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We performed comprehensive theoretical and experimental studies of the electronic structure and the Fermi
surface topology of two novel quantum materials, MoSi2 and WSi2. The theoretical predictions of the electronic
structure in the vicinity of the Fermi level was verified experimentally by thorough analysis of the observed
quantum oscillations in both electrical resistivity and magnetostriction. We established that the Fermi surface
sheets in MoSi2 and WSi2 consist of 3D dumbbell-shaped holelike pockets and rosette-shaped electronlike
pockets, with nearly equal volumes. Based on this finding, both materials were characterized as almost perfectly
compensated semimetals. In conjunction, the magnetoresistance attains giant values of 104 and 105% for WSi2

and MoSi2, respectively. In turn, the anisotropic magnetoresistance achieves −95% and −98% at T = 2 K and
in B = 14 T for WSi2 and MoSi2, respectively. Furthermore, for both compounds we observed the Shoenberg
effect in their Shubnikov-de Haas oscillations that persisted at as high temperature as T = 25 K in MoSi2 and
T = 12 K in WSi2. In addition, we found for MoSi2 a rarely observed spin-zero phenomenon. Remarkably, the
electronic structure calculations revealed type-II Dirac cones located near 480 and 710 meV above the Fermi
level in MoSi2 and WSi2, respectively.
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I. INTRODUCTION

Topological semimetals (TSMs) constitute the most nu-
merous and diverse group of topological materials [1–3]. They
form a special subclass of gapless electronic phases that ex-
hibit topologically stable crossings in the energy dispersion
of their bulk electronic states. Different types of TSMs can
be distinguished into three main groups based on discrimi-
nating characteristics, i.e., (i) type of low-energy excitation
(Dirac and Weyl semimetals), (ii) codimension, e.g., type of
band crossing (pointlike, nodal-line, and multifold band cross-
ings), and (iii) preserving of Lorentz invariance (type-I and
type-II topological semimetals) [4]. In nodal-line semimetals,
the gaps close along lines or loops in the Brillouin zone
(BZ) rather than at isolated points as in type-I Dirac/Weyl
semimetals [1,5]. In type-II TSMs, the Dirac/Weyl cone ex-
hibits strong tilting so that the characteristic crossing point
appears as a contact point between an electron pocket and a
hole pocket of the Fermi surface sheets. This behavior is a
straightforward consequence of violation of the Lorentz sym-
metry in the crystal structure [6]. Depending on the position
of the chemical potential, these topologically nontrivial elec-
tronic features can be observed in a form of peculiar electron
transport properties associated with enhanced carrier mobility
and chiral magnetic anomaly, both being a consequence of
nonzero Berry curvature in the momentum space [2].

Besides the unprecedented importance for fundamen-
tal science, TSMs also offer an intriguing and promising
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opportunity for device design, revolutionizing future spin-
orbital torque based low-power memory and computational
capabilities, quantum computing hardware, as well as laser
technology [7–9]. Because the electronic transport properties
play an important role in device modeling and effectiveness,
it is crucial to develop accurate and detailed predictions of
electrical conductivity and magnetoconductivity, and more
fundamentally, electron band dispersion in the vicinity of the
Fermi level. Additionally, semiconductor industry imposes
additional requirements on usable materials, requiring them
to be cheap, stable in different environmental conditions, non-
toxic, and easy-obtainable by large-scale industrial methods.

MoSi2 and WSi2 meet all the above requirements, includ-
ing a compatible growth process as thin films [10–12]. Recent
works on MoSi2 and WSi2 demonstrated that both compounds
may exhibit some topological features, such as nontriv-
ial Berry phase (extracted from the quantum oscillations
of magnetization) and extremely large magnetoresistance
(XMR) [13,14]. While the first effect is usually interpreted
as the presence of nontrivial electronic states near the Fermi
level, several other mechanisms (related to both topologi-
cally trivial and nontrivial character of electronic structure)
have been suggested as explanations for XMR in various
materials [15–20]. Nevertheless, in the preliminary works
on MoSi2 and WSi2, it has been emphasized that addi-
tional experimental and theoretical studies on high-quality
materials are desired to conclude on possible topologically
nontrivial electronic properties [13,14]. There is also an ad-
ditional controversy in the interpretation of the results of
the quantum oscillations analyses performed for MoSi2 in
Refs. [13,21]. Two independent research groups ascribed the
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same frequencies of quantum oscillations to different extreme
cross-sections of the Fermi pockets, causing divergent state-
ments about the shape of the Fermi surfaces.

Remarkably, MoSi2 and WSi2 crystallize with the I4/mmm
space group that is adopted also by the MA3 (M = V, Nb, Ta; A
= Al, Ga, In) compounds, which are archetypal type-II Dirac
semimetals [22]. The existence of tilted Dirac cones can lead
to some unique physical properties like Klein tunneling [23]
and anomalous Hall effect [24], which can be utilized in novel
ultrasensitive magnetic sensors and memories [25,26]. How-
ever, there are many challenges and critical issues in growing
single-crystalline MA3 by deposition techniques due to high
vapor pressure of Al, Ga, and In [27]. In contrast, it has been
shown that thin films of MoSi2 can be easily prepared on
different substrates [11,12], thus providing an ideal platform
for both basic and applied research.

In order to verify whether MoSi2 and WSi2 can be clas-
sified as topological semimetals, and thus can be considered
as useful material for modern technology applications, we
performed detailed calculations of their electronic structure,
carried out meticulous investigations of their electron trans-
port properties, and analyzed in details the observed quantum
oscillations of electrical resistivity and magnetostriction. We
obtained very good agreement between theoretical and exper-
imental datasets. The calculated and experimentally obtained
Fermi surface sheets of both materials are almost identical. In
addition to the important information about the Fermi surface
topology, we found that quantum oscillations of electrical
resistivity in MoSi2 and WSi2 demonstrate pronounced mag-
netic interaction effect, which is also called the Shoenberg
effect. In both compounds, this effect appears as the com-
bination frequencies in the fast Fourier transform spectra of
quantum oscillations. In MoSi2, this effect was noticed at
a record-high temperature of 25 K. Furthermore, the quan-
tum oscillations of electrical resistivity in MoSi2 show the
spin-zero effect, the vanishing of the fundamental frequency
of quantum oscillations due to the fact that for the certain
directions of magnetic field application, the spin factor (in the
Lifshitz-Kosevich theory) becomes zero.

