ε1(k),−ε1(k)}, γk =
( fk,0, f †

−k,0, fk,1, f †
−k,1)T . If we set t = 1.0 as the energy unit,

the noninteracting phase diagram depending on (�,�′) for
V = 0 is illustrated in Fig. 1. Some representative cases are
discussed as follows.

(1) � = 0,�′ = 1.0 is a special case where the lower band
is flat lying exactly at zero energy. It means that gapless
excitations appear for all k. If �′ �= 1.0, the system features
two linearly dispersing Majorana modes at k0 = 0: they have
different velocities and are hence not conformally invariant.

(2) � �= 0,�′ < 1.0 always give us a gapped supercon-
ductor, i.e., a Majorana chain. Particularly, � = 1.0,�′ = 0.0
features a flat band spectrum of Bogoliubov quasiparticles.
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Δ

Δ′

FIG. 1. Phase diagram for Eq. (1) with V = 0. Gray area de-
notes gapless phases whereas white areas denote the gapped Kitaev
chain. The axis perpendicular to (�,�′) plane is for the interaction
strength V .

(3) � �= 0,�′ = 1.0 is gapless at k0 = π . The dispersion
is expanded as ±ε1(k0 + δk) ≈ ± 1

4δk2 + O(δk2), which is
quadratic near k0 = π .

(4) � �= 0,�′ > 1.0 gives rise to a gapless phase with a
pair of linearly dispersing Majorana modes. The gapless point
is located at k0 = 2 arctan �√

�′2−t2 . Around this point, the dis-

persion relation reads ±ε1(k0 + δk) ≈ ±vs(k0)δk + O(δk2),
which is linear. The speed of the Majorana mode is

vs(k0) = t2 − �2 − �′2

�′ cos

(
k0

2

)
. (44)

B. A representative study for the interacting cases: � = 1.0

By fixing � = 1.0 and varying �′, we can obtain a rough
idea of the whole phase diagram for the interacting model
Eq. (1). First we choose a fixed system size L = 121, which
we find is large enough to accurately determine the phase
diagram. Note that, in the main text, the bond dimension of all
MPSs is fixed at χ = 64, which we find is sufficient to obtain
converged physical measurements. A larger bond dimension
is tested and verified in Appendix C. Furthermore, we select
�′ = 0.0 and 0.5, which belong to gapped superconductor
phases at V = 0; and �′ = 1.0 and 1.5, which are gapless
at V = 0 as we discussed above in the noninteracting limit.
These four cases are illustrated by red dots in Fig. 1. For V →
±∞, obviously Eq. (10) will lead to antiferromagnetic−z
(ferromagnetic−z) states, respectively. Therefore we restrict
ourselves to scan the parameter range −15.0 � V � 15.0,
which turns out to be sufficient.

After obtaining a converged ground state from a randomly
initialized MPS, we plot the middle-bond EE Sm and variance
v in Fig. 2 as functions of V , in which we can identify the
gapped ground states with a vanishing variance v. EE and
variance peak at the same V , implying that the system is ap-
proaching a critical point. For V > 0, we notice that that there
is a robust critical point at V ≈ 4.0, which seems independent
of the choice of �′. While for V < 0, nonvanishing �′ can
expand one critical point for �′ = 0.0 [see Fig. 2(a)] to a finite
gapless region as shown in Figs. 2(b)–2(d). Larger �′ induces
a wider gapless phase. For example, �′ = 1.5 can induce a
critical phase for −5.0 � V � 2.0. Within this gapless phase,
the variance v also fluctuates and shows distinctions between
V > 0 and V < 0 regions, which implies that the negative-V
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FIG. 2. Middle-bond entanglement entropy Sm (blue circle) and
variance v (purple cross) in the case of � = 1.0. L = 121. (a), (b),
(c), and (d) denote �′ = (0.0, 0.5, 1.0, 1.5), respectively.

gapless phase behaves differently from the positive-V critical
point. By taking both Figs. 3(d) and 2(d) into consideration,
we can conclude that the left phase boundary at V ≈ −5.0
of the negative-V gapless phase is described by the quantum
Berezinsky-Kosterlitz-Thouless (BKT) [42] transition, unable
to be distinguished by energy derivatives. This is also con-
sistent with the numerically observed central charge c = 1 at
this phase boundary. The right phase boundary at V ≈ 2.0 is
a first-order transition, as shown in the first energy deriva-
tives in Fig. 3. Different types of quantum phases and their
transitions can also be further illustrated by the distributions
of bipartite entanglement spectrum in the ground state. We
use �′ = 0.5 and 1.5 as two examples, which are shown in
Fig. 4.
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FIG. 3. First (blue circle markers) and second (purple triangle
markers) derivatives of the ground state energy density ε0. � =
1.0. L = 121. (a), (b), (c), and (d) denote �′ = (0.0, 0.5, 1.0, 1.5),
respectively.
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FIG. 4. Middle-bond bipartite entanglement spectrum defined by
Eq. (35). � = 1.0. L = 121. (a) �′ = 0.5 and (b) 1.5.

