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We develop a quantum spin-liquid theory for quantum magnets with easy-plane ferromagnetic exchange.
These strongly entangled quantum states are obtained by dimer coverings of two-dimensional (2D) lattices with
triplet S = 1, mz = 0 bonds, forming a triplet resonating valence bond (tRVB) state. We discuss the conditions
and the procedure to transfer well-known results from conventional singlet resonating valence bond theory to
tRVB. Additionally, we present mean field theories of Abrikosov fermions on 2D triangular and square lattices,
which can be controlled in an appropriate large-N limit. We also incorporate the effect of charge doping which
stabilizes (p + ip)-wave superconductivity. Beyond the pure theoretical interest, our study may help to resolve
contradictory statements on certain transition metal chalcogenides, including 1T -TaS2, 1T -TaSe2, as well as
CrSiTe3 and CrGeTe3.
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I. INTRODUCTION

A. Resonating valence bond theory

Resonating valence bond (RVB) theory describes prototyp-
ical quantum spin-liquid (QSL) states which were originally
proposed by Anderson [1,2] for the two-dimensional (2D)
Heisenberg antiferromagnet on a triangular lattice. The frus-
trated magnetic interactions entangle spins on different sites
of the lattice in a pairwise fashion into singlet valence bonds.
When the system resonates between a multitude of degen-
erate bond configurations, the RVB state forms a quantum
superposition of a macroscopic number of wave functions.
RVB states with short-range bonds on two-dimensional lat-
tices do not break any of the system’s symmetries and satisfy
modern criteria [3,4] for a quantum spin liquid (QSL) as a
highly entangled state with topological order [5]. While it
is now known that the ground state of the nearest-neighbor
Heisenberg antiferromagnet on the triangular lattice is not
a QSL state, numerical studies suggest that QSL behavior
can be stabilized by next-nearest-neighbor interactions [6–8].
Short-range RVB states are furthermore known to be the exact
ground state of dimer models [9] and even of appropriately
designed SU(2)-invariant spin Hamiltonians [10] with n-spin
interactions (including n > 2).

In addition to its progenitorial role in the study of QSLs,
RVB theory is also quintessential for superconductivity be-
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yond the BCS paradigm. Specifically in the context of cuprate
superconductors, preentangled singlet bonds are believed to
constitute a pair condensate which turns into a bona fide super-
conductor as doping liberates the charge degrees of freedom
from a correlated Mott insulator [11]. As a major advantage
over other approaches, RVB theory [12,13] and related gauge
theories [14,15] naturally account for pseudogap phenomena
[16] in an elegant and economical fashion.

FIG. 1. (a) Illustration of a dimer covering of the triangular lat-
tice with nearest-neighbor triplet bonds (see inset for definition of a
dimer). The tRVB ground state is a superposition of such coverings
and a triplet quantum spin liquid (QSL). (b) Energy levels of a pair
of spins with anisotropic interaction as in Eq. (6), illustrating that the
triplet valence bond (tVB) is lowest in energy. (c) Finite-temperature
mean field phase diagram for the model introduced in Eq. (10) as a
function of temperature and hole doping δ. A p + ip superconductor
(SC) appears by doping the QSL. For this plot, we used |EtVB|/t =
0.1.
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B. Spin-liquid candidates with ferromagnetic correlations

The experimental search for QSL materials has lately
enjoyed increased attention. Here, we concentrate on the pro-
posal that the layered van der Waals material 1T -TaS2 and
related compounds 1T -NbSe2 and 1T -TaSe2, may form a 2D
QSL on a triangular lattice [17,18], while the 2D ferromagnets
CrXTe3 with X = Si, Ge may display 2D QSL behavior on a
honeycomb lattice above TCurie.

When 1T -TaS2 is cooled below 200 K, a peculiar charge
density wave (CDW) order rearranges the atoms of a plane
into a triangular superlattice where 13 Ta atoms per unit cell
form a star-of-David structure (for a recent STM visualiza-
tion, see, e.g., [19]). As each of the Ta atoms contributes
one 5d electron, 12 electrons fill 6 emergent bands and leave
an emergent Hubbard model with one electron per super-
cell behind. Mott localization is generally accepted in view
of disorder-dependent activated behavior below T ∼ 50 K
[20–22] and the observation of Hubbard bands [19,23]. A
transition displaying magnetic ordering is ruled out down to
temperatures as low as 20 mK by μSR and susceptibility
measurements [18,21,24]. The ground state is a paramagnet
with a substantial, temperature-independent magnetic suscep-
tibility χ , with a small Curie-Weiss upturn, likely the result
of disorder [18,21]. These observations raise the fascinating
possibility that this system forms a QSL, a paramagnetic
spin state with a characteristic temperature (set by the spin-
spin interaction energy J) [17]. Support for this interpretation
derives from the recent observation of a finite Sommerfeld
coefficient γ = CV /T in the specific heat [21,22] and a lin-
ear temperature dependence in the thermal conductivity [22],
features that are consistent with the formation of a QSL with
a spinon-Fermi surface. Moreover, the Wilson ratio χ/γ be-
tween the susceptibility and Sommerfeld coefficient lies in
a range that is compatible with weakly interacting spinons.
A similar phenomenology and evidence for QSL behavior
was recently observed in tunneling experiments on monolayer
1T -TaSe2 [25].

Despite this interesting experimental development, we
are not aware of a microscopic theory which explains
the large spin-interaction scale J required to account for
the temperature-independent susceptibility. Both a heuris-
tic approach of decoupled star-of-David clusters [26] and
density functional theory [27] suggest an in-plane hopping
strength t ∼ 10 meV, which taken together with a realistic
U ∼ 200 meV implies an antiferromagnetic superexchange
interaction J ∼ +5 K. Moreover, several ab initio stud-
ies of 1T -TaS2 and phenomenologically similar monolayer
1T -NbSe2, 1T -TaSe2 predict a ferromagnetic ground state
[27–30] with exchange constant J ∼ −5 K and a few percent
anisotropy which favors alignment in the basal plane [28,31].
Leaving the conundrum of the smallness of |J| to future stud-
ies, the apparent controversy on the sign of J motivates us
to pose the fundamental and fascinating question, whether a
quantum spin liquid can exist in presence of ferromagnetic
interactions. Specifically, we concentrate on the easy-plane
scenario, which could be induced by the prominent role at-
tributed to the spin-orbit interaction due to the heavy Ta atoms
[32]. On the basis of an affirmative answer, we further study
the effect of doping away from the Mott limit and discover a

time-reversal symmetry-breaking (TRSB) (p + ip)-wave su-
perconductor. This is particularly interesting in light of the
recent discovery of TRSB superconductivity in 4H-TaS2 (in
which monolayers of 1T -TaS2 are alternatingly stacked with
metallic 1H-TaS2 monolayers) [33].

Another potential candidate for a tRVB state is CrXTe3

with X = Si, Ge, previously referred to as 2D ferromagnetic
semiconductors. These are layered system with Cr3+ ions on
a honeycomb lattice. In the case of CrSiTe3, transport mea-
surements indicate a thermally activated mechanism with an
indirect bulk gap of around 0.4 eV, consistent with optical
measurement. There is a bulk Curie temperature of around
33 K, often accompanied by a structural transition [34], which
is enhanced to 80 K in the case of monolayer [35,36]. The
origin of the insulating phase at higher temperature is note-
worthy: The local crystalline structure of the material splits
the levels of the d shell whose orbitals are half-filled at the
Fermi level. The narrow bandwidth of d orbitals strongly
enhances the correlations between electrons [37], leading to
a Mott insulator in contrast to the predictions of ab initio
calculations [38]. The fact that the Curie temperate is less than
the gap indicates that this is a local-moment system with a
saturated magnetic moment of 3μB/Cr. The ferromagnetism
between Cr electrons is induced by the superexchange via
Te sites [37] which dominates over a direct antiferromag-
netic superexchange. Nonetheless, there are antiferromagnetic
interlayer correlations, which seem to be responsible for re-
ducing the Curie temperature in the bulk compared to the
monolayer. While there is a slight Ising anisotropy at the
transition temperature, significant short-range in-plane mag-
netic correlations persist all the way up to 150 K [39]. Under
pressure, the system becomes metallic and, after a structural
transition at P ∼ 9 GPa, it turns superconducting with a Tc of
around 4 K [40] which is relatively independent of pressure
up to around 50 GPa. Based on this, we propose that this
material is a potential candidate for the tRVB physics and the
associated superconductivity upon doping which is discussed
in this paper.