In contrast to the relatively common observation of quan-
tum oscillations in electrical resistance and magnetization,
quantum oscillations of magnetostriction are rarely reported.
In our work, we observed these oscillations in MoSi2 and
confirmed that they can be a comprehensive technique for
mapping Fermi surfaces in semimetals.

II. METHODS

Single crystals of MoSi2 and WSi2 were grown by the
Czochralski technique. The synthesis protocol consists of
two steps and is as follows. First, polycrystalline precursors
were synthesized by arc-melting of stoichiometric amounts
({Mo,W}:Si = 1:2) of the elemental constituents with chem-
ical purities Mo (99.97 wt.%), W (99.95 wt.%), and Si
(99.9999 wt.%). Next, those polycrystalline samples were
used to grow single crystals using a tetra arc-furnace, the syn-
theses were carried out under argon atmosphere. The obtained
single crystals were studied by x-ray Laue backscattering with
a Proto LAUE COS system, in order to check their quality and
orient them along special crystallographic direction.

The crystal structure of powdered MoSi2 and WSi2 single
crystals was confirmed by powder x-ray diffraction, using
PANanalytical X’pert Pro diffractometer with Cu Kα radia-
tion. The obtained x-ray diffractograms were analyzed with
FULLPROF software (Rietveld method was used) [28].

The electrical transport measurements were carried out us-
ing a standard four-probes technique with a Quantum Design
Physical Property Measurement System (PPMS) equipped
with a horizontal rotator. Rectangular-shaped samples were
cut from the oriented single crystals by wire saw, electrical
contacts were made of 50-μm silver wires, which were at-
tached to the sample by silver epoxy paste. A miniaturized
capacitance dilatometer [29] and the PPMS platform were
used for the magnetostriction measurements.

Electronic structure calculations were performed with the
all-electron general potential linearized augmented plane-
wave method as implemented in the ELK code [30,31]. The
exchange and correlation effects were treated using GGA in
the form proposed by Perdew, Wang, and Ernzerhof [32].
The spin-orbit coupling (SOC) was included as a second
variational step, using scalar-relativistic eigenfunctions as the
basis, after the initial calculation was converged to self-
consistency. The Monkhorst-Pack special k-point scheme
with 22 × 22 × 17 mesh was used in the first Brillouin zone
sampling, and the muffin tin radius (RKmax) was set to
8 [33,34]. For the Fermi surface, the irreducible Brillouin
zone was sampled by 15 620 k points to ensure accurate
determination of the Fermi level [35]. Quantum oscillations
frequencies were calculated using the Supercell K-space Ex-
tremal Area Finder tool [36]. For the reference data of DOS,
similar calculations were performed with a full potential all-
electron local orbital code FPLO-14.00-49 [37–39], using the
same type of the exchange-correlation potential as above. In
all calculations, the experimental lattice parameters of MoSi2

and WSi2 obtained here were assumed.

III. RESULTS AND DISCUSSION

A. Crystal structure and electronic structure calculations

X-ray powder diffraction analysis confirmed that both
compounds crystallize with the tetragonal crystal structure
of the space group I4/mmm [see Fig. 1(a)]. The crystal
structures are layered and they are formed by stacking of
{Mo,W}-Si-{Mo,W}-Si-{Mo,W} slabs along the c axis. The
obtained values of lattice parameters (a = 3.21395 Å and c =
7.83128 Å for WSi2; a = 3.20519 Å and c = 7.84461 Å for
MoSi2) as well as atomic coordinate of Si atom (z = 0.33247
and z = 0.33497 for WSi2 and MoSi2, respectively) are very
close to those reported in the literature [40]. To provide better
agreement with our experimental results, we used these crys-
tal structure parameters during our theoretical calculations,
results of which are shown below (see Fig. 1).

The Fermi surfaces of MoSi2 and WSi2 have been stud-
ied by means of theoretical calculations [13,14,21,41,42] and
quantum oscillations analysis [13,14,21]. All these studies
have shown that both compounds are semimetals with Fermi
surfaces containing one electronlike and one holelike sheet.
Interestingly, in two recent experimental papers [13,14], the
authors discussed the possibility of the existence of non-
trivial topological states in both compounds. However, these
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FIG. 1. (a) Unit cell of {W, Mo}Si2, green spheres correspond to W or Mo atoms, blue spheres denote Si atoms. (b) Brillouin zone (with
high-symmetry points) of {W, Mo}Si2 for the crystal structure shown in (a). [(c) and (d)] Fermi surfaces of WSi2 an MoSi2. [(e) and (h)]
Electronic band structures of WSi2 and MoSi2, green rectangles highlight the area in the vicinity of type-II Dirac crossings. Black lines
correspond to band structure calculated without SOC (NSOC) and red lines correspond to band structure calculated with SOC. [(f) and (i)]
Zoomed in electronic structures (with SOC) near the Dirac node indicated by green rectangle in (e) and (h). Constant energy contour at the
energy of Dirac node [(g) and (j)].

nontrivial states have not been tackled by their theoretical
calculations. Therefore we performed detailed calculations
of electronic structure of both materials with the purpose of
looking for topologically nontrivial states.