In Fig. 5, we plot two examples of EE and bond energy for
� = 1.0,�′ = 1.5. Figures 5(a) and 5(c) are for V = −3.0,
which is deep in the gapless phase. By fitting from Cardy’s
formula Eq. (38), the central charge reads c ≈ 0.574 for the
odd lattice L = 121, where we can see that the oscillations
near the center of the 1d chain is incommensurate. In com-
parison, in an even lattice of L = 120, the central charge
c ≈ 0.917 turns out to be quite different. We address this issue
in Appendix B and attribute the underestimation of central
charge on odd lattices to the exact ground state degeneracy,
due to anticommutation relation between inversion and parity
symmetries. Even lattices can be regarded as a perturbation
which opens a small finite-size gap between the two degen-
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FIG. 5. Bond energy Eb (insets) and bipartite EE SA. � =
1.0, �′ = 1.5. [(a) and (b)] L = 121. [(c) and (d)] L = 120. [(a) and
(c)] V = −3.0. [(b) and (d)] V = 1.8. Hollow circles represent the
original data while filled circles represent the extracted uniform EE
as defined in Eq. (37).
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FIG. 6. Magnetic order parameters Mz and Mx in the case of � =
1.0. L = 121. For V > 0, Mz = MAFM−z. For V < 0, Mz = MFM−z.
(a), (b), (c), and (d) denote �′ = (0.0, 0.5, 1.0, 1.5), respectively.

erate ground states on an odd lattice, which leads to more
accurate estimations of the central charge. In Figs. 5(b) and
5(d), V = 1.8 lies in the gapless phase but in proximity to
the first-order transition into the Kitaev chain. Compared to
V = −3.0 case in Figs. 5(a) and 5(c), here the oscillations in
terms of both EE and bond energy are quite different, with a
larger period persisting into the bulk. We found that fitting to
Cardy’s formula failed to produce a sensible central charge.

In Fig. 6, we plot the order parameters defined in Eqs. (31)
and (33), from which we can see that, for �′ = 1.5, in the
gapped phase 2.0 � V � 4.0, the nonvanishing 〈Mx〉 implies
the spontaneous breaking of parity symmetry P , pointing to
a Kitaev chain. Meanwhile for V → ±∞, nonvanishing 〈Mz〉
implies breaking of inversion symmetry I. Because of their
incompatible unbroken symmetries, the phase transition be-
tween these two symmetry breaking phases is beyond the Lan-
dau paradigm of spontaneous symmetry breaking. It requires
a more detailed study, which we present in the next section.

C. Overview of the whole phase diagram

We also obtained data for � = 0.5, 1.5, and 2.0 in a range
of different �′. The general structure of the phase diagrams
as a function of V are similar to � = 1.0 case. In particular,
a larger � will drive the critical point Vc between the Ki-
taev chain (〈Mx〉 �= 0) and inversion-breaking superconductor
(〈Mz〉 �= 0) to a larger value. Based on these numerical results,
we can qualitatively draw the schematic phase diagrams as
shown in Fig. 7: (a) for a fixed � = 1.0 and (b) a three-
dimensional phase diagram as a function of (V,�,�′).

V. CHARACTERIZING THE CRITICAL BEHAVIORS

A. Finite-size scaling analysis of the critical points

After having a basic understanding of the phase diagram,
we take a closer look at the critical point separating the parity-
breaking Kitaev chain (M-x order in the spin chain language)
and the inversion-breaking superconductor (AFM-z order in
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FIG. 7. (a) Planar schematic phase diagram (V,�′) with � =
1.0. Gray areas denote gapless regimes. Red points denote DQCPs.
(b) Three-dimensional schematic phase diagram (V,�,�′) for the
model. Red faces denote continuous second-order phase transitions.
Blue face denotes discontinuous first-order phase transitions. Yellow
face denotes BKT-type phase transitions. In addition to the three
gapped phases (FM-z, AFM-z, TSC i.e., M-x) with different broken
symmetries, there are two symmetric gapless phases I and II.

the spin chain language). As we have mentioned, since the
two gapped phases are not related to each other by sponta-
neous symmetry breaking, this unconventional critical point
is beyond the Ginzburg-Landau-Wilson paradigm.

In this section, we focus on the case with � = 1.0. In the
first place, we compute the Binder cumulant [43,44]

UL = 〈M4〉
〈M2〉2

(45)

around the unconventional critical point V ≈ 4.0. Here M
denotes the order parameter of the broken symmetry. It fol-
lows the finite-size scaling ansatz UL = gU (|δ|L1/ν ), in which
gU does not scale with L. ν is the critical exponent for the
correlation length ξ = |δ|−ν , in which δ is the reduced inter-
acting parameter defined as δ ≡ V − Vc. Since the function gU

is independent of the finite lattice sizes at the critical point,
numerical data for UL given by different lattice sizes will
intersect at the same point.

In Fig. 8, we plot two Binder cumulants Uz and Ux corre-
sponding to MAFM−z and Mx, respectively. Furthermore, if we
compute the derivative of the Binder cumulant, we can extract
the correlation-length critical exponent ν since

dU

dV
∝ L1/ν (46)

and it also reaches its maximum at the critical point [45].
For �′ = 0.0 as shown in Figs. 8(a) and 9(a), the two

critical points determined by Uz and Ux coincide with each
other, leading to a single critical point between the two gapped
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FIG. 8. Binder cumulants Uz (monotonically increasing solid
markers) and Ux (monotonically decreasing hollow markers) around
the critical point in the case of � = 1.0. (a), (b), (c), and (d) denote
�′ = (0.0, 0.5, 1.0, 1.5), respectively. Dashed lines mark the inter-
section point(s) for Uz and Ux .