C. RVB theory vs triplet RVB theory

In the past, QSL theories with Ising interactions (e.g., the
Kitaev model [41]) were discussed both for ferromagnetic and
antiferromagnetic interactions. Here, we develop the concept
QSLs with ferromagnetic easy-plane interactions, leading to
the concept of triplet resonating valence bonds (tRVB). This
idea was recently proposed to account for the observation of
strange metal behavior near a ferromagnetic quantum criti-
cal point in the heavy-fermion material CeRh6Ge4 [42]. It
was subsequently proposed that such a tRVB quantum ma-
terial can be a parent state for triplet superconductivity in
Hund’s metals, and in particular in iron-based superconduc-
tors [43,44]. As we will now explain, the underlying principles
of tRVB theory parallel Anderson’s RVB theory. The basic
building block of the RVB theory is a singlet valence bond
(sVB), formed between two spins at sites i and j:

|[i, j]〉 = |↑i〉 |↓ j〉 − |↓i〉 |↑〉 j√
2

, (1)
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where the notation [i, j] = −[ j, i] is used to reflect the anti-
symmetry under spin exchange. This state is the ground state
of a two-site Hamiltonian with antiferromagnetic spin-spin
interaction

HsVB = J �σi · �σ j . (2)

Here, σx,y,z are Pauli matrices and h̄ = 1 throughout the paper.
In a lattice of spins that interact antiferromagnetically, such
bonds can develop between any pairs of spin, forming the state

|Ps〉 =
∏

[i, j]∈P

|[i, j]〉 , (3)

where P is a particular choice of pairs of spins. In a lat-
tice, competition between antiferromagnetic spin interactions
causes such a state to resonate between different configura-
tions |Ps〉, forming a quantum-mechanical admixture of all
such states, a resonating valence bond state

|RVB〉 =
∑

P

AP|Ps〉. (4)

The simplest example of such a state is the short-range RVB
state, formed from the quantum superposition of all possible
coverings with nearest-neighbor sVB dimers.

By contrast, the basic building block for tRVB theory is a
triplet valence bond (tVB)

|(i, j)〉 = |↑i〉 |↓ j〉 + |↓i〉 |↑〉 j√
2

. (5)

This entangled state is the ground state of a two-site Hamilto-
nian with easy-plane ferromagnetic spin-spin interaction

HtVB = −J[σx,iσx, j + σy,iσy, j] + Jzσz,iσz, j, (6)

with Jz > −J, J > 0 [Fig. 1(b)]. In analogy to RVB, the tRVB
state on a lattice is the macroscopic superposition

|tRVB〉 =
∑

P

AP|Pt 〉 (7)

of states

|XPt 〉 =
∏

(i, j)∈P

|(i, j)〉 (8)

corresponding to a particular tiling of triplet valence bonds.
Crucially, the singlet and triplet valence bonds |sVB〉 , |tVB〉
both form Bell pairs and are therefore suitable for the con-
struction of highly entangled QSL states [Fig. 1(a)].

The case where Jz = J is of particular interest because in
this case HtVB is a unitary transformation of HVB obtained by
rotating the spin at site j through 180◦ about the z axis, i.e.,
HtVB = σz, jHsVBσz, j . Consequently, for a bipartite lattice with
only intersublattice valence bonds, the tRVB and RVB wave
functions are related by a unitary transformation obtained
by a 180◦ rotation of spins on one sublattice. Importantly,
this implies that nearest-neighbor tRVB states on the 2D
square lattice are quantum spin liquids with short-range spin
correlators (Fig. 2), while nearest-neighbor tRVB states on
the three-dimensional (3D) cubic lattice display long-range
order in 〈σx,iσx, j〉, 〈σy,iσy, j〉, and (−1)i+ j〈σz,iσz, j〉 (i, j are
site indices) [45]. Moreover, the properties of RVB states
which are obtained from quantum dimer models [9], including

FIG. 2. The application of a 180◦ spin rotation on one sub-
lattice �σ j → σz, j �σ jσz, j transforms a nearest-neighbor RVB state
on the square lattice (a) into a nearest-neighbor tRVB state
(b). By consequence, the dynamical structure factor S(ω, Q) =∑

i

∫
dt eiωt−xi ·Q〈σ+,i(t )σ−,0(0)〉, σ± = [σx ± iσy]/2, of the tRVB

state [schematic, (d)] is shifted by (π, π ) as compared to the RVB
state (c).

the topological ground-state degeneracy for the 2D triangular
lattice [46–48], are independent on whether a given dimer
represents a singlet or triplet bond. On this basis we conclude
that nearest-neighbor tRVB theory is a gapped Z2 spin liquid
on the 2D triangular lattice.

Using these parallels, we here present a field-theoretical
(fractionalized) tRVB theory. We fractionalize the electrons
into Abrikosov pseudofermions and slave bosons [49], and
derive a mean field theory of tRVB which is analogous
to the mean field approach to the RVB state [12,50]. Our
study particularly focuses on nonbipartite lattices and on
the impact of charge doping, because in these two cases
the unitary mapping between RVB and tRVB theory breaks
down. Most importantly, we thereby develop a formalism for
entanglement-driven triplet superconductivity: Just as an RVB
state may be considered as a Gutzwiller projection (denoted
P̂G) of singlet d-wave superconductive state, i.e.,

|RVB〉 = P̂G |BCS:dx2−y2〉 , (9a)

the tRVB states considered here are Gutzwiller projected
triplet px + ipy states

|tRVB〉 = P̂G |BCS:px + ipy〉 . (9b)

At half-filling, both RVB and tRVB theories describe an
insulator, yet, upon hole doping, preentangled Cooper pairs
get liberated and form a superconducting phase.

D. Outline

The rest of the paper is structured as follows: In Sec. II we
introduce a t-J model for an anisotropic quantum ferromagnet
and the formalism of fractionalization. In Sec. III we present
a discussion of homogeneous mean field solutions, both in
the Mott limit and upon charge doping. We conclude with
an outlook in Sec. IV. Three Appendixes contain details: Ap-
pendix A contains technicalities on the free-energy expansion,
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in Appendix B we demonstrate that an appropriately designed
large-N limit can stabilize the tRVB mean field solution, while
Appendix C contains details on the Berezinskii-Kosterlitz-
Thouless transition establishing a 2D holon superfluid.

II. XXZ FERROMAGNET: MODEL AND FORMALISM

In this section we introduce model and formalism using the
following 2D t-J model with XXZ easy-plane ferromagnetic
interactions

H = −t
∑

〈i, j〉,σ

[
X (i)

σ0 X ( j)
0σ + H.c.

]− μ
∑
i,σ

X (i)
σσ

− J
∑
〈i, j〉

{
σ̂ (i)

x σ̂ ( j)
x + σ̂ (i)

y σ̂ ( j)
y

}

+ Jz

{∑
〈i, j〉

σ̂ (i)
z σ̂ ( j)

z + V
∑
〈i, j〉

[∑
σ

X (i)
σσ

][∑
σ

X ( j)
σσ

]}
. (10)

The Hubbard operators X (i)
0σ = |0〉i 〈σ |i, and X (i)

σ ′σ =
|σ ′〉i 〈σ |i satisfy the standard Hubbard superalgebra (see, e.g.,
Ref. [51]). The spin operator is σ̂μ = ∑

σσ ′[σμ]σσ ′Xσσ ′ .
For a given pair of spins, the singlet state (|↑↓〉 −

|↓↑〉)/
√

2 has energy EsVB = 2J − Jz, the triplet states
|↑↑〉 , |↓↓〉 have energy E1,±1 = Jz, and the S = 1, mz = 0
state (|↑↓〉 + |↓↑〉)/

√
2 has energy EtVB = −2J − Jz [see

Fig. 1(b)]. The energy scale EtVB of these triplet valence bonds
(tVBs) will be crucial throughout the paper; it is manifest
that for an easy-plane ferromagnet (defined by Jz > −J) the
ground state of a pair of spins is given by the tVB. We consider
both triangular and square lattices.

A. Slave-boson representation

We follow the standard slave-boson representation [51]
X (i)

σ0 = f †
i,σ bi, X (i)

σσ ′ = f †
i,σ fi,σ ′ , X (i)

00 = b†
i bi with the local con-

straint b†
i bi +∑

σ f †
i,σ fi,σ = 1. With a slight abuse of lan-

guage (see details below), we call fiσ a spinon and bi a holon.
The corresponding Hamiltonian is

H =
∑
〈i, j〉

[
− t ( f †

i bib
†
j f j + H.c.) + Jz( f †

i σz fi )( f †
j σz f j )

− J
∑

μ=x,y

( f †
i σμ fi )( f †

j σμ f j ) + V bib
†
i b jb

†
j

]

+
∑

i

[λi( f †
i fi + b†

i bi − 1) − μbib
†
i ]. (11)

We have added a Lagrange multiplier λi to enforce the lo-
cal constraint and employ a spinor notation fi = ( fi,↑, fi,↓)T .
So far, no approximations were made; Eq. (10) was merely
rewritten.

As usual, a number of subtleties follow from the prefrac-
tionalized construction. The local nature of the constraints
leads to the emergence of a compact U(1) gauge theory
(generated by local rotations fi,σ → eiφi fi,σ , bi → eiφi bi). De-
pending on whether the U(1) gauge theory is deconfining or
confining, a quantum spin liquid with well-defined (decon-
fined) spinons, is or is not realized [52].

It is well known that 2D compact U(1) gauge theories
without matter fields are confining due to a proliferations of
monopoles [53]. While at first sight, this suggests that a truly
fractionalized state can not develop from Eq. (11), there are
essentially three ways to avoid confinement: First, the spinons
form a time-reversal symmetry-broken insulator which leads
to the addition of a Chern-Simons term to the gauge theory.
Second, the spinons may form a superconductor, and thereby
spontaneously “break” the symmetry to Z2 (Z2 gauge theories
are known to allow for deconfinement in 2D [54]). In this
context, we mention that generically the physical spinons and
the fi,σ are related but not the same [55]. Third, when the
spinons remain gapless an infinite number of degrees of free-
dom [56] can suppress the proliferation of monopole operators
and thereby annihilate the confining effect.