The bulk Brillouin zone with marked high-symmetry
points is shown in Fig. 1(b), with the electronic structures of
MoSi2 and WSi2 shown in Figs. 1(e) and 1(h). The impact of
spin-orbit coupling is shown by comparing the results without
SOC (black solid lines) and with SOC (red solid lines). There
are several gapless nodes at high-symmetry k points around
the Fermi level, e.g., in the �-K plane, when the SOC is not
included. As the SOC is induced, those Dirac points become
gapped and thus pronounced contribution of a spin Berry
curvature can be expected. The spin Berry curvature seems
to be inversely proportional to the gap size, in full agree-
ment with theoretical predictions [43]. The only noticeable
crossing, robust against SOC, is along the �-Z direction at
εD = 480 meV and εD = 710 meV above the Fermi level
for MoSi2 and WSi2, respectively [see Fig. 1(e), 1(f), 1(h),
and 1(i)].

Both bulk Dirac cones of MoSi2 and WSi2 are formed by
two W/Mo valence bands with mainly dxy and dxz+yz orbital
characters. As each electronic band is doubly degenerate,
the isolated local symmetry-protected bands create fourfold
degenerate Dirac points. Group-theory analysis shows that

these two bands belong to different irreducible representa-
tions, which are associated with D4h point symmetry. Similar
band crossing, along the same direction in the BZ, appears in
several isostructural materials from the MA3 family (where M
= V, Nb, Ta; A = Al, Ga, In) of type-II Dirac semimetals [22].
Type-II Dirac cones in PtSe2 and PtTe2 are formed mostly by
Se/Te-p orbitals [44,45], in turn in MoSi2 and WSi2 the Dirac
cones are formed mainly by the d orbitals.

The Fermi surfaces of WSi2 and MoSi2 are shown in
Figs. 1(c) and 1(d). Both compounds have similar Fermi sur-
faces, comprising two pockets. A holelike pocket is centered
at � point and electronlike pocket is centered at Z point.
The coexistence of the electronlike and holelike carriers is
consistent with the Hall resistivity results (see Ref. [46]).
To add clarity, the constant energy contours at εn(k) = εD

are shown in Figs. 1(g) and 1(j). For both compounds, the
holelike and electronlike pockets touch each other at the Dirac
node.

B. Electrical resistivity and magnetoresistance

As the results of our theoretical calculations point to the
possible formation of type-II Dirac cones in MoSi2 and WSi2,
the next stage of our research was experimental verification
of the calculated electronic structure. It should be noted that
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FIG. 2. Electrical resistivity as a function of temperature in a log-log scale, measured in zero magnetic field and in applied magnetic field
of 14 T for MoSi2 (a) and WSi2 (samples 1 and 2) (b). Magnetoresistance as a function of magnetic field, measured at several temperatures
for MoSi2 (c) and sample 1 of WSi2 (d). Inset to (d) shows magnetoresistance isotherms obtained for sample 2 of WSi2. The measurement
geometry is shown in the inset to (a).

according to our calculations, the topological nontrivial states
are located somewhat above the Fermi level, which means
that their direct contribution to the overall electronic transport
properties can be not visible. Nevertheless, if this calculated
electronic structure can be verified experimentally, even in
the vicinity of the Fermi level only, it will be reasonable to
undertake further research to shift the Fermi level closer to
the type-II Dirac points. There are several strategies to do this.
For example, the Fermi level tuning in heterostructures can be
achieved by doping, defect control, epitaxial thin film growth
on different substrates, and a recently proposed mechanism
based on the cooperative effect of charge density waves and
nonsymmorphic symmetry [47,48].

To verify experimentally the calculated electronic structure
near the Fermi level, we focused on quantum oscillations of
electrical resistivity, because to our knowledge only the quan-
tum oscillations of magnetization for MoSi2 and WSi2 have
previously been analyzed [13,14,21]. The phenomenon of
quantum oscillations underlies a simple but powerful and ac-
curate technique of direct mapping of the Fermi surface [49].
In contrast to the angle-resolved photoemission spectroscopy
or scanning tunneling spectroscopy, this technique does not
require complex and time-consuming sample preparation
combined with sophisticated equipment. However, despite
simple methodology, high-quality and pure single-crystalline
samples with large electron mean free path are required to
observe oscillations.

In conjunction with the Laue diffraction data (see
Ref. [46]), large residual resistivity ratio (RRR = ρ(300 K)/
ρ(2 K)) of our samples [RRR = 193, 43, and 21 for MoSi2,
WSi2 (sample 1) and WSi2 (sample 2), respectively (see
Fig. 2)], confirms their high quality, which allows detection
of quantum oscillations.

The ρ(T ) dependences recorded in zero magnetic field and
in B = 14 T for both compounds are presented in Figs. 2(a)
and 2(b). In B = 0 T, ρ(T ) shows metallic-like behavior,
however, in B = 14 T and below ∼130 K, ρ starts to increase
with T lowering and saturates at T < 15 K. This magnetic
field-induced resistivity plateau has frequently been observed
in topologically trivial [16,50,51] and nontrivial [15,52,53]
semimetals. There are a few possible origins of this behav-
ior associated with metal-insulator transition in topological
semimetals [19,53,54], perfect or nearly perfect electron-hole
compensation in conventional semimetals [55,56], or Lifshitz
transition [57].