symmetry-breaking phases. This unique critical point is an
analog of the DQCP in 2D [1,2], as we will discuss in more
detail in the next section. As we gradually increase �′ > 0,
we find that this single critical point starts to split into two,
hosting a stable gapless phase in between. The two phase
boundaries adjacent to it are determined by the scaling of two
order parameters Mx and Mz. Furthermore, from the finite-size
analysis in Fig. 10, we can infer that both order parameters
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FIG. 9. Derivatives of the Binder cumulants dUz/dV (solid
markers) and dUx/dV (hollow markers) around the critical point.
� = 1.0. (a), (b), (c), and (d) denote �′ = (0.0, 0.5, 1.0, 1.5), re-
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FIG. 10. Magnetic order parameters MAFM−z (monotonically in-
creasing solid data markers) and Mx (monotonically decreasing
hollow data markers) around the critical point. � = 1.0. (a), (b), (c),
and (d) denote �′ = (0.0, 0.5, 1.0, 1.5), respectively. Insets show the
logarithm finite-size fittings at the critical point(s).

will vanish within this narrow gapless phase in the thermo-
dynamic limit, suggesting that it preserves both inversion and
parity symmetries. This gapless nature of this phase is also
inferred by a large central charge within it, which will be
discussed in details later.

After nailing down the critical points, we turn to the finite-
size scaling study for the corresponding magnetizations as

〈M〉 = L−β/νgM (|δ|L1/ν ), (47)

where β is the critical exponent for the magnetic order pa-
rameter. Therefore, exactly at the critical point, we have
〈M〉 ∝ L−β/ν , which can be used to extract the related critical
exponents. This procedure is shown in Fig. 10 and insets there.
All these results are summarized in Table I, where we can see
that Mz,x share the same critical exponents up to numerical
errors even when the single critical point splits into two phase
boundaries. This suggests an emergent symmetry relating the
two order parameters. When the two order parameters become
critical at the same point, this single critical point is a 1D
DQCP as we will discuss soon.

For a larger �, we find that the single DQCP seems to
persist for the full range of �′, instead of splitting into two
phase boundaries with a gapless phase in between. We list the
critical points and exponents for � = 1.5 in Table II. Finally,

TABLE I. Critical point(s) and critical exponents for � = 1.0.

�′ [
V z

c ,V x
c

]
νz βz/νz νx βx/νx

0.0 [4.00, 4.00] 1.01(0) 0.24(4) 1.01(1) 0.24(4)
0.5 [4.01, 4.00] 1.02(7) 0.23(9) 1.02(9) 0.23(4)
1.0 [4.03, 4.02] 1.08(5) 0.24(9) 1.08(5) 0.24(5)
1.5 [4.10, 4.03] 1.20(1) 0.22(3) 1.21(1) 0.22(8)

TABLE II. Critical point(s) and critical exponents for � = 1.5.

�′ [
V z

c ,V x
c

]
νz βz/νz νx βx/νx

0.0 [5.00, 5.00] 0.89(1) 0.21(5) 0.89(3) 0.21(5)
0.5 [5.00, 5.00] 0.89(7) 0.23(2) 0.91(2) 0.20(3)
1.0 [5.02, 5.02] 0.93(4) 0.21(2) 0.93(3) 0.23(7)
1.5 [5.04, 5.04] 0.99(7) 0.23(5) 1.00(3) 0.24(2)

we want to mention that in addition to the numerical error
summarized in the Table, the finite step size δV = 0.02 of data
points can also lead to errors of the critical exponents, which
is hard to evaluate.

B. Field theory description of the DQCP
as a Tomonaga-Luttinger liquid

We find that the parameter � determines the properties of
the critical point(s) for V > 0. By fixing �′ = 0.5, we focus
on two representative cases of � = 0.5, 1.5. The finite-size
scaling analysis similar to the previous section is shown in
Figs. 11 and 12. The critical exponents obtained from them
are summarized in Table III.

For � < 1.0, the two order parameters Mz,x approach crit-
icality at different V , leaving a narrow gapless phase between
them where both order parameters Mz,x vanish. Such a gapless
phase is allowed by the LSM theorem. The peaks in Fig. 11(a)
are also less sharp, which suggests that the corresponding
critical exponent ν is larger. However, for � > 1.0, Mz,x ap-
proach criticality at one single critical point Vc. The narrow
gapless phase shrinks into a single critical point. The peaks in
Fig. 11(b) are also sharper and lead to a smaller ν. In other
words, the two phase boundaries of vanishing Mz,x join and
form a DQCP.

To get more understanding for the DQCP, we look into
the effective field theory of a U(1) Tomonaga-Luttinger liquid
(TLL) in terms of two boson variables φ and θ :

HLL[θ, φ] = u

2π

∫
dx

[
1

g
(∂xθ )2 + g(∂xφ)2

]
, (48)

where u is the renormalized velocity and g is the Luttinger
parameter. Here � = ∂xθ/π is the canonical conjugate of
phase variable φ.
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FIG. 11. Derivatives of the Binder cumulants dUz/dV (solid
markers) and dUx/dV (hollow markers) around the critical point(s).
Insets show the logarithm finite-size fittings at the critical point(s).
�′ = 1.5. (a) � = 0.5. (b) � = 1.5.
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In the dictionary of Abelian bosonization, the spin opera-
tors in a spin- 1