In this paper, which is the first on fractionalization in tRVB
theory, we will not study gauge field fluctuations. Instead, we
here derive mean field solutions of the spinon Hamiltonian.
However, we emphasize that these solutions are supercon-
ducting and time-reversal symmetry breaking. It is therefore
reasonable to expect the possibility of deconfinement in the
gauge sector.

B. Reminder of slave-boson theory for RVB

Before developing the slave-boson theory of tRVB, it ap-
pears beneficial to remind the reader about the analogous
formalism for conventional RVB [12,57,58]. We mostly fol-
low Kotliar and Liu [12] and consider the conventional t-J
model on the square lattice

H = −t
∑

〈i, j〉,σ

[
X (i)

σ0 X ( j)
0σ + H.c.

]− μ
∑
i,σ

X (i)
σσ

+ J
∑
〈i, j〉

{
�̂σ (i) · �̂σ ( j) + V

∑
〈i, j〉

[∑
σ

X (i)
σσ

][∑
σ

X ( j)
σσ

]}
,

(12)

which in slave-boson formalism may be written as

H =
∑
〈i, j〉

[− t ( f †
i bib

†
j f j + H.c.) + J ( f †

i �σ fi ) · ( f †
j �σ f j )

+V bib
†
i b jb

†
j

]+
∑

i

[λi( f †
i fi + b†

i bi − 1) − μbib
†
i ].

(13)

The RVB theory summarized in Eqs. (12) and (13) parallels
the tRVB theory exposed in Eqs. (10) and (11). Specifically,
the interaction part of Eq. (10) at Jz = J is obtained from
Eq. (12) by applying a unitary transformation �̂σ → σ̂z �̂σ σ̂z on
every other site. As a direct consequence, spinon interactions
in the slave-boson formulation (11) follow from Eq. (13) by
applying the transformation f j → (σz ) j f j on every second
site. However, at t = 0, tRVB theory is not related to RVB the-
ory by a mere unitary transformation because t ( f †

i bib
†
j f j ) →

t ( f †
i σzbib

†
j f j ) leads to a spin-dependent sign of the hopping.
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One may decouple the spinon interaction of Eq. (13) as
follows [12]:

H = −t
∑

〈i, j〉,σ
[ f †

i,σ bib
†
j f j,σ + H.c.]

+
∑

i

[
λi

(∑
σ

f †
i,σ fi,σ + b†

i bi − 1

)
− μbib

†
i

]

−
∑
〈i, j〉

{
(κi j f †

i f j + H.c.) − [
�i j f T

i (iσy) f j + H.c.
]}

+ 2

|EAFM|
∑
〈i, j〉

[|κi j |2 + |�i j |2] + V
∑
〈i, j〉

bib
†
i b jb

†
j, (14)

where EAFM = −3J is the energy of a single sVB for
isotropic antiferromagnetic interactions. As first discussed
by Affleck, Zou, Hsu, and Anderson [59], at half-filling,
the model displays an SU(2) symmetry in Nambu space.
This is traditionally represented using Nambu spinors ψi,σ =
( fi,σ , (iσy)σσ ′ f †

i,σ ′ )T , the matrix

Ui j =
(

κi j �i j

�∗
i j −κ∗

i j

)
, (15)

and the identification

− [κi j f †
i f j − �i j f T

i (iσy) f j + H.c.] + 2
|κi j |2 + |�i j |2

|EAFM|

= −ψ
†
i Ui jψ j + tr[U †

i jUi j]

|EAFM| . (16)

The symmetry is given by an SU(2) rotation in Nambu space,
ψi → Wiψi,Ui j → WiUi jWj . We equivalently represent this
symmetry in the notation Ui j = iκ ′′

i j + �ui j · �τ as an SO(3)
rotation of the vector of order parameters on a given link

�ui j = (�′
i j,�

′′
i j, κ

′
i j ), (17)

where Re[�i j] = �′
i j, Im[�i j] = �′′

i j , and analogously for
κi j .

Kotliar and Liu [12] considered mean field solutions of
Eq. (14) under the simplifying assumption of translational
invariance, i.e., λi = λ, κi j = κ1 (κi j = κ2) on all horizontal
(vertical) links and analogously for �i j . Thus, κ1,2 corre-
sponds to a complex hopping amplitude and �1,2 to an
intersite pairing gap on a given link [see Fig. 3(a)]. In the
absence of doping, the ground-state manifold of energeti-
cally equivalent solutions is characterized by the condition
�u1 · �u2 = 0 [i.e., �u1 ∝ (1, 0, 0) and �u2 ∝ (0, 1, 0) and SO(3)
rotations theoreof]. However, doping adds a linear symmetry-
breaking field to the free energy, δFRVB ∝ −δ(0, 0, 1) · [�u1 +
�u2], such that the manifold of mean field solutions is
reduced to d-wave superconducting solutions, i.e., �u1 ∝
(1, 0, 1), �u2 ∝ (−1, 0, 1), or equivalent solutions obtained by
O(2) rotations along the axis (0,0,1).

Finally, a physical superconductor is reached when both
the spinons and the bosons form a superfluid.

C. Hubbard-Stratonovich decoupling

After having reviewed conventional RVB theory, we return
to the model of interest in the tRVB context [Eqs. (10) and

FIG. 3. Convention of unit vectors êl (l = 1, . . . , z/2) and illus-
tration of mean field parameters on square and triangular lattices.
The homogeneous mean field solutions discussed in this paper corre-
spond to associating complex hopping κl and pairing �l amplitudes
to each of the z/2 links of each unit cell (which is shaded gray).

(11)]. We decouple the interaction in the two channels of
strongest nearest-neighbor attraction

H = −t
∑

〈i, j〉,σ
[ f †

i,σ bib
†
j f j,σ + H.c.]

+
∑

i

[
λi

(∑
σ

f †
i,σ fi,σ + b†

i bi − 1

)
− μbib

†
i

]

−
∑
〈i, j〉

{
(κi j f †

i σz f j + H.c.) + [
�i j f T

i (iσy)σz f j + H.c.
]}

+ 2

|EtVB|
∑
〈i, j〉

[|κi j |2 + |�i j |2] + V
∑
〈i, j〉

bib
†
i b jb

†
j . (18)

The σz matrices in the third line appear for triangular and
square lattices alike, in the latter case they directly fol-
low from Eq. (14) by virtue of the transformation f j →
(σz ) j f j . The logic for decoupling particle-hole and particle-
particle channels simultaneously is motivated as follows: In
the field integral, we can discriminate particle-particle and
particle-hole channels from the structure in frequency space:
f †
ε1,σ1

fε2,σ2 f †
ε3,σ3

fε4,σ4δε1+ε3−ε2−ε4 has three different channels,
according to which of the frequencies ε1,2,3,4 are close by in
magnitude. We keep all attractive channels, while the repul-
sive channels will be dropped.

The procedure of decoupling nearest-neighbor channels
while disregarding onsite (magnetic) order parameters is
controlled in appropriately designed large-N limits [in the
present XXZ case of the Sp(2N ) group]. Extrapolating these
calculations to SU(2) = Sp(2) is uncontrolled, even though
historically grown [12]. In particular, the procedure misses all
magnetically ordered phases, e.g., ferromagnetism, to which
we compare heuristically in appropriate sections of the main
part of this paper.

We included a controlled Sp(2N ) treatment for the insu-
lating limit in Appendix B: this demonstrates that the mean
field triplet QSL solutions presented here are the ground
state of the Hamiltonian (11) in a well-defined limit. For
the sake of physical clarity, we consider the formally uncon-
trolled spin- 1

2 system in the main text, and emphasize that
we leave the search for spin- 1

2 Hamiltonians with rigorous
tRVB ground states to the future. This strategy parallels the
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early development of singlet RVB theory [1,12,50], which
predated modern, numerically exact, QSL studies, e.g., for
antiferromagnetic models on the triangular lattice [6–8,26],
by more than three decades.

III. HOMOGENEOUS MEAN FIELD SOLUTIONS

We here focus on the simplest case of uniform mean field
solutions (note that this excludes certain π flux solutions
[50,60]) of Eq. (18). We treat the constraint on average (con-
sidering λ a constant chemical potential) and use a mean field
decoupling of the hopping term, by replacing t〈bib

†
j〉 → t f

and
∑

σ t〈 f †
i f j〉 → tb in Eq. (18), i.e.,

t f †
i,σ bib

†
j f j,σ → t f f †

j,σ fi,σ + tbbib
†
j − t f tb/t . (19)

We will discuss the self-consistency of this replacement in
Sec. III F, and for the moment we concentrate on the fermionic
part of the Hamiltonian.