The huge difference in ρ values obtained in zero and ap-
plied magnetic fields at low temperatures confirms that MoSi2

and WSi2 are materials with extremely large magnetoresis-
tance (XMR). As is shown in Figs. 2(c) and 2(d) at T < 15 K
and in B = 14 T, magnetoresistance [MR = ρ(B)/ρ(0) − 1]
achieves values on the order of 105% and 104% for MoSi2 and
WSi2 (samples 1 and 2), respectively, which resemble those
reported in Refs. [13,14]. In the former work, the authors
attributed XMR in MoSi2 to the Fermi surface reconstruction
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FIG. 3. Oscillating part of electrical resistivity as a function of inverted magnetic field at several different temperatures for MoSi2 (a) and
WSi2 (sample 2) (c). Upper insets to (a) and (c) are the closeups of the data below 0.09 T−1 at T = 2 and 8 K. Blue and red arrows indicate
the splitting of peak (a) and valley (c). Lower inset to (a) shows the Shubnikov-de Haas oscillations with the saw-tooth wave shape at T =
25 K. Fast Fourier transform spectra for quantum oscillations in MoSi2 (b) and in WSi2 (sample 2) (d). Insets to (b) and (d) show the
temperature dependence of the FFT peak height. Solid red lines correspond to fits to RT,i(T ) temperature damping factor of the Lifshitz-
Kosevich formula (1). The holelike Fermi pocket β with the extreme cross sections perpendicular to the [001] direction is shown in the inset
of (b).

due to the Zeeman effect. As it was suggested earlier, in
WSi2, ultrahigh mobilities of near-perfectly balanced elec-
tronlike and holelike carriers lead to XMR [14]. There are
also several other mechanisms explaining XMR in various
materials: (i) moderate carrier compensation with substantial
mobility difference [17], (ii) d-p orbital mixing combined
with carrier compensation [18], (iii) magnetic field induced
metal-insulator-like transition [19], and (iv) topological pro-
tection from backscattering [20].

The values of MR observed for WSi2 and MoSi2 are of
the same order of magnitude as those reported for several
other topological semimetals [15,52,53]. Based on the results
of our electronic structure calculations, quantum oscillations
analysis (see below) and Hall effect data (see Ref. [46]), it
can be concluded that nearly perfect compensation of carriers
and their high mobility play the dominant role in the magne-
totransport properties of both studied materials.

C. Shubnikov-de Haas effect

In order to probe the Fermi surface structure of studied
compounds, we thoroughly analyzed SdH quantum oscilla-
tions, which were clearly resolved at temperatures up to at
least 25 and 12 K for MoSi2 and WSi2, respectively. We

observed pronounced SdH oscillations in both studied sam-
ples of WSi2 (samples 1 and 2), but in the following part of
paper, only quantum oscillations in sample 2 are discussed.
As ρ(B) is a superposition of oscillating and nonoscillating
signals (see Ref. [46]), we get rid of the latter contribution by
subtraction of the third-order polynomial function from the
experimental data. The oscillating part of electrical resistivity
�ρ as a function of inverted magnetic field is presented in
Figs. 3(a) and 3(c) for MoSi2 and WSi2, respectively. The
overall behavior of �ρ(1/B) directly indicates that the os-
cillating signal contains several frequencies and hence, the
Fermi surfaces of both materials can have rather complex
shape. The observation of beating patterns could be due to
the existence of two frequencies with similar absolute values.
To decompose the oscillations into their constituent frequen-
cies, we used fast Fourier transform (FFT) analysis. Thus
obtained spectra are shown in Figs. 3(b) and 3(d) for MoSi2

and WSi2, respectively. At T = 2 K, the analysis yields a
rich spectra of frequencies (Fi), containing of two fundamen-
tal frequencies (Fβ1 and Fβ2 ), together with their difference
(Fβ2−β1 ) and harmonics (2Fβ1 , 2Fβ2 , 3Fβ1 , and 3Fβ2 ). The
third harmonics were clearly observed only for MoSi2. Two
fundamental frequencies obtained from both the FFT analy-
sis and the calculations from first principles (F calc

i ) are very
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TABLE I. Parameters obtained from analysis of quantum oscilla-
tions measured at T = 2 K, B ‖ c and from electronic band structure
calculations.

Compound i = β2 − β1 β1 β2 δ

MoSi2 Fi (T) 99 743 841 -
F calc

i (T) - 823 942 6322
ni (1020 cm−3) - 8.21 -

ncalc
i (1020 cm−3) - 8.18 8.11

m∗
i (m0) - 0.25 0.26 -

m∗calc
i (m0) - 0.28 0.31 1.54

WSi2 Fi (T) 103 966 1068 -
F calc

i (T) - 1111 1239 7046
ni (1020 cm−3) - 9.75 -

ncalc
i (1020 cm−3) - 10.87 10.81

m∗
i (m0) - 0.22 0.23 -

m∗calc
i (m0) - 0.24 0.30 1.19

similar for both studied compounds (see Table I). Taking
into account the growth method (Czochralski technique),
the doping and small dislocations may be brought in and
thus the Fermi level may be slightly shifted, which may
be the reason for the tiny difference between experimental and
theoretical values of oscillations frequencies. Similar effects
are frequently reported for materials growth with the same
technique [58]. Interestingly, in the FFT spectra of MoSi2,
which were obtained for T � 6 K, the peaks related to the
harmonic frequencies show the double-peak features, while
the peaks related to the fundamental frequencies are not split.
The similar character of the FFT spectrum has been previously
reported for AlxGa1−xN/GaN heterostructures and it was de-
scribed as influence of both zero-field spin-splitting effect and
Zeeman spin splitting effect [59].

Combination frequencies are the differences or the sums of
two fundamental frequencies or their harmonics. One of the
evidences that Fβ2−β1 is really a combination of frequencies
for both studied materials is that the results of electronic
structure calculations show no bands, whose topology can cor-
respond to those experimentally observed frequencies. Even if
one assumes that the Fermi level in WSi2 is slightly shifted,
which could lead to the appearance of additional electronlike
Fermi pocket at the P point of the BZ, the fact that Fβ2−β1

is the combination frequency instead of frequency originating
from hypothetical pocket can be justified by several reasons:
(i) according to our theoretical calculations [see Fig. 6(d)],
the bifurcation in F calc(θ ) for the holelike band disappears at
θ >43◦, which is in an excellent agreement with the absence
of any feature of Fβ2−β1 in the FFT spectra for θ >40◦; (ii)
shift of Fermi level leads to a poorer agreement between
theoretical and experimental results for the δ pocket; and
(iii) in the FFT spectra of MoSi2, we also observed small
frequency of 99 T and its origin cannot be attributed to the
appearance of additional Fermi pocket at the P point of the
BZ, because the bottom of the conduction band at the P point
is located at ∼300 meV above the Fermi level [see Fig. 1(h)].
Combination frequencies can appear, for example, due to the
magnetic breakdown effect or magnetic interaction effect [49]
also known in literature as the Shoenberg effect [60,61]. For

WSi2 and MoSi2 the former effect can be excluded because
the Fermi surface structure [see Figs. 1(c) and 1(d)] shows
no orbits being very close to each other, thus resistant to
magnetic breakdown, especially when the applied magnetic
field is parallel to the [001] crystallographic direction.