2 chain can be expressed as

Sz(x) ± iSx(x) ∼ e∓ i θ [(−1)x ± cos 2φ], (49)

Sy(x) ∼ −∇φ

π
+ (−1)x cos 2φ. (50)

Under the symmetry operations, the boson fields transform as

I : θ (x) → π − θ (−x), φ(x) → π

2
− φ(−x), (51)

P f : θ (x) → −θ (x), φ(x) → π

2
− φ(x) (52)

C̃ : θ (x) → π − θ (x), φ(x) → φ(x), (53)

T̃x : θ (x) → θ (x + 1), φ(x) → π

2
− φ(x + 1). (54)

where we have set the lattice constant as unity. Note that C̃ and
T̃x are antiunitary symmetries while inversion I and parity P f

symmetries are unitary.
The Jx = Jz (or equivalently 2(t + �) = V ) limit of our

model (10) corresponds to the XXZ spin- 1
2 chain, character-

ized by [46]

Jy/Jx,z = 2(t − �)/V = − cos(πg/2), (55)

u(2 − g) =
√

V 2 − 4(t − �)2 = 4
√

t� (56)

for V � 2|t − �| in effective action (48). In particular, the
Heisenberg limit V = 2t, � = 0 with g = 2 and u = πV ,
characterizes the single critical point separating the Luttinger
liquid phase at V > 2(t − �) and the Ising antiferromagnetic
phase at V < 2(t − �).

The leading-order back-scattering terms introduced by
|Jx − Jz|, Jy and � couplings in (10) are

Hb.s. = gθ cos(2θ ) + gy cos(4φ) + g�∇φ∇θ cos θ + · · · .

(57)

TABLE III. Critical point(s) and critical exponents for �′ = 1.5.

�
[
V z

c ,V x
c

]
νz βz/νz νx βx/νx

0.5 [3.34, 2.88] 1.47(1) 0.19(7) 1.51(3) 0.20(6)
1.0 [4.10, 4.03] 1.20(1) 0.22(3) 1.21(1) 0.22(8)
1.5 [5.04, 5.04] 0.99(7) 0.23(5) 1.00(3) 0.24(2)

In particular the g� term from the � (or �′) coupling in the lat-
tice model has a scaling dimension of dim(g� ) = 2 + g

4 and is
hence irrelevant, suggesting the stability of the single critical
point for a small �′ in the � = 0 limit. While the dimension
of gy term is dim(cos 4φ) = 4/g > 2, the gθ term has a scaling
dimension of dim(cos 2θ ) = g < 2. Since the only relevant
term is cos(2θ ), when gθ changes sign, the ground state goes
through a transition from the inversion-broken AFMz phase to
the parity-borken AFMx phase.

In this Luttinger liquid phase of model (10), the antifer-
romagnetic order parameters for the AFMz,x phases in the
bosonized language read

Mz =
∑

j

(−1) jSz
j ∼ cos θ, (58)

Mx =
∑

j

(−1) jSx
j ∼ sin θ, (59)

and they share the same scaling dimension

dim[Mx] = dim[Mz] = g

4
. (60)

We notice that a similar unification of two order parameters
(FMz and VBS) at a DQCP in 1D is recently discussed by Ref.
[5]. While in the context of Ref. [5] the relation between the
two order parameters is only clear in the bosonized dual pic-
ture, here in our example of 1D DQCP a standard bosonization
treatment already reveals the emergent symmetry between the
two distinct order parameters Mx and Mz, one (Mz) breaking
inversion symmetry I while the other (Mx) breaks fermion
parity P f .

The nature of this DQCP can be revealed by looking into
the dual domain wall variables of e.g. the AFMz phase. Here
we follow the strategy of Ref. [5] to identify the projective
symmetry action on the domain wall variables {�μ j+1/2| j ∈ Z}
on the spin chain (10):

μx
j+1/2 = σ z

j σ
z
j+1,

μz
j−1/2ρ

z
jμ

z
j+1/2 = σ x

j ,

ρx
j = σ z

j , (61)

which are constraint by the Gauss’ law

μx
j+1/2 = ρx

j ρ
x
j+1. (62)

Here ρz
j is the link variable for the Z2 gauge field, while

μz
j+1/2 creates a Z2 gauge charge (i.e. domain wall of Mz

order parameter) on the dual site j + 1
2 . In terms of the dual

variables, the symmetry operations can be written as

P f =
∏

j

ρx
j =

∏
j=odd

μx
j+1/2 : μz

j+1/2 → (−1) jμz
j+1/2; (63)

T̃x = Tx · K : μz
j+1/2 → μz

j+3/2; (64)

C̃ =
(∏

j

ρz
j

)
· K : μz

j+1/2 → μz
j+1/2; (65)

I =
(∏

j

ρz
j

)
· OI : μz

j+1/2 → μz
− j−1/2. (66)
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Most importantly, the Ising/parity symmetry P f and inversion
I anticommutes on the domain wall variable μz

j+1/2 even on a
periodic spin chain of an even length:

P f · I ◦ μz
j+1/2 = −I · P f ◦ μz

j+1/2. (67)

This projective symmetry action on the domain wall variable
is captured by a nontrivial projective symmetry group [47],
i.e., a nontrivial group cohomology ω ∈ H2[G, Z2] where G
is the symmetry group of the spin chain [48]. This means
destruction of the AFMz phase by condensing domain wall
μz

j+1/2 will inevitably breaks the symmetry, leading to e.g. an
AFMx phase which spontaneously breaks the Ising symmetry.
This is in parallel with 2D DQCPs where defects of one
ordered phase carry nontrivial quantum numbers of another
symmetry, and condensation of this defect will necessarily
break another symmetry while restoring the originally broken
symmetry.