A. Square lattice

We first discuss the situation on the square lattice, where
the order parameters are �1,2, κ1,2 (the value on vertical and
horizontal links may differ) and λ (as determined by the av-
erage occupation 1 − δ). The spinon Hamiltonian in Nambu
and momentum space is [ψk = ( f T

k , f †
−k(−iσy))T ]

Hf = 1

2

∑
k

ψ
†
kh(k)ψk. (20a)

It is convenient to express the spinon Hamiltonian h(k) us-
ing Pauli matrices �τ in Nambu space and the notation �ul =
(�′

l ,�
′′
l , κ

′′
l ):

h(k) = ξkτz−2
z/2∑
l=1

σz[κ
′
l cos(k · êl ) − �ul · �τ sin(k · êl )].

(20b)
In this notation, the previously mentioned [59] emergent

SU(2) symmetry in Nambu space is manifest in the case ξk =
0. We introduced ξk = −2t f

∑z/2
l=1 cos(k · êl ) + λ as well as

the basis vectors ê1 = (1, 0)T , ê2 = (0, 1)T [see Fig. 3(a)],
z = 4 is the coordination number. We use the shorthand nota-
tion kl = k · êl in the following.

We next evaluate the ground-state energy for several trial
solutions at δ = 0 (see Table I, left column). First, we consider
normal-state solutions, the simplest of which is κ ′

1 = κ ′
2 > 0,

�ul = 0 (the sign of the hopping can be chosen at will, as
spin-up and spin-down spinons have reversed dispersion).
This state displays a spinon Fermi surface, C4 symmetry, and
λ = 0 corresponds to half-filling. The fermionic contribution
to the ground-state energy is E f = −Cκ ′

l with C ≈ −1.62.
The mean field energy per site is obtain by optimizing E =
E f + zκ ′

l
2
/|EtVB| from which we obtain E = −|EtVB|C2/(4z),

as quoted in Table I. (An analogous procedure is used for all
of the following states, only the numerical value of C changes
from case to case.)

As a second normal-state solution we consider κ ′′
1 = κ ′′

2 >

0, while all other parameters κ ′
l = �′

l = �′′
l = 0. For the

square lattice the total enclosed flux per square vanishes for
homogeneous imaginary hopping κ ′′

l > 0, thus, this solution

TABLE I. Illustration of spinon dispersion in the first Brillouin
zone and estimate of the ground-state energy (per site) for selected
trial mean field solutions on square and triangular lattices, as dis-
cussed in Secs. III A and III B. The Dirac solution is �u1 ⊥ �u2 ⊥ �u3

(�u1 ⊥ �u2) on the triangular (square) lattice. For comparison, the
energy of the ferromagnetic in-plane solution is −3J (−2J) for
triangular (square lattice).

square lattice triangular lattice

κ′
l ≠ 0

E = −0.33(2J + Jz) E = −0.33(2J + Jz)

κ′′
l ≠ 0

E = −0.33(2J + Jz) E = −0.3(2J + Jz)

Dirac

E = −0.69(2J + Jz) E = −0.47(2J + Jz)

is gauge equivalent to the previously discussed solution with
real hopping (we will see in the next section that such an
equivalence does not hold for analogous two states on the
triangular lattice).

Finally, we consider a solution displaying Dirac nodes:
�u1 = |�u1|(1, 0, 0)T , �u2 = |�u1|(0, 1, 0)T (all other variational
parameters vanish). Amongst the trial solutions, this solution
is lowest in energy (see Table I, third row). It corresponds
to a p + ip superconductor of spinons, which is nothing but
|BCS:px + ipy〉 as presented in Eq. (9b). Note that the choice
of a homogeneous λ only respects the constraint of half-filled
sites on average. To impose the Gutzwiller projection on each
site amounts to careful integration over gauge field fluctua-
tions, which is beyond the scope of this work.

B. Triangular lattice

Next, we repeat the same analysis for the triangular lat-
tice, for which Eq. (20) holds equally, yet with z = 6 (and
therefore three sets of order-parameter fields κ ′

l=1,2,3, �ul=1,2,3)

and ê1 = (1, 0)T , ê2 = (1,
√

3)T /2, ê3 = (−1,
√

3)T /2 [see
Fig. 3(b)]. The mean field solutions are displayed in the right
column of Table I.

First, consider κ ′
1 = κ ′

2 = κ ′
3 > 0, for which half-filling

implies λ = −0.836κ ′
1. This state displays a Fermi surface

and is C6 invariant. As a second normal-state solution we
consider κ ′′

l = −|κ ′′
1 |(−1)l , while all other parameters κ ′

l =
�′

l = �′′
l = λ = 0. Note that a flux π/2 (−π/2) is enclosed

in downside (upside) triangles. Contrary to the case of the
square lattice, this state is thus not gauge equivalent to the
state with real hopping. On the other hand, a variety of
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superconducting solutions κ ′
l = κ ′′

l = 0, |�l | = 0 are equiv-
alent by SU(2) isospin symmetry.

Finally, we consider a solution displaying Dirac nodes:
�u1 = |�u1|(1, 0, 0)T , �u2 = |�u1|(0, 1, 0)T , �u3 = |�u1|(0, 0, 1)T

(all other variational parameters vanish). As for the square
lattice, this solution is lowest in energy and corresponds
to a p + ip superconductor of spinons. In the next section,
we demonstrate on the basis of a microscopically derived
Ginzburg-Landau function, that the Dirac QSL establishes as
the dominant instability at finite temperature.

C. Finite-temperature transition and doping

We here consider the finite-temperature transition and the
effect of doping on the mean field spinon solution treating
square and triangular lattices in parallel. This leads to the
phase diagram presented in Fig. 1(c). In the calculation we
distinguish two regimes: the limit of a degenerate Fermi gas
t f � T and the reverse high-temperature limit t f � T .

We anticipate the result of Sec. III E that t f = δt in
all relevant regimes and that the degenerate Fermi gas
(high-temperature classical gas) limit is important for the
finite-temperature transition at large (small) doping δ �
|EVB|/t (δ � |EVB|/t) (see end of this section).

The integration of fermions leads to the following free-
energy density:

F = − T

2A
∑

n

∑
k

tr ln[iεn − h(k)]

+ 2

|EtVB|
z/2∑
l=1

(
κ ′

l
2 + |�ul |2

)
. (21)

Here, A is the total number of sites (i.e., the system size).
The expansion of the fermionic determinant in small order-
parameter fields leads to a Ginzburg-Landau functional (see
Appendix A 2)

F =
z/2∑
l=1

⎡
⎣A+�uT

l �ul − A−�uT
l

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠�ul + C|�ul |4

⎤
⎦

+ D

2

z/2∑
l,l ′=1

[
�u2

l �u2
l ′ + 2(�ul · �ul ′ )

2
]
. (22)

Here, we disregarded κ ′, which has a subdominant critical
temperature in both limits t f � T and t f � T . We also em-
phasize that the constraint field λ does not couple linearly
to any of the order-parameter fields; this is evident from the
matrix structure of h(k) [Eq. (20b)].

It is worthwhile to point out the main difference to conven-
tional RVB theory, namely, the absence of a linear symmetry-
breaking term of the kind δFRVB ∝ −(0, 0, 1)

∑
l �ul . This is a

consequence of the different matrix structure in spin space of
the order-parameter fields, i.e., presence of σz in the decoupled
terms in Eq. (18). At any finite δ, the isospin SU(2) symmetry
is broken by the A− term.

We first qualitatively discuss the mean field solutions as-
suming C = 0, A− � 0, and A+ ∝ T − TtRVB, where TtRVB

is the mean field transition temperature. In the important
parameter regime, these assumptions are consistent with the

microscopically derived values presented at the end of this
section.

The quartic term with a scalar product is crucial in dis-
criminating the lowest-energy state and favors �ul which are
perpendicular on different bonds l = 1, . . . , z/2 of the unit
cell. This reproduces analogous results of singlet RVB the-
ory on the square lattice, which we reviewed in Sec. II B.
In contrast to singlet RVB theory, however, the quadratic
anisotropy term A− favors easy-plane solutions in which
the superconducting components of �ul = (�′

l ,�
′′
l , κ

′′
l ) are

dominant. More specifically, for the triangular lattice, the
mean field order parameter is �ul ∝ ((−1)l êT

l , uz )T , where
uz = √

1 − 3A−/
√

4A− + 2 interpolates between the Dirac
solution, Table I lowest row, and a p-wave superconducting
solution with complex nearest-neighbor pairing �l ∝ ei2π l/3

and κ ′′
l = 0. In the case of the square lattice, where the co-

ordination number z is smaller, the p-wave superconducting
solution is the ground state for any A−. In this case �l ∝ eiπ l/2

and κ ′′
l = 0.

We proceed with a discussion of microscopic values of
the Ginzburg-Landau parameters. In the high-temperature
regime t f � T , we find A− ∼ t2

f /T 3 > 0, C = 0, D ∼ T −3,
and A+ ∼ [T − TtRVB]/T 2 with TtRVB � |EtVB|/4. Using t f =
δt , we find that the regime t f � T is relevant to the
finite-temperature transition at low doping, δ � |EVB|/t . The
emergent SO(3) symmetry at A− ∝ t2

f → 0 (�ul → O�ul ) re-
flects the SU(2) invariance in Nambu space in Eq. (20b). This
SU(2) symmetry is weakly broken in the regime of weak
doping 0 < t f /T � 1 which, as mentioned, favors the super-
conducting state.