On the other hand, the effect of magnetic interactions have
been intensively studied in single crystals of many highly pure
elements (beryllium, silver, gold) more than half a century
ago [49]. Usually, this effect can be observed only at relatively
low temperatures below ∼5 K. The combination frequencies
due to magnetic interactions can appear not only from the
frequencies belonging to two different Fermi pockets, but
also can steam from two frequencies associated to opposite
extrema of the same Fermi surface pocket, as it takes place
in case of studied materials. It is quite unusual that we ob-
served the combination frequency at such high temperatures
(T = 12 K for WSi2 and T = 25 K for MoSi2, the highest
temperature at which the magnetic interactions effect has been
observed in any material). Moreover, Fβ2−β1 is the only fre-
quency observed in the FFT spectrum of MoSi2 at T = 25 K.
A similar effect has been noticed for the single crystal of
silver, but at much lower temperatures [62], and its origin has
remained still unexplained. The magnetic interactions effect
leads to the special shape of the oscillations, which differs
from those predicted by the Lifshitz-Kosevich (L.-K.) the-
ory [49], according to which the oscillating component of
electrical resistivity can be described by

�ρ � 5

2

∑
i

Ai

√
B

2piFi
RT,iRD,iRS,i cos

(
2π pi

(
Fi

B
+ γi

))
,

RT,i = (piλm∗
i T/B)/ sinh(λm∗

i T/B),
(1)

RD,i = exp(−piλm∗
i TD,i/B),

RS,i = cos(piπgim
∗
i /(2m0)), γi = 1/2 − φB,i/2π ± δ

where Ai is a scaling coefficient, Ri(T ) corresponds to tem-
perature damping factor, m∗

i is the effective mass of carriers,
λ is a constant which equals to 2π2kBm0/eh̄ (≈14.7 T/K),
pi is the number of harmonic; RD,i is the so-called Dingle
factor, which is related to the electron scattering, TD,i is the
Dingle temperature; RS,i denotes the spin reduction factor, gi

is the Landé g-factor, γi stands for the phase shift of quantum
oscillations, φB,i is Berry phase and δ = ±1/8 (sign before
1/8 depends on the type of carriers (electrons or holes) and on
the kind of extremum orbit (minimal or maximal). Therefore
the saw-tooth shape of quantum oscillations at T = 25 K
[see lower inset to Fig. 3(a)] is one more indication that the
magnetic interactions effect, and not a separate Fermi sheet,
is the source of the smallest frequency in the FFT spectrum.

In comparison to the literature data, where the dHvA os-
cillations are analyzed, we obtained fairly good quantitative
and qualitative agreement, apart from two things: (i) we ob-
served the combination frequencies Fβ2−β1 ∼ 100 T, which
have not been previously reported for either of two materi-
als studied [13,14,21], and (ii) in contrast to the literature
reports [14,21], Fδ (when B ‖ c) was missing in the FFT
spectra of both compounds [see Figs. 3(b) and 3(d)]. The Fδ

frequency was not observed for B ‖ [001] due to its larger ef-
fective masses compared to the effective masses for β pocket.
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Based on this, we suppose this frequency could be observed
at temperatures smaller than 2 K, the lowest temperature at
which our experiments have been performed. Nevertheless,
due to the anisotropy of the effective mass of the δ Fermi
pocket, the oscillations frequency related to this pocket can be
easily distinguished from the frequency spectrum at θ � 50◦
for WSi2 (see Fig. 6) and at θ � 30◦ for MoSi2 (see Fig. 5)
even at T = 2 K.

For WSi2, we ascribed Fβ1 and Fβ2 frequencies to the
extrema cross-sections of the dumbbell-like pocket [see
Fig. 1(c)]. In this case, the interpretation fully agrees with that
previously reported in Ref. [14]. In turn, for MoSi2, our fre-
quency interpretation differs from that reported in Ref. [13],
but it is in a full agreement with that showed in Ref. [21].
In the first work, the authors ascribed two fundamental fre-
quencies (which we denoted as Fβ1 and Fβ2 ) to two separate
Fermi pockets; however, here, we confirmed by means of both
the electronic structure calculations and the angle dependent
quantum oscillations analysis [see Fig. 5(d)], that these fre-
quencies originate from a single Fermi pocket.

Interestingly, at T < 8 K, the amplitudes of the second
harmonic frequencies of WSi2 are larger than the amplitudes
of the corresponding fundamental frequencies [see Fig. 3(d)].
This behavior can be related either to the magnetic inter-
actions effect or to the Zeeman spin-splitting effect [49].
However, we can assume that the latter effect is more likely
due to the following reasoning: at T � 8 K, we observe the
reversed ratio of amplitudes (if compared to data at T < 8 K),
i.e., the amplitudes of fundamental frequencies are larger than
the harmonic ones. In the same temperature range, we noticed
that the combination frequencies of the oscillations are still
distinguished in the FFT spectra [see Figs. 3(b) and 3(d)]
and the peak splitting is not more noticeable [see upper in-
sets to Figs. 3(a) and 3(c) and description below]. Based on
this, the magnetic interactions effect can be excluded as the
dominant source of the observed amplitude ratio. We addition-
ally proved that quantum oscillations in WSi2 reveal Zeeman
spin-splitting effect by performing their FFT analysis for dif-
ferent intervals of magnetic fields (for details see Ref. [46]).
It was found that the ratio of the fundamental oscillation
amplitude to the amplitude of the second harmonic oscillation
(Aβi/A2βi ) become larger when the magnetic field interval is
narrowed: for low fields Aβi/A2βi >1 and for strong magnetic
fields Aβi/A2βi <1. Earlier, even more pronounced influence
of the Zeeman effect on the second harmonic oscillations
was reported for the Dirac system Pb0.83Sn0.17Se [63]. For
that particular material, the harmonics oscillations completely
disappear with the change of magnetic field interval, for which
FFT was performed.