Regarding the critical exponents of this critical point, ν can
be related to the scaling dimension of the relevant perturbation
cos(2θ ) by

ν = 1

d − g
(68)

in this TLL theory [5]. Here d = 2 is the space-time dimen-
sion. With the value of β/ν at hand and the general scaling
relation 2β = ν(d − 2 + η) [49], we can immediately obtain
the critical exponent η, namely the anomalous dimension for
the two point correlation function �(n) = |n|2−d−η. The scal-
ing dimension for the order parameter reads dim[M] = η/2 =
β/ν.

On one hand, from Table III fixed with �′ = 1.5 we can
see that, only for � = 1.5, these two order parameters vanish
at the same critical point. Numerical results of the critical
exponents appears to be the same within numerical errors.
Moreover, they are consistent with Eqs. (68) and (60), imply-
ing that it is indeed described by a c = 1 TLL theory in the
long-wavelength limit. More data in Table II suggest that the
Luttinger parameter g can vary within a finite range if g < 2.
The scaling dimensions of Mx,z are also the same at the critical
point. The emergent larger U (1)θ symmetry unifies these two
order parameters together and can rotate from one to the other.

On the other hand, if � = 0.5, the critical points for these
two order parameters split, leading to a stable gapless phase
between the two ordered phases. Numerical results of the
critical exponents contradict Eqs. (68) and (60), which implies
that this TLL theory is not valid any more. The analysis given
by Abelian bosonization in Eq. (60) seems to break down for
a small �/t . However, interestingly, the scaling dimensions of
Mx,z for the two phase boundaries where Mx,z vanish respec-
tively are still identical within numerical errors, being smaller
than their values at the DQCP. Currently we do not have a
good theoretical understanding of this gapless phase or how
it emerges from the TLL at a larger �/t , and we leave these
questions for future works.

C. Finite-size analysis of the central charge

As discussed in Appendix B in detail, in a 1d chain of an
odd length, there will be two exactly degenerate ground states

500 1000 1500
L

1.0

1.1

1.2

1.3

c

(a)

250 500 750
L

0.92

0.94

0.96

(b)

250 500 750
L

0.92

0.94

0.96
(c)

FIG. 13. Finite-size scaling of fitted central charge c. �′ =
1.5 on even lattices. χ = 256. (a) � = 0.5,V = 3.00 Gapless II.
(b) � = 1.5,V = 5.04 DQCP. (c) � = 1.0,V = −3.00 Gapless I.

with opposite fermion parities, due to the anticommutation re-
lation between inversion and parity symmetry operations. This
leads an underestimated entanglement entropy, and hence an
underestimated central charge [see, e.g., Fig. 5(a)] by fitting
the Cardy’s formula Eq. (38) numerically.

To resolve this issue, we use an even system size, which
splits the exact degeneracy in the spectrum, as illustrated in
Appendix E. Even lattices allow us to extract the entanglement
entropy and the central charge more reliably. Here we consider
the same parameter range as in Sec. V B. The results are
shown in Fig. 13. At the DQCP in Fig. 13(b), � = �′ = 1.5,
the critical exponents are given by ν = 1 and g = 1 in Ta-
ble III. The corresponding central charge is approaching unity
as the system size increases, consistent with a Tomonaga-
Luttinger liquid (TLL). After the single DQCP splits into two
phase boundaries, within the stable gapless phase, the central
charge c → 1.3 as we compute up to L = 1600 in Fig. 13(a).
This suggests that the stable gapless phase sandwiched by the
two gapped symmetry-breaking phases cannot be described
by a TLL with c = 1.

In Fig. 13(c), we make the scaling analysis deep in the gap-
less phase at a negative V = −3.0. This stable gapless phase
lies between the FMz phase and the Kitaev chain features a
central charge of c → 1, again pointing to a TLL.

VI. CONCLUDING REMARKS

In this paper, we studied the phase diagram and quantum
phase transitions in a 1D interacting fermion model with an
Lieb-Schultz-Mattis (LSM) type anomaly. In the presence of
a site-centered inversion symmetry, any gapped symmetric
ground state must be a Kitaev chain with a Majorana zero
mode on each open end. Via the Jordan-Wigner transforma-
tion, it is equivalent to a spin-1/2 model whose gapped ground
states must break either the inversion or an Ising symmetry,
which corresponds to the fermion parity in the fermion model.
Such an LSM system provides a rich playground to identify
unconventional quantum phase transitions between different
ordered phases, not related to each other by spontaneous sym-
metry breakings, hence beyond the Ginzburg-Landau-Wilson
paradigm.