This tendency is strongly reinforced in the complemen-
tary regime of the degenerate electron gas t f � T because
A+ − A− develops a logarithmic Cooper instability while all
other constants remain finite (note that in this case generically
C = 0). In this limit, the mean field transition temperature
TtRVB ∼ t f e−Ct f /|EtVB| where we estimate C � 16π

√
3 (C �

16π ) for triangular (square) lattice in the continuum limit.
Using again t f = δt , the degenerate electron gas assumption
applies to the finite-temperature transition at strong doping
δ � |EVB|/t . In Fig. 1(c) we present an interpolation of the
mean field transition temperature which captures both regimes
δ � |EtVB|/t and δ � |EtVB|/t .

D. Observables

We emphasize that the mean field solutions, which are
characterized by κ ′ = 0, do not display a finite magnetization
�m = T

∑
n,k tr[�σGn,k], as can be readily seen from the matrix

structure of G−1
n,k = iεn − h(k). At the same time, short-range

magnetic correlations are key observables and reflected in the
dynamical structure factor (Fig. 2). We here explain its charac-
teristic features using the selection rules implied by the mean
field Hamiltonian of Abrikosov fermions (Fig. 4). Both RVB
and tRVB Hamiltonians are characterized by a direct product
of a momentum-dependent matrix in Nambu space and a
matrix in spin space which is unity in the case of RVB and
σz for tRVB. At each momentum k, we denote the eigenstate
with positive (negative) eigenvalue of the matrix in Nambu
space by |+〉 (|−〉). Hence, at each k, |−〉 ⊗ |↑〉 , |−〉 ⊗ |↓〉
are the negative energy states of hRVB(k), and positive energy
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FIG. 4. Selection rules for the dynamical structure factor for (a) the RVB state and (b) the tRVB state on the square lattice. For further
explanations, see main text.

states are |+〉 ⊗ |↑〉 , |+〉 ⊗ |↓〉. Thus, the matrix element for
vertical spin-flip transitions vanishes and the dynamical struc-
ture factor is suppressed at zero momentum transfer Q = 0
[see Fig. 2(c)]. For the square lattice, hRVB(k) = −hRVB(k +
QNéel) and spin-flip matrix elements at momentum difference
QNéel = (π, π ) are maximal and by consequence the structure
factor is dominated by the Néel wave vector [green arrow in
Fig. 4(a)]. In contrast, for htRVB(k), |−〉 ⊗ |↑〉 and |+〉 ⊗ |↓〉
are the negative energy states, their spin-flip matrix element
with positive energy states |−〉 ⊗ |↓〉 and |+〉 ⊗ |↑〉 is finite,
and vertical transitions are therefore allowed [Fig. 4(b)]. This
leads to a predominantly ferromagnetic spin fluctuation spec-
trum [Fig. 2(d)].

E. Bosonic Hamiltonian and BKT transition

So far, we have ignored the slave bosons and simply re-
placed t〈bib

†
j〉 → t f in Eq. (18). In this short section, we

reverse the situation and study the bosonic part of Eq. (18)
under the replacement t

∑
σ 〈 fi,σ f †

j,σ 〉 → tb.
We consider the low-density limit, for which the 2D Bose

gas is described by the continuum action

S =
∫

dτ d2x ψ̄

[
∂τ − μeff − ∇2

2m

]
ψ + g

2
|ψ |4. (23)

2D Bose-Einstein condensation is known to be absent in the
noninteracting limit and driven by the confinement of topolog-
ical defects, otherwise. The Berezinskii-Kosterlitz-Thouless
transition temperature which captures these aspects in the
limit mg � 1 is [61]

TBKT = 2π

m

n

ln
(

380
mg

) , (24)

where n is the density in the continuum limit.
The mapping between the lattice Hamiltonian and the

continuum theory as well as microscopic values for the pa-
rameters of the action (23) are contained in Appendix C and
lead to a nontrivial relationship between mg and V/tb (see
Fig. 5). We exploit this as we push Eq. (24) to the limit of
its applicability at mg ∼ 1 using

TBKT = 2πztbδ

ln[95(1 + 2ztb/V )/z]
(25)

to interpolate between weak and strong coupling.

F. Self-consistency of hopping amplitudes

We now present estimates for t f and tb as a function of
external parameters δ, EtVB, t and first summarize our results:
For the entire relevant parameter regime, t f = δt while tb has

a different form in weak doping regime δ < |EtVB|/t � 1
and strong doping regime |EtVB|/t < δ. In the weak doping
regime, tb ∼ δt2/|EtVB| and in the strong doping regime tb ∼
(1 − δ)t . For a pictorial summary of these results and associ-
ated regimes, see Fig. 6. Formally, the results for the BKT
transition in the weak doping regime are valid for T � tb,
while for the BCS-type transition at strong doping we require
T � t f . Both TtRVB and TBKT satisfy these bounds (we assume
V ∼ |EtVB|) [see also Fig. 1(c)].

To derive these results, we first concentrate on the limit
t f � maxl |�ul |. It is important to emphasize that, contrary to
usual singlet RVB theory [12], magnetic interactions do not
contribute to the fermion hopping term proportional to t f [see
Eq. (20b)]. Therefore (assuming nearest neighbors i and j),

tb = t
∑

σ

〈 f †
i,σ f j,σ 〉 � 2T t

A
∑
k,n

−ξkeik·(xi−x j )

ε2
n + |∑l �ul sin(k · êl )|2 .

(26)

Without going into details, we conclude that tb ∼ t f t/|EtVB| >

0 at temperatures far below TtRVB.
On the other hand, in the limit of dominant normal hop-

ping, t f � maxl |�ul |, one may omit the mean field order
parameter in the evaluation of tb = t

∑
σ 〈 f †

i,σ f j,σ 〉 � t (1 − δ).
The approximate replacement of the fermionic correlator by
the fermion density 1 − δ becomes exact in the continuum
limit.

Finally, we consider t f = t
∑

σ 〈b†
jbi〉. It is obvious that

t f = δt in the superfluid, where 〈bi〉 = √
δeiφi . We now show

that t f = δt also in the normal state and exploit that the
relevant regime regards low densities. In this limit the bosonic
Hamiltonian can be linearized, H = ∑

k b†
kξ

b
kbk, where ξ b

k has

mg

V/tb

20

10

20 40 60 80 100

mg~2V/tb

mg~4z(1-2ztb/V)

triangular lattice

square lattice

FIG. 5. The dimensionless parameter mg entering Eqs. (23) and
(24) as a function of microscopic parameters of the bosonic theory
(18).

075142-8



TRIPLET RESONATING VALENCE BOND THEORY AND … PHYSICAL REVIEW B 105, 075142 (2022)

δ|EtVB|/t

1

|EtVB|
tf

|EtVB|
tb

|EtVB|
TtRVB

|EtVB|
TBKT

|EtVB|
t

weak doping strong doping
1

FIG. 6. Estimated relationship between internal parameters tb, t f

and external parameters δ, t, EtVB (note t � |EtVB| is assumed).

a minimum at k = 0 and bandwidth tb. Then,

t f � t

A
∑

k

eik·(xi−x j )nBE
(
ξ b

k

) � δt . (27)

Here nBE(ξ b
k ) is the Bose-Einstein distribution. At the second

asymptotic equality sign, we have used the continuum limit
(expansion about k = 0), which is justified for temperatures
T � tb.

We conclude with a remark that the discrimination of
two regimes t f � maxl |�ul |, t f � maxl |�ul | at temperatures
far below TtRVB is equivalent to δt � |EtVB| and δt � |EtVB|,
respectively.

IV. CONCLUSION

In summary, we have studied tRVB states on 2D triangular
and square lattices using an Abrikosov fermion mean field
treatment of an anisotropic nearest-neighbor ferromagnetic
Heisenberg model. We found a gapless Dirac spin liquid for
either lattice. We furthermore studied the effect of doping
away from the Mott insulator limit and thereby discovered a
mechanism for the appearance of p + ip triplet superconduc-
tivity.

We conclude with an outlook. On the abstract theoreti-
cal side, a question about the stability of the tRVB mean
field solutions arises for spin- 1

2 Hamiltonians. To appreciate
the exigency of this question for the present ferromagnetic
model (10), it is instructive to recapitulate what is known
about the analogous question for the SU(2)-invariant quan-
tum antiferromagnet. For the latter, neither triangular nor
square lattices display a spin-liquid ground state (but rather
120◦ collinear and Néel antiferromagnetism), despite the fact
that the mean field Abrikosov-fermion treatment yields Dirac
spin liquids [8,12,50]. In the present, predominantly ferro-
magnetic case, the situation is likely similar, and indeed the
in-plane ferromagnetic solution with energy −3J (−2J) is
lower than any of the tRVB trial states of Table I in a sub-
stantial fraction of the parameter regime. Therefore, it is an
important task for the future to find an easy-plane [U(1)
spin-symmetric]ferromagnetic spin- 1

2 Hamiltonian including
longer-range and multispin interactions which rigorously dis-
plays a tRVB ground state and to study when it is of the Dirac
or of the spinon Fermi-surface type represented in Table I.