The effective mass of carriers is related to the curvature
of electronic bands, thus it can acquire different values for a
single Fermi pocket. Due to the fact that electronlike Fermi
pockets have two extremal cross-sections, which are fully
detectable in the observed quantum oscillations, it is possible
to calculate effective masses for both of them (m∗

β1
and m∗

β2
).

As it is shown in the inset to Figs. 3(b) and 3(d), all m∗
i

were obtained from the fitting of temperature dependencies
of FFT amplitudes to the temperature damping factor, Ri(T )
of the Lifshitz-Kosevich formula (1) [49]. As the FFT am-
plitudes and not oscillations amplitudes were used during

the effective mass estimation, we changed B into Beff in the
formula for Ri(T ) (1). Beff is the reciprocal of average inverse
field from the window where the FFT was performed, in our
case Beff = 2(1/14 + 1/8) = 10.18 T. The obtained effective
masses are listed in Table I. For MoSi2 and WSi2, the effective
masses are similar, confirming the close resemblance between
the electronic structures of both compounds. Importantly, the
experimentally determined effective masses are almost iden-
tical to those calculated from first principles theory, m∗calc

i
(see Table I). The reliable determination of effective mass
corresponding to Fβ2−β1 frequencies was not possible, because
the temperature dependences of their FFT amplitude are non-
monotonic. This behavior can be either related to the tempera-
ture dependence of the Fermi surface [57] or to the Shoenberg
effect [49,64]. As the observed nonmonotonic properties re-
late to the combination frequencies, one can assume that the
Shoenberg effect is responsible for that behavior.

The splitting of peak and valley, shown by blue and red
arrows in the inset to Fig. 3(a) for MoSi2 and in the inset
to Fig. 3(c) for WSi2, can be attributed to the spin-splitting
effect. This effect has been reported for several topologically
trivial [49] and nontrivial [65,66] materials. For the latter
group it can lead to unusual phenomena such as the anoma-
lous Hall effect [67]. The splitting is the most pronounced at
T = 2 K. At higher temperatures it gradually smears due to
the thermal broadening of Landau levels, disappearing com-
pletely around T = 8 K for both materials. The Landé g-factor
gi, which is attributed to the measure of the strength of the
Zeeman effect, can be calculated using the harmonic ratio
method [49,68]. The FFT spectrum of MoSi2 contains well
pronounced peaks corresponding up to the third harmonics of
F FFT

β1
and F FFT

β2
. It allows us to estimate the g-factors, knowing

only the effective masses and the amplitudes of the particular
frequencies. It should be noted that ambiguity in the g-factor
determination from the quantum oscillations exists. In most
cases analysis of quantum oscillations gives the lowest limit of
the g-factor (g0,i) [49], which is often omitted in the research
papers. According to theory [49], the g-factor may be equal to
any value calculated from the following equation:

gi = 2r

m∗
i /m0

± gi,0, (2)

where r is an integer number. We obtained the following
values of g0,i for the β Fermi sheet of MoSi2: g0,β1 = 1.8 and
g0,β2 = 2.7. These values differ slightly from the g-factor of
free electron of 2. Using Eq. (2), we found that for MoSi2, gβ1

could be equal to one value from the series: 1.8, 9.8, 6.2, 17.8,
14.2 etc., and gβ2 could be equal to one value from the series:
2.7, 10.4, 5, 18.1, 12.7, etc. It is possible to reduce the number
of putative values of g-factors, however, more information
about the phase shift of quantum oscillations or experiments
in higher magnetic fields are required [49]. For WSi2 the FFT
spectra are not so rich in detail and only the second harmonics
were noticed, thus we used the second harmonic variant of
the harmonic ratio method [68] to calculate gi. This variant of
the method requires the knowledge of the Dingle temperature
value.

The Dingle temperatures were obtained from the direct fit-
ting of the Lifshitz-Kosevich formula (1) to the experimental
data. In order to decrease the amount of fitting parameters,
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FIG. 4. Oscillating part of the electrical resistivity of MoSi2 (a) and sample 2 of WSi2 (b) as function of inverted magnetic field obtained
after band-pass FFT filtering performed to isolate the signal originated from the β Fermi pocket. Red solid lines show the fits to the Lifshitz-
Kosevich formula (1).

the band-pass filter was used and the oscillations related to
the Fβ1 and Fβ2 frequencies were isolated for both compounds
(see Fig. 4). To avoid the mutual dependence between fitting
parameters, we fixed the values of effective masses to the
priorly obtained values (see Table I) and introduced a new
fit parameter Ci = AiRs,i. The least-square fitting yielded the
following Dingle temperatures: TD,β1 = 10.2 K and TD,β2 =
13.1 K for MoSi2; TD,β1 = 9.2 K and TD,β2 = 8 K for WSi2.
For MoSi2, the obtained values of TD are larger than those
reported in Ref. [13], and for WSi2 TD values agree well
with those reported in Ref. [14]. Using the obtained TD,
the lowest limit of the g-factors for WSi2 were estimated
to be g0,β1 = 4.5 and g0,β2 = 4.3. These values are more
than twice as large as those obtained for MoSi2, originat-
ing from the stronger SOC effect in WSi2. The knowledge
of TD allows us also to calculate quantum scattering life-
time, τQ,i. We used the following formula τQ,i = h̄/(2πkBTD,i),
which gave the following values: τQ,β1 = 1.2 × 10−13 s and
τQ,β2 = 9.3 × 10−14 s for MoSi2; τQ,β1 = 1.3 × 10−13 s and
τQ,β2 = 1.5 × 10−13 s for WSi2. Taking into account effec-
tive mass and scattering time, the quantum mobility can be
obtained using the relation μQ,i = eτQ,i/m∗

i , we got μQ,β1 =
839 cm2 V−1 s−1 and μQ,β2 = 628 cm2 V−1 s−1 for MoSi2;
μQ,β1 = 1057 cm2 V−1 s−1 and μQ,β2 = 1163 cm2 V−1 s−1 for
WSi2.