To understand the phase diagram of a generic fermion
model with symmetric nearest-neighbor couplings, we first
solve the noninteracting limit V = 0. In the interacting cases
with V �= 0, we implement the variational MPS method to
numerically study the model. The phase diagram and phase
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FIG. 14. Bond energy Eb (insets) and bipartite EE SA in the XY
spin chain under OBC computed from the exact solution. L = 121.
Hollow circles represent the original data while filled circles repre-
sent the extracted uniform EE as defined in Eq. (37). (a) |�0〉 without
zero-mode. (b) |�1〉 with zero-mode. Both fitted central charges are
c ≈ 0.962.

boundaries are obtained using variance, entanglement en-
tropy and ground state energy. Furthermore, we focus on
the unconventional quantum phase transition between the
inversion-breaking phase and the parity-breaking phase (i.e.
the Kitaev chain), and carry out a detailed finite-size scaling
analysis to extract critical exponents. This is combined with
Abelian bosonization and projective symmetry group anal-
ysis, to understand the nature of this “deconfined”quantum
critical point (DQCP), where both inversion-breaking and
parity-breaking order parameters vanish simultaneously. We
find that the numerically measured critical exponents are cap-
tured by the Luttinger parameter in a Tomonage-Luttinger
liquid. We have also identified a stable symmetric gapless
phase, which emerges from the DQCP and separates the two
symmetry-breaking phases. While the nature of this gapless
phase and how it emerges from the DQCP remains unknown,
we leave this interesting question for future works. More
complicated next-nearest interactions like in Ref. Hetényi [50]
can be considered in the future. We also point out that, there
is no essential difficulty to realize our model experimentally
using modern techniques [51,52].
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APPENDIX A: SYMMETRY IMPLEMENTATIONS
ON THE FERMION CHAIN VS. THE SPIN CHAIN

Here we address in detail the symmetry operations in the
fermion language versus the spin language.

In the fermion model,

H =
∑

j

(−) j[t (c†
j c j+1 + H.c.) + (�c†

j c
†
j+1 + H.c.)]

+ (i�′c†
j c

†
j+1 + H.c.) + V

(
n j − 1

2

)(
n j+1 − 1

2

)
(A1)
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FIG. 15. Bond energy Eb (insets) and bipartite EE SA in the open
XY chain obtained by MPS with χ = 64. Hollow circles represent
the original data while filled circles represent the extracted uniform
EE as defined in Eq. (37). (a) L = 120. Fitted central charge c ≈
0.960. (b) L = 121. Fitted central charge c ≈ 0.375.

By the Jordan-Wigner transformation in Eq. (10), the above
fermion model is transformed into a spin chain

Hspin =
∑

j

∑
α=x,y,z

JαSα
j Sα

j+1 + (−) j�
(
Sx

j S
y
j+1 + Sy

j S
x
j+1

)
(A2)

where the exchange couplings are given by

Jx = 2(t + �), Jy = 2(t − �), Jz = V,

� = −2�′. (A3)

Three symmetries are clearly present in the spin model:

P f = ∏
j Z j :

(
Sx

j , Sy
j , Sz

j

) → ( − Sx
j ,−Sy

j , Sz
j

)
, (A4)

C̃ = (∏
j Xj

) · K :
(
Sx

j , Sy
j , Sz

j

) → (
Sx

j , Sy
j ,−Sz

j

)
, (A5)

T̃x = Tx · K :
(
Sx

j , Sy
j , Sz

j

) → (
Sx

j+1,−Sy
j+1, Sz

j+1

)
. (A6)

They are nothing but the magnetic translation (5), fermion
parity (i.e., Ising symmetry) (12) and antiunitary particle-hole
symmetry (7) discussed in the fermion context.

Although the Hamiltonian remains local in both the
fermion and the spin representations, due to the Jordan-
Wigner string, a locality-preserving symmetry operation in
one representation may appear to be nonlocal in the other
representation. One example is the inversion symmetry (2)
discussed in this work. Below we write down two possible
sets of inversion symmetry operations: the first one is nonlocal
in the spin language; the second one preserves locality in the
spin language but looks nonlocal in the fermion language.
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FIG. 16. Variance of the open XY chain. χ = 64. Insets show the
logarithm fittings of v at the critical point. (a) Even lattices. (b) Odd
lattices.
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FIG. 17. (a) Binder cumulant’s derivative and (b) magnetization
in XY model on odd chains. χ = 64. Fitted critical exponents as
given by insets: νx = 1.11(1), βx/νx = 0.24(4).

Since all numerical simulations are carried out in the spin
representation, in the main text, we will stick to the second
set of inversion symmetry summarized in Appendix A 2.

1. Nonlocal inversion symmetry in the spin representation

We first consider the following inversion symmetry

c j
I−→ ic†

− j (A7)

in the fermion chain. On an open spin chain of length L =
2N + 1, the associated inversion symmetry generator in the
spin model (29) is

I = e i π
4

∑
j (−1) j+N+1σ z

j · e i π
4 P f

(∏
r

σ x
r

)
· OI , (A8)

where OI is the spatial inversion operator.
In terms of the spin language, the parity operator

P f = ∏N
l=−N (1 − 2c†

l cl ) = ∏N
l=−N (−σ z

l ). Note that σ+
j σ z

j =
−σ+

j , σ z
j σ

+
j = σ+

j . Thus we have {P f , σ
+
j } = 0. Similarly,

{P f , σ
−
j } = 0. Since we have the inverse Jordan-Wigner

transformation σ z
j = 2c†

j c j − 1, σ−
j = ∏ j−1

l=−N (−σ z
l )c j, σ

+
j =

c†
j

∏ j−1
l=−N (−σ z

l ). Thus we can find that, under the inversion
symmetry I,

σ z
j → −σ z

− j,

σ−
j → i(−)N+ jσ+

− jP f = i(−)N+ j+1P f σ
+
− j,

σ+
j → i(−)N+ j+1P f σ

−
− j . (A9)
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FIG. 18. (a) Binder cumulant’s derivative and (b) magnetization
in XY model on even chains. χ = 64. Fitted critical exponents as
given by insets: νx = 1.02(9), βx/νx = 0.24(4).
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FIG. 19. Derivatives of the Binder cumulants dUz/dV (solid
markers) and dUx/dV (hollow markers) around the critical
point. χ = 128. � = 1.0. (a), (b), (c), and (d) denote �′ =
(0.0, 0.5, 1.0, 1.5), respectively.