Since tRVB states do not have any minus signs, a quantum
Monte Carlo simulation would be a promising route for such
study. Given the variety of physical states which can be en-
coded by RVB trial states with different bond lengths and
which include ordered magnets and Z2 as well as U(1) QSLs
[45,62,63], it is also an interesting task to study longer-range
tRVB trial states.

Regarding the concrete material 1T -TaS2 (and related
monolayer TaSe2, NbSe2), reliable understanding about the
scale and sign of the exchange interactions is necessary, both
experimentally and theoretically. Here we have presented a
theory which displays quantum spin-liquid behavior, even
when the exchange interactions are predominantly ferromag-
netic. A spinon Fermi surface either from singlet or triplet
RVB could potentially account for linear temperature scaling
in specific heat and thermal conductivity. However, the lowest
state within our mean field approach is a tRVB QSL with
Fermi points and Dirac excitations. While the mean field
solutions with a spinon Fermi surface have higher energy,
they might be stabilized by certain longer-range interactions.
Incidentally, within our theory, doping leads to a time-reversal
symmetry-breaking superconductor which is indeed believed
to be observed in stacked multilayers of 1T -TaS2 and metallic
1H-TaS2 [33]. On the other hand, if present estimates of
exchange interactions on the order of a few Kelvin are correct,
an alternative to the theoretical QSL explanation for the weak
Curie-Weiss signal appears inevitable.

Beyond the issue of 1T -TaS2, our proposal opens room
for an exciting experimental and numerical search for QSLs
and topological order in local moment systems with predomi-
nantly ferromagnetic coupling that do not order down to very
low temperatures.
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APPENDIX A: MEAN FIELD SLAVE-BOSON
THEORY FOR SU(2)

In this Appendix we provide details on our calculations of
a t-J model with anisotropic, ferromagnetic exchange interac-
tion.

1. Attractive interaction channels

The spinon interaction in Eq. (11) contains intersite in-
teraction of singlet particle-hole f †

i f j and particle-particle
f †
i σy f †

j and of triplet mz = 0 particle-hole f †
i σz f j and particle-

particle f †
i σx f †

j operators. We drop the interaction of repulsive
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interaction channels of triplet mz = ±1 operators and obtain

HJ =
∑
〈i, j〉

1

2
[EsVB( f †

i f j )( f †
j fi )

+ EtVB( f †
i σz f j )( f †

j σz fi )

+ EtVB( f †
i σx f †

j )( f jσx fi )

+ EsVB( f †
i σy f †

j )( f jσy fi )]. (A1)

Since we are interested in the regime EtVB < EsVB and EtVB <

0, we decouple only the second and third lines in Eq. (18) of
the main text.

2. Free-energy expansion

We expand the fermionic contribution to the free-energy
density, Eq. (21), in powers of κ ′, �u. The zeroth order is given
by

F0 = 2
T

A
∑

k

ln(1 + e−ξk/T ), (A2)

while higher-order contributions are formally

�F = − T

2A
∑
n,k

trσ,τ ln
[
1 − G (0)

n,kδhk
]

� T

2A
∑
n,k

(
1

2
trσ,τ

[
(G (0)

n,kδhk )2
]+ 1

4
trσ,τ

[
(G (0)

n,kδhk )4
])

.

(A3)

Here Gn,k = (
Gn,k 0

0 −Ḡn,k
) and Gn,k = (iεn − ξk )−1. All

terms with odd powers in the series expansion vanish by spin
summation. This is in contrast to usual singlet RVB theory,
where there is a linear term �F ∼ −t f

∑
l κ ′

l .

a. Second-order term

We introduce the three integrals

A(ll ′ )
± = T

A
∑
n,k

sin(kl ) sin(kl ′ )

(
1

iεn − ξk
± 1

iεn + ξk

)2

= − 1

A
∑

k

sin(kl ) sin(kl ′ )

×
{

1

2T [cosh(ξk/[2T ])]2
± tanh(ξk/[2T ])

ξk

}
, (A4a)

B(ll ′ ) = T

A
∑
n,k

cos(kl ) cos(kl ′ )

(
1

(iεn − ξk )2
+ 1

(iεn + ξk )2

)

= − 1

2TA
∑

k

cos(kl ) cos(kl ′ )

[cosh(ξk/[2T ])]2
. (A4b)

Using these integrals we obtain after traces in Nambu and
spin space (Einstein summations to be understood)

F2 = A(ll ′ )
+ �ul · �ul ′ − A(ll ′ )

− �uT
l

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠�ul ′ + 2B(ll ′ )κ ′

lκ
′
l ′ .

(A5)

In Eq. (21) of the main text we slightly abuse our notations
and absorb A(ll ′ )

+ + 2δll ′/|EtVB| → A(ll ′ )
+

b. Mean field instabilities

We first consider the regime t f = δt � T � t . In this
limit, ∂ f /∂λ = 0 leads to λ ≈ 2δT � t f . Expansion in ξk �
T leads to

All ′
+ � − 1

TA
∑

k

sin(kl ) sin(k′
l )
(
1 − ξ 2

k/6
)

� − δll ′

2T

⎧⎨
⎩
[
1 − 5

6

( t f

T

)2
]
, triangular lattice[

1 − 3
6

( t f

T

)2
]
, square lattice

(A6)

All ′
− � 1

TA
∑

k

sin(kl ) sin(k′
l )ξ

2
k/12

� δll ′

24T

⎧⎨
⎩
[
5
( t f

T

)2
]
, triangular lattice[

3
( t f

T

)2
]
, square lattice

(A7)

B � − 1

2TA
∑

k

cos(kl ) cos(k′
l )(1 − ξ 2

k/4)

� − 1

4T

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎣1 − 1

4

( t f

T

)2

⎛
⎝7 2 2

2 7 2
2 2 7

⎞
⎠
⎤
⎦, triangular lattice

[
1 − 1

4

( t f

T

)2
(

5 2
2 5

)]
, square lattice.

(A8)

The largest transition temperature Tc is thus associated
to the order parameter �′

l ,�
′′
l with Tc = |EtVB|/4[1 −

20(t f /|EtVB|)2/3] [Tc = |EtVB|/4[1 − 5(t f /|EtVB|)2]] for the
triangular (square) lattice. The critical temperatures associ-
ated to κ are order (t f /J )2 times lower.

We now consider the regime T � t f . A logarithmic
Cooper instability in Eq. (A4), manifest through the typical
momentum sum

∑
k tanh[ξk/(2T )]/ξk, only occurs for the

combination A(ll ′ )
+ − A(ll ′ )

− ∼ −ρδll ′ ln(t f /T ) (right at a van
Hove singularity, other terms may also have logarithmic coef-
ficients). Here we employed t f as the UV cutoff of our theory
and we introduced the density of states ρ which in the simpli-
fied, parabolic limit obtained by expansion of the dispersion
about the � point is ρ = 1/(8

√
3πt f ) [ρ = 1/(8πt f )] for tri-

angular (square) lattice. Clearly, the parabolic approximation
is considerably better for the triangular lattice which does not
display a van Hove singularity at half-filling.

We observe that κ ′ does not develop a (dominant) mean
field instability in either T � t f nor t f � T � t . It will there-
fore be omitted in the following and is not included in Eq. (22)
of the main text.

c. Fourth-order term

We obtain the following expansion of the trace:

trστ [(G�h · �τσz )4]/2 = 2|G|4�h4

− 4|G|2(G + Ḡ)2
(
h2

1 + h2
2

)
h2

3

+ (G2 − Ḡ2)2h4
3. (A9)
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Here, we have omitted the subscripts n, k of the Green’s
functions, and �h = �h(k) = 2

∑
l �ul sin(kl ).

We keep only the first line 2|G|4�h4 of Eq. (A9). In the limit
of small t f � T this is justified since the terms of the second
and third lines vanish [this is a manifestation of the SU(2)
symmetry]. In the opposite limit t f � T the leading, quadratic
instability regards superconducting order parameters �′

l�
′′
l

only, and we can disregard the additional corrections from h3

terms.
In summary, this motivates us to drop SU(2)-breaking

terms from the quartic term. The relevant integrals in the
derivation of quartic terms are thus

I{ki} = 2T

A
∑
n,k

|Gn,k|4
4∏

i=1

sin(kli ). (A10)

By mirror symmetry k1 → −k1, the only nonzero integrals
have either all li equal or li pairwise equal. By rotational
symmetry, all nonzero integrals can thus be expressed as one
of the following integrals:

C̃ = 2T

A
∑
n,k

|Gn,k|4 sin(k1)4

= 7ζ (3)

4π2T 3

1

A
∑

k

f (ξk/T ) sin(k1)4, (A11a)

D = 4T

A
∑
n,k

|Gn,k|4 sin(k1)2 sin(k2)2

= 7ζ (3)

4π2T 3

2

A
∑

k

f (ξk/T ) sin(k1)2 sin(k2)2. (A11b)

Here, f (x) = −π2[x − sinh(x)]sech2(x/2)/[7ζ (3)x3]
[which is normalized to

∫
dx f (x) = 1] places the integrals

on the Fermi surface.
In the regimes of interest we estimate these constants as

follows: for t f � T � t , C, D ∼ T −3 ∼ J−3, while for T �
t f , C, D ∼ T −2/[t f ] ∼ J−2/[t f ].