Another kind of mobility μH , the so-called classical mo-
bility, can be determined from the analysis of Hall effect
data. The principal difference between classical mobility and
quantum mobility is that the former relates to the large angle
scattering, whereas the latter relates to both small and large
angle scattering [69]. The relation between these mobilities,
ri = μH,i/μQ,i, is frequently used as a criterion of the strength
of the backscattering suppression [70]. From the analysis
of Hall effect data of MoSi2 (see Supplementary Informa-
tion [46]), we found that μH,β = 6.42×104 cm2 V−1 s−1, and
rβ = 102 (the value of μQ,β2 was used to calculate rβ). This
value of rβ is of the same order of magnitude as that re-
ported for MoSi2 in Ref. [13], however it is two orders of
magnitude smaller than those values reported for archety-
pal Dirac semimetal Cd3As2 in Ref. [20] or for WP2 in
Ref. [70].

An additional parameter which can be also extracted
from the L.-K. fit is the phase shift, but its unambiguous
determination is not possible without knowledge of the sign of
Rs,i damping factor [49]. Rs,i could be in the range from −1 to
1, which leads to two possible values of Berry phase that differ
from each other by a factor of π (see Table II). This makes it
impossible to distinguish, without the knowledge of the value
of spin-splitting factor, if Berry phase is trivial or nontrivial.
For both compounds for the case of negative RS,i, the total
phase shifts γβ1 and γβ2 are much closer to the values reported
in literature [13,14] than the values γβ1 and γβ2 obtained for
the case of positive RS,i.

According to the Onsager relation (Fi = hSi
4π2e ), the fre-

quency of quantum oscillations is proportional to the area
Si of the Fermi pocket cross-section [49]. This simple re-
lation plays an essential role in the investigation of Fermi
surface topology. The synergy between theoretical calcula-
tions of Fermi surface and experimentally observed quantum
oscillations allows for characterization of the Fermi surface
with high accuracy. Theoretically calculated frequencies as
functions of angle θ are shown as full circles in Figs. 5(d)
and 6(d) for particular Fermi sheets of MoSi2 and WSi2, re-
spectively. To make the complete experimental identification
of the Fermi surface of MoSi2 and WSi2, we studied the
angle-dependent magnetoresistance [Figs. 5(a) and 6(a)], each
sample was rotated in a magnetic field in a way sketched in
the inset to Fig. 5(a). The quantum oscillations were observed
in the entire range of θ , however their amplitudes decrease
with increasing θ [see Figs. 5(b) and 6(b)]. The obtained FFT
spectra are shown in Figs. 5(c) and 6(c), and the angular
dependence of the extracted frequencies are presented as blue
diamonds in Figs. 5(d) and 6(d) where they are compared to
those theoretically calculated. For both compounds, F FFT

β (θ )
and F FFT

δ (θ ) qualitatively represent the theoretical behavior of
dumbbell-shaped and rosette-shaped Fermi pockets, respec-
tively.

We observed frequencies originating from the β pocket in
the entire covered range of the angle θ . This made it possi-
ble to calculate the volume of that pocket (VF,β) with good
accuracy. This volume is proportional to the carrier concentra-
tion, nF,i = VF,i/(4π3). For the sake of simplicity, we assume
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TABLE II. Phase shift of quantum oscillations obtained from the L.-K. analysis of the SdH oscillations in MoSi2 and WSi2. Ci = AiRs,i;
γi is a phase shift; δi stands for the phase shift correction; φB,i is the Berry phase.

Compound Fermi sheet cross-section Ci γi δi φB,i

MoSi2 β1 128.77 0.14 −1/8 0.47π

β1 −128.77 −0.36 −1/8 1.47π

β2 409.24 −0.11 1/8 1.47π

β2 −409.24 0.39 1/8 0.47π

WSi2 β1 3.12 0.06 −1/8 0.45π

β1 −3.12 −0.44 −1/8 1.63π

β2 1.21 −0.3 1/8 1.85π

β2 −1.21 0.2 1/8 0.85π

that β pocket is cylinder-shaped with the base area SF,β2 =
0.10194 Å−2 and SF,β2 = 0.08047 Å−2 for WSi2 and MoSi2,
respectively. Then the area of the cross-section which is
perpendicular to the base of the cylinder equals SF,β (θ =
90◦) = 0.42714 Å−2 and SF,β (θ =90◦) = 0.4054 Å−2 for
WSi2 and MoSi2, respectively. From the above areas, the
following Fermi wave vectors were determined: kF,β2 =
0.18018 Å−1 and kF,β = 0.592657 Å−1 for WSi2; kF,β2 =
0.16008 Å−1 and kF,β = 0.63309 Å−1 for MoSi2. Using the

above values, we calculated volumes of pockets and next the
corresponding carrier concentrations which are nF,β = 9.75 ×
1020 and 8.21 × 1020 cm−3 for WSi2 and MoSi2, respectively.
These values are very similar to those obtained from the
electronic structure calculations (see Table I), and for MoSi2

it is very close to that obtained from Hall effect analysis (see
Ref. [46]).