Therefore, due to the Jordan-Wigner string, the above in-
version symmetry I is not a locality-preserving unitary:

Sx
j

I−→ (−1) j+N+1P f · Sy
− j,

Sy
j

I−→ (−1) j+N+1P f · Sx
− j,

Sz
j

I−→ −Sz
− j . (A10)

Interestingly, a (nonlocal) string order parameter is required
to preserve this nonlocal inversion symmetry, unlike the usual
local order parameter for the case of a locality-preserving
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FIG. 20. Magnetic order parameters MAFM−z (monotonically in-
creasing solid data markers) and Mx (monotonically decreasing
hollow data markers) around the critical point. χ = 128. � = 1.5.
(a), (b), (c), and (d) denote �′ = (0.0, 0.5, 1.0, 1.5), respectively.
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symmetry. This is discussed in more detail later, in Ap-
pendix D.

2. Locality-preserving inversion symmetry in the spin
representation

Alternatively, there is also a locality-preserving inversion
symmetry preserved in the spin chain (A2):

I =
(∏

j

Xj

)
· OI (A11)

under which the spins transform as(
Sx

j , Sy
j , Sz

j

) I−→ (
Sx

− j,−Sy
− j,−Sz

− j

)
. (A12)

This symmetry, however does not have a local form in the
fermion language:

c j
I−→ −P f c†

− j (A13)

We shall stick to this locality-preserving inversion symmetry
in the main text.
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FIG. 22. Fitted central charge c and variance v in the gapless I
phase for � = 1.0 and �′ = 1.5 on an even lattice L = 120. χ = 64.

APPENDIX B: ZERO-MODE, ENTANGLEMENT ENTROPY
AND FINITE-SIZE ANALYSIS IN THE XY MODEL

ON EVEN AND ODD OPEN CHAINS

In this section, we use the 1d XY model as a pedagogical
example, to illustrate the issue of zero mode and its effects on
the EE on even and odd lattices under OBC, which is similar to
our model when it comes to the lower EE and underestimation
of the central charge. Different DMRG methods could also
make some subtle difference. The Hamiltonian is

HXY =
L−2∑
j=0

[(
1 + γ

2

)
σ x

j σ
x
j+1 +

(
1 − γ

2

)
σ

y
j σ

y
j+1

]
, (B1)

where γ is a free parameter. γ = 0 is the critical point, at
which the system becomes gapless. Eq. (B1) is equivalent to
the 1d BdG Hamiltonian

Hf -XY =
L−2∑
j=0

[(c†
j c j+1 − c†

j c j+1) + γ (c†
j c

†
j+1 − c†

j c
†
j+1)].

(B2)

By a unitary transformation, the single quasiparticle spec-
trum of Eq. (B2) can be computed exactly [53] as Hf -XY =∑L−1

k=0 λk (d†
k dk − 1

2 ). The many-body excitation spectrum is
given by various filling combinations of the single quasiparti-
cle spectrum. For γ = 0, on a finite odd lattice L, we find that
there is always an exact zero-mode λ0 = 0. While on a even
lattice, there is a finite-size nonzero but very small gap λ0 �= 0.
That is, on a finite odd lattice with OBC, the two ground states
|�0〉 = |0〉 and |�1〉 = d†

0 |0〉 are precisely degenerated. They
belong to different topological sectors characterized by the
fermion parity P f .

If the ground state of Eq. (B2) is a Slater determinant, the
reduced density matrix of a subsystem A containing M sites
can be written as ρA = e−HA/Z and its bipartite entanglement
spectrum {ω} can be analytically extracted from the correla-
tion matrix [54–56]. Z is the partition function. Therefore the
corresponding EE reads

SA = −tr(ρA ln ρA)

= −
M−1∑
l=0

(ωl

2

)
tanh

(ωl

2

)
+

M−1∑
l=0

ln
[
2 cosh

(ωl

2

)]
. (B3)

We find that bond energy and EE in |�0〉 and |�1〉 are the
same as shown in Fig. 14. However, EE in the superposed
state |�〉 = α|�0〉 + β|�1〉 cannot be analytically computed
since the superposition of two Slater determinants may not
be written as another Slater determinant. If we simulate the
XY chain using a randomly initialized MPS, we can converge
to the minimally entangled state, which turns out to the su-
perposition of |�0,1〉 and results in a lower EE as well as
a underestimation of the central charge. They are illustrated
in Fig. 15 and we think this is the reason for the incom-
mensurability observed in other odd spin chains [41]. If we
add boundary perturbations such as H1 = h(σ z

0 + σ z
L−1) in the

early sweeping stage to select the MPS within a fixed parity
sector, numerically we indeed can obtain the results in Fig. 14
for odd lattices.
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TABLE IV. Critical point(s) and critical exponents for � = 1.0.
χ = 128.