With this notation we obtain

F4 =
∑

l

C̃�u4
l + D

2

∑
l =l ′

[
�u2

l �u2
l ′ + 2(�ul · �ul ′ )

2
]

(A12)

as reported in Eq. (22) of the main text, where we use the
notation C = C̃ − 3D/2.

APPENDIX B: LARGE-N TREATMENT OF TRVB
SPIN LIQUID

In this Appendix, we demonstrate that the triplet quantum
spin liquid discussed in the main text can be stabilized in an
appropriate large-N limit. Here we concentrate on the Mott
insulator (i.e., δ = 0) and Jz = J . In this limit, Eq. (10) can be
written as

H = J
∑
〈i, j〉

3∑
μ=1

(
σ̂ (i)

z σ̂ (i)
μ σ̂ (i)

z

)
σ̂ ( j)

μ . (B1)

The easy-plane nature is captured by the unitary transforma-
tion σ̂ (i)

z σ̂ (i)
μ σ̂ (i)

z on the i site. Note that Eq. (B1) holds for
triangular and square lattices, alike.

Here we introduce a generalization of the SU(2) = Sp(2)
spin group to Sp(2N ) and the large-N model is

H = J

N/3 + 2/3

∑
〈i, j〉

2N2+N∑
μ=1

(
σ̂ (i)

z σ̂ (i)
μ σ̂ (i)

z

)
σ̂ ( j)

μ . (B2)

The notion of σ̂z operators on a given site i will become
clear shortly and the prefactor is chosen for convenience.
The symplectic group is special, as it allows for the notion
of time-reversal symmetry and thereby for superconducting
spinon mean field theories [64]. This feature is manifest in the
usual matrix definition of the generators of the group

σ̂μ = −σ̂yσ̂
T
μ σ̂y, (B3)

where σ̂y = (
0 −i1N

i1N 0 ) ≡ σy ⊗ 1N (where 1N is the N × N

identity matrix).
For the present purpose of anisotropic quantum mag-

netism, it is convenient to represent the generators of Sp(2N )
as σx,y,z ⊗ S and 12 ⊗ A, in particular σ̂y,z = σy,z ⊗ 1N in
Eqs. (B2) and (B3). Here, S (A) are symmetric (antisym-
metric) N × N matrices; clearly, this parametrization fulfills
Eq. (B3) and the number of generators 3N (N + 1)/2 +
N (N − 1)/2 = 2N2 + N agrees with the dimension of the
group. We can thus rewrite Eq. (B2) as

H = − J

N/3 + 2/3

∑
〈i, j〉

{∑
S

[(σx ⊗ S)(i)(σx ⊗ S)( j)

+ (σy ⊗ S)(i)(σy ⊗ S)( j) − (σz ⊗ S)(i)(σz ⊗ S)( j)]

−
∑

A

(12 ⊗ A)(i)(12 ⊗ A)( j)

}
. (B4)

This expression clearly reflects the easy-plane ferromag-
netism of the original XXZ spin- 1

2 model (10) of the main
text (here

∑
S sums over symmetric N × N matrices and anal-

ogously
∑

A sums over antisymmetric matrices).
We now represent the symplectic spins as

σ̂μ → f †
a,σ [σ̂μ] aa′

σσ ′
fa,σ . (B5)

Here, we introduced 2N species (σ =↑,↓, α = 1 . . . N) of
Abrikosov fermions.

In this notation, Eq. (B4) becomes

H = J

N/3 + 2/3

∑
〈i, j〉

2N2+N∑
μ=1

( f †
i σ̂zσ̂μσ̂z fi )( f †

j σ̂μ f j )

= − J

2N/3 + 4/3

∑
〈i, j〉

( f †
i σ̂z f j )( f †

j σ̂z fi )

− J

2N/3 + 4/3

∑
〈i, j〉

( f †
i σ̂zσ̂y f ∗

j )( f T
j σ̂yσ̂z fi ). (B6)

In the second line we used the Fierz identity of generators of
appropriately normalized generators of Sp(2N ):∑

μ

σ̂
μ

αβ

∑
μ

σ̂
μ

γ δ = 1

2
[δαδδβγ − (σ̂y)αγ (σ̂y)δβ]. (B7)
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TABLE II. Coupling constants of the continuum field theory of
2D bosons [Eq. (23)] as obtained from the bosonic part of Eq. (18)
(here, we explicitly restored the lattice constant a).

tb � V tb � V

m 1/(ztba2) 1/(ztba2)
μeff μ − 2zV − λ + ztb μ − 2zV − λ + ztb

g 2zVa2 4z2tba2(1 − 2ztb/V )

TBKT
2πztbna2

ln(190tb/V )
2πztbna2

ln[95/(z−2z2tb/V )]

In this equation we used a multi-index notation α = (σ, a),
etc.

Clearly, the interaction is invariant under local transforma-
tions which leave fi f †

i + σy f ∗
i f T

i σy invariant, which leads to
a local SU(2) symmetry [64]. Here we will not dwell on these
subtleties, and rather exploit that the large-N limit prescribes
the pattern of decoupling that we employed in Eq. (18):

H =
∑
〈i, j〉

{
(κi j f †

i σ̂z f j + H.c.) + [
�i j f T

i (iσ̂y)σ̂z f j + H.c.
]}

+ 2N

|EtVB|
∑
〈i, j〉

[|κi j |2 + |�i j |2
]
. (B8)

We used EtVB = −3J in the present limit. Upon integration
of the spinons, the overall free energy therefore acquires an
additional linear proportionality to “color index” N , whereby
the mean field approximation becomes justified.

Before closing, we remark that our search of mean field
solution within the limited set of homogeneous κi, j,�i, j is not
controlled by the large-N limit and deserves special attention
in future studies of the problem.

In summary, in this Appendix we have presented an
Sp(2N ) generalization of Eq. (10) which allows to analyti-
cally control the mean field treatment of tRVB theories. It
is apparent that this representation of Sp(2N ) is favorable
for any anisotropic quantum magnet and the application to
Kitaev-Heisenberg models is left to future publications [65].

APPENDIX C: BKT TRANSITION

Here we summarize the mapping of the bosonic part of
Eq. (18):

Hb = −tb
∑
〈i, j〉

[b†
i b j + H.c.] − μ̃

∑
i

b†
i bi + V

∑
〈i, j〉

(b†
i bi )(b

†
jb j )

(C1)

to the continuum model (23) and thereby we derive TBKT. We
assume a grand-canonical ensemble and here use μ̃ = μ −
2zV − λ to denote the effective boson chemical potential. The
microscopic values for the coupling constants of Eq. (23) are
derived in this Appendix and summarized in Table II.

In the weak coupling limit tb � V we can expand ξ b
k =

−2tb
∑

l cos(k · êl ) � (−z + zk2

2 )tb near the bottom of the
band and thus identify ξ b

0 = −ztb (which is absorbed in μ) and
the mass m = 1/(ztba2). Then, Eq. (23) can be directly derived
by replacing bi → aψ (xi ), with a being the lattice constant.

For the regime tb � V , we expand in small order-
parameter field � by decoupling the kinetic term (for details
see Ref. [66])

Hkin =
∑

k

b†
kE (k)bk →

∑
i

b†
i �i + �̄ibi

−
∑

k

�̄(k)E (k)−1�(k). (C2)

In Eq. (C2), the term linear in � will be treated as a
perturbation to Hb|tb=0, in which local occupations ni are
good quantum numbers allowing to formally diagonalize the
Hamiltonian. In particular, the state without any boson has
energy 0, while E1 = −μ̃ is the energy of a single boson on
a given site, while EV = 2E1 + V is the energy of a pair of
bosons at adjacent sites.

The continuum theory of bosons, Eq. (23), near μeff = 0
describes a (Mott) insulator to superfluid quantum phase tran-
sition, and we formally derive this theory approaching the
transition from the disordered side with μeff < 0 such that no
bosons are in the system at the ground state. We then assume
that the parameters m, g, μeff are the same also on the ordered
side of the transition (in the relevant regime μeff ∼ δg/a2 is
small but positive) and at temperatures of order TBKT.

By assumption, the ground state of Hb|tb=0 is then given
by all sites empty and the leading excitations are given by the
one- and two-boson states discussed above. We obtain from
integrating out the bi bosons [67]

S =
∫

dτ
∑

i

�̄i(−1 + E1∂τ )�i

E1

+ 4
∫

dτ
∑
〈i, j〉

|�i|2|� j |2
E2

1

(
1

2E1
− 1

EV

)
. (C3)

The quadratic term is obtained by perturbative inclusion of the
dynamics of a single boson in the system. The quartic term can
be obtained in the same manner, but it is equivalent and easier
to calculate perturbative corrections to the ground-state energy
of Hb|tb=0 in the presence of a constant �. The parameters
of Table II, third column, and Eq. (23) are then obtained by
identifying �i → aψ (xi )E1 for weakly spatially dependent
fields.