�′ [
V z

c ,V x
c

]
νz βz/νz νx βx/νx

0.0 [4.00, 4.00] 1.01(2) 0.24(4) 1.01(2) 0.24(4)
0.5 [4.01, 4.00] 1.02(8) 0.23(9) 1.03(0) 0.23(3)
1.0 [4.03, 4.02] 1.08(5) 0.24(9) 1.08(5) 0.24(5)
1.5 [4.10, 4.03] 1.20(7) 0.22(3) 1.21(2) 0.22(8)

Next we carry out some finite-size analysis in terms of even
and odd lattices for the XY model. From Fig. 16, we can see
that the variance v is sharper on odd lattices. We consider the
Neel order parameter

Mx = 1

L

L−1∑
j=0

(−) jσ x
j (B4)

and the corresponding Binder culmulant Ux. From Figs. 17
and 18, we can see that on even and odd lattices, the XY model
exhibits almost similar critical properties up to some numeri-
cal errors. However, their EE can be dramatically different.

APPENDIX C: LARGER BOND-DIMENSION TEST

To test the convergence of our numerical computation, we
also repeat the simulation with the same parameters as in
Figs. 9 and 10 up to the bond-dimension χ = 128. They are
re-plotted as Figs. 19 and 20. The critical exponents obtained
with χ = 128 are summarized in Table IV, in which we find
the numbers are almost identical to those shown in Table I. In
this sense, we claim that our numerical simulation has already
well converged with χ = 64 and the error-bar estimation is
faithful.

APPENDIX D: A STRING ORDER PARAMETER THAT
PRESERVES NONLOCAL INVERSION SYMMETRY (A8)

We can construct another kind of nonlocal string order pa-
rameter according to the rule given by Eq. (A9). It is invariant
under the inversion symmetry I and looks like

OStr-x ≡
N∑

j=−N

1 + i(−)N+ j+1Q

2
σ x

j

=
N∑

j=−N

σ x
j + (−)N+ j+1σ

y
j

∏N
l=−N,l �= j σ

z
l

2
. (D1)

To write OStr-x in a MPO form, we have to encode the operator
string into the productions of matrices living on each site. It
turns out that the corresponding MPO has a dimension of D =
4N + 2 and can be written as

V [ j]
Str-x = 1

2

⎛
⎝ 1 . . . 0

...
. . .

...

σ x . . . 1

⎞
⎠. (D2)

On different sites, V [ j]
Str-x has different forms. For j =

−N , (2V [−N]
Str-x )D−1,D−2 = −σ y; (2V [−N]

Str-x )D−1,D−2−l = σ z, l =
1, . . . , 2N . For j = N , (2V [N]

Str-x )1,0 = −σ y; (2V [N]
Str-x )1+l,0 =

TABLE V. Critical exponents at � = 1.0 on even lattices.

�′ [
V z

c ,V x
c

]
νz βz/νz νx βx/νx

0.0 [4.00, 4.00] 1.00(7) 0.24(4) 1.00(7) 0.24(4)
0.5 [4.01, 4.00] 1.02(3) 0.24(1) 1.02(3) 0.23(7)
1.0 [4.04, 4.01] 1.06(8) 0.23(6) 1.07(1) 0.23(2)
1.5 [4.13, 4.01] 1.14(9) 0.19(3) 1.16(3) 0.20(9)

σ z, l = 1, . . . , 2N . For −N < j < N ,

(
2V [ j]

Str-x

)
D−1−(N+ j)−l,D−2−(N+ j)−l

= {σ z, ł �= (N + j)

(−)N+ j+1σ y, ł = (N + j) (D3)

for l = 0, . . . , 2N .
From Fig. 21, we can see that in the gapped TSC phases,

the nonvanishing string order parameter 〈OStr-x〉 does imply
the spontaneous symmetry breaking of the associated parity
symmetry P f , which is consistent with the results given by
the local order parameter Mx.

APPENDIX E: NUMERICAL RESULTS ON ON EVEN
LATTICES

On a finite lattice under OBC, although the symmetry I
is only preserved on odd lattices as we discussed in the main
text, we can regard the even ones as a kind of perturbation on
the boundary by removing one site.

1. Critical exponents at the critical point(s)

In Table V, we perform the finite-size analysis on even
lattices following the same parameters in Table I, which show
that although specific numbers are different but they are close
and follow the same trend.

2. Central charge in the negative-V gapless phase

Away from the phase boundaries namely deeply in the
gapless phase induced by nonvanishing �′, we believe that
Cardy’s formula could work well. In Fig. 22, we show that
the fitted central charge as well as the variance on an even
lattice L = 120. Furthermore, we also present several other
representative examples using larger lattices up to L = 1000
as well as with larger bond dimensions to make more accurate
estimation of the central charge, which are shown in Table VI.

TABLE VI. Fitted central charge c in the gapless I phase for
� = 1.0, �′ = 1.5 on other larger even lattices. χ = 256 for L =
400, 800. χ = 512 for L = 1000.

V −4.0 −3.0 −2.0 −1.0 0.0 1.0

L = 400 0.949 0.961 0.982 0.988 0.988 0.974
L = 800 0.964 0.971 0.987 0.991 0.991 0.979
L = 1000 0.970 0.975 0.992 0.996 0.995 0.989
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