Physically, the presented calculation can be interpreted as
follows. First, consider creating a single boson in the sys-
tem. It costs onsite energy E1 = −μ̃ > 0, but gains kinetic
energy up to ztb as it travels through the system. Clearly, the
physics of a single boson is approximately valid in the small
density limit, too, thus the free part of Eq. (23) is equivalent
for noninteracting, weakly interacting and strongly interacting
particles. However, the free theory needs to be complemented
by scattering between two bosonic waves when two bosons
are close (i.e., the g term). This depends on the microscopic
details of the interaction potential, in particular its strength, as
presented in Fig. 5.
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Prelovsek, D. Mihailovic, D. Arcon et al., Nat. Phys. 13, 1130
(2017).

[25] W. Ruan, Y. Chen, S. Tang, J. Hwang, H.-Z. Tsai, R. L. Lee, M.
Wu, H. Ryu, S. Kahn, F. Liou et al., Nat. Phys. 17, 1154 (2021).

[26] W.-Y. He, X. Y. Xu, G. Chen, K. T. Law, and P. A. Lee, Phys.
Rev. Lett. 121, 046401 (2018).

[27] X.-L. Yu, D.-Y. Liu, Y.-M. Quan, J. Wu, H.-Q. Lin, K. Chang,
and L.-J. Zou, Phys. Rev. B 96, 125138 (2017).

[28] D. Pasquier and O. V. Yazyev, Phys. Rev. B 98, 045114 (2018).
[29] M. Calandra, Phys. Rev. Lett. 121, 026401 (2018).
[30] Y. Chen, W. Ruan, M. Wu, S. Tang, H. Ryu, H.-Z. Tsai, R. Lee,

S. Kahn, F. Liou, C. Jia et al., Nat. Phys. 16, 218 (2020).
[31] The ferromagnetic exchange interaction of J ∼ 5 K has been

derived for monolayer 1T -NbSe2. We are not aware of a similar
derivation for bulk 1T -TaS2, but expect a similar number from
analogous techniques.

[32] K. Rossnagel and N. V. Smith, Phys. Rev. B 73, 073106
(2006).

[33] A. Ribak, R. M. Skiff, M. Mograbi, P. Rout, M. Fischer, J.
Ruhman, K. Chashka, Y. Dagan, and A. Kanigel, Sci. Adv. 6,
eaax9480 (2020).

[34] A. Ron, E. Zoghlin, L. Balents, S. D. Wilson, and D. Hsieh, Nat.
Commun. 10, 1654 (2019).

[35] M.-W. Lin, H. L. Zhuang, J. Yan, T. Z. Ward, A. A. Puretzky,
C. M. Rouleau, Z. Gai, L. Liang, V. Meunier, B. G. Sumpter, P.
Ganesh, P. R. C. Kent, D. B. Geohegan, D. G. Mandrus, and K.
Xiao, J. Mater. Chem. C 4, 315 (2016).

[36] B. Liu, Y. Zou, L. Zhang, S. Zhou, Z. Wang, W. Wang, Z. Qu,
and Y. Zhang, Sci. Rep. 6, 33873 (2016).

[37] J. Zhang, X. Cai, W. Xia, A. Liang, J. Huang, C. Wang, L. Yang,
H. Yuan, Y. Chen, S. Zhang, Y. Guo, Z. Liu, and G. Li, Phys.
Rev. Lett. 123, 047203 (2019).

[38] B. Siberchicot, S. Jobic, V. Carteaux, P. Gressier, and G.
Ouvrard, J. Phys. Chem. 100, 5863 (1996).

[39] T. J. Williams, A. A. Aczel, M. D. Lumsden, S. E. Nagler, M. B.
Stone, J.-Q. Yan, and D. Mandrus, Phys. Rev. B 92, 144404
(2015).

[40] W. Cai, H. Sun, W. Xia, C. Wu, Y. Liu, H. Liu, Y. Gong,
D.-X. Yao, Y. Guo, and M. Wang, Phys. Rev. B 102, 144525
(2020).

[41] A. Kitaev, Ann. Phys. 321, 2 (2006).
[42] B. Shen, Y. Zhang, Y. Komijani, M. Nicklas, R. Borth, A. Wang,

Y. Chen, Z. Nie, R. Li, X. Lu et al., Nature (London) 579, 51
(2020).

[43] P. Coleman, Y. Komijani, and E. J. König, Phys. Rev. Lett. 125,
077001 (2020).

[44] V. Drouin-Touchette, E. J. König, Y. Komijani, and P. Coleman,
Phys. Rev. B 103, 205147 (2021).

[45] A. F. Albuquerque, F. Alet, and R. Moessner, Phys. Rev. Lett.
109, 147204 (2012).

[46] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881
(2001).

[47] P. Fendley, R. Moessner, and S. L. Sondhi, Phys. Rev. B 66,
214513 (2002).

[48] A. Ioselevich, D. A. Ivanov, and M. V. Feigelman, Phys. Rev. B
66, 174405 (2002).

[49] P. Coleman, Phys. Rev. B 29, 3035 (1984).
[50] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[51] P. Coleman, Introduction to Many-body Physics (Cambridge

University Press, Cambridge, 2015).
[52] E. J. König, P. Coleman, and Y. Komijani, Phys. Rev. B 104,

115103 (2021).
[53] A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
[54] F. J. Wegner, J. Math. Phys. 12, 2259 (1971).
[55] T. Senthil and M. P. Fisher, J. Phys. A: Math. Gen. 34, L119

(2001).
[56] M. Hermele, T. Senthil, M. P. A. Fisher, P. A. Lee, N. Nagaosa,

and X.-G. Wen, Phys. Rev. B 70, 214437 (2004).
[57] A. E. Ruckenstein, P. J. Hirschfeld, and J. Appel, Phys. Rev. B

36, 857 (1987).
[58] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17

(2006).
[59] I. Affleck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B 38,

745 (1988).
[60] S. Rachel, M. Laubach, J. Reuther, and R. Thomale, Phys. Rev.

Lett. 114, 167201 (2015).

075142-13

https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1080/14786439808206568
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1103/PhysRevB.35.8865
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevLett.105.067205
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1038/374434a0
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1103/PhysRevB.102.155143
https://doi.org/10.1146/annurev-conmatphys-031218-013210
https://doi.org/10.1073/pnas.1706769114
https://doi.org/10.1038/s41535-017-0048-1
https://doi.org/10.1103/PhysRevX.7.041054
https://doi.org/10.1080/13642817908245359
https://doi.org/10.1103/PhysRevB.96.195131
https://doi.org/10.1103/PhysRevResearch.2.013099
https://doi.org/10.1103/PhysRevB.98.195425
https://doi.org/10.1038/nphys4212
https://doi.org/10.1038/s41567-021-01321-0
https://doi.org/10.1103/PhysRevLett.121.046401
https://doi.org/10.1103/PhysRevB.96.125138
https://doi.org/10.1103/PhysRevB.98.045114
https://doi.org/10.1103/PhysRevLett.121.026401
https://doi.org/10.1038/s41567-019-0744-9
https://doi.org/10.1103/PhysRevB.73.073106
https://doi.org/10.1126/sciadv.aax9480
https://doi.org/10.1038/s41467-019-09663-3
https://doi.org/10.1039/C5TC03463A
https://doi.org/10.1038/srep33873
https://doi.org/10.1103/PhysRevLett.123.047203
https://doi.org/10.1021/jp952188s
https://doi.org/10.1103/PhysRevB.92.144404
https://doi.org/10.1103/PhysRevB.102.144525
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1038/s41586-020-2052-z
https://doi.org/10.1103/PhysRevLett.125.077001
https://doi.org/10.1103/PhysRevB.103.205147
https://doi.org/10.1103/PhysRevLett.109.147204
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevB.66.214513
https://doi.org/10.1103/PhysRevB.66.174405
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevB.104.115103
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1063/1.1665530
https://doi.org/10.1088/0305-4470/34/10/106
https://doi.org/10.1103/PhysRevB.70.214437
https://doi.org/10.1103/PhysRevB.36.857
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevB.38.745
https://doi.org/10.1103/PhysRevLett.114.167201


KÖNIG, KOMIJANI, AND COLEMAN PHYSICAL REVIEW B 105, 075142 (2022)

[61] N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Phys. Rev.
Lett. 87, 270402 (2001).

[62] S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. 61,
365 (1988).

[63] J.-Y. Chen and D. Poilblanc, Phys. Rev. B 97, 161107(R)
(2018).

[64] R. Flint, M. Dzero, and P. Coleman, Nat. Phys. 4, 643 (2008).

[65] E. J. König et al. (to be published).
[66] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, 2011).
[67] S. Saha, E. J. König, J. Lee, and J. H. Pixley, Phys. Rev.

Research 2, 013252 (2020).

Correction: The omission of author contribution statements
has been rectified.

075142-14

https://doi.org/10.1103/PhysRevLett.87.270402
https://doi.org/10.1103/PhysRevLett.61.365
https://doi.org/10.1103/PhysRevB.97.161107
https://doi.org/10.1038/nphys1024
https://doi.org/10.1103/PhysRevResearch.2.013252