In addition to the verification of the Fermi surface, stud-
ies of the angle-dependent quantum oscillations of MoSi2

FIG. 5. (a) Magnetoresistance of MoSi2 measured at T = 2 K as a function of magnetic field applied at different angles with respect
to the current direction. Inset schematically shows the measurement geometry. (b) Oscillating part of the electrical resistivity as a function
of inverted magnetic field obtained for the data presented in (a). (c) Fast Fourier transform spectra obtained for the data depicted in (b).
(d) Angular dependence of oscillations frequencies obtained from the FFT analysis (diamonds) and frequencies obtained from the first-principle
calculations (red circles for the dumbbell-shaped holelike pocket and blue circles for rosette-shaped electronlike pocket). Frequencies
corresponding to the second and third harmonics are not shown.
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FIG. 6. (a) Magnetoresistance of WSi2 (sample 2) measured at T = 2 K as a function of magnetic field applied at different angles with
respect to the current direction [100]. (b) Oscillating part of the electrical resistivity as a function of inverted magnetic field obtained for
the data presented in (a). Data for different angles are shifted for clarity. (c) Fast Fourier transform spectra obtained for the data depicted in
(b). (d) Angular dependence of oscillations frequencies obtained from the FFT analysis (diamonds) and frequencies obtained from the first-
principle calculations (red circles for the dumbbell-shaped holelike pocket and blue circles for rosette-shaped electronlike pocket). Frequencies
corresponding to the second harmonics are not shown.

revealed the spin-zero effect. At θ = 40◦, FFT spectrum
of MoSi2 demonstrates rather unusual features, namely, the
amplitudes of the fundamental oscillations with frequencies
Fβ1 and Fβ2 become negligibly small, whereas their second
harmonics are well pronounced. According to the Lifshitz-
Kosevich formula (1), such scenario can take place only if
the spin reduction factor RS,i equals to zero. To fulfill this
requirement, pigim∗

i /m0 should be an odd integer (pi = 1 for
fundamental frequency) and in such case the second harmonic
(pi = 2) pigim∗

i /m0 will be an even integer, which leads to
RS,i = ±1 and amplitude of the second-harmonic frequency
will be well pronounced.

The spin-zero effect is not a commonly observed phe-
nomenon. It has also been noticed in highly pure simple
metals like copper, platinum, and gold [49] and only in a few
topological semimetals, such as WTe2 [71] and ZrTe5 [72].
The spin-zero effect can be used in the estimation of the
lowest limit of the g-factor. The amplitude of the fundamental
frequency disappears if only RS,i = 0, which means that gi =
(2r + 1)/(m∗/m0) [49]. As we obtained very good agreement
between m∗

i and m∗calc
i at θ = 0◦ (see Table I), we used the

calculated effective masses at θ = 40◦ (m∗calc
β1

= 0.38 m0 and
m∗calc

β2
= 0.39 m0) to estimate g-factors. The obtained g-factors

are gβ1 = 2.6, 7.9, 13.2, etc., and gβ2 is almost identical to
gβ1 , as the difference between two m∗calc

β1
and m∗calc

β2
is small.

Obtained gβ1,0 = 2.6 differs a little from 2.7 obtained using
the harmonic ratio method, which can be attributed to the
anisotropy of g-factor.

D. Anisotropic magnetoresitance

A huge drop in the MR value of both materials, if compared
to those measured in transverse configuration (B⊥ j) to those
recorded in longitudinal configuration (B‖ j), can indicate that
electrical resistivity is notably sensitive to the direction of
the magnetic field application. This leads to large anisotropic
magnetoresistance (AMR = [ρ(90◦) − ρ(0◦)]/ρ(0◦)) which
is equal to −95% for WSi2 and −98% for MoSi2 at T =
2 K and in B = 14 T. The magnitudes of AMR are larger
than those we reported previously for rare earth monoanti-
monides [16,50] and half-Heulser bismuthides [73–75]. The
origin of this huge AMR can be ascribed to the highly
anisotropic Fermi surface of the studied compounds. Large
AMR has been previously observed in materials with XMR,
like bismuth [76], graphite [77], and WTe2 [78]. The authors
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FIG. 7. Electrical resistivity measured at T = 2 K as a function of magnetic field scaled by factor ε for MoSi2 (a) and WSi2 (b), magnetic
field was applied at different angles θ to the current direction. (Insets) ε as a function of θ for MoSi2 (a) and for WSi2 (b). Violet solid lines
correspond to the fits with Eq. (3).

of the last work proposed a general scaling approach for ma-
terials with anisotropic Fermi surface. We successfully used
this model in our recent works for describing the AMR of
two NaCl-type crystal structure compounds YSb and LuSb
(Refs. [16,50]). First, for each ρ(B) curve, measured at partic-
ular θ , the field values were scaled, so as all curves collapse on
that corresponding to θ = 0◦ [see Figs. 7(a) and 7(b)]. The so-
obtained scaling factors (ε) plotted versus θ are shown in the
insets Figs. 7(a) and 7(b). According to the theory [78], ε(θ )
depends on the parameter γ , which stands for the effective
mass anisotropy:

ε(θ ) = (cos2 θ + γ −2 sin2 θ )1/2. (3)

Fittings of this equation to the experimental data are shown as
violet solid lines in the insets to Figs. 7(a) and 7(b) and they
give γ = 7.4 and 4.7 for MoSi2 and WSi2, respectively. These
value are larger than that reported for MoTe2 in Ref. [79] as
well as those we previously reported for LuSb and YSb in
Refs. [16,50], respectively. For WSi2, we obtained a value
for γ which is almost the same as γ = 4.762 reported for
WTe2 (Ref. [78]). The Fermi sheet anisotropy was also ob-
tained based on the results of the SdH oscillations analysis as
kF,β (θ = 90◦)/kF,β2 (θ = 0◦), we got 4 for MoSi2 and 3.3 for
WSi2. These values are smaller than corresponding γ values,
probably due to the bold assumption that the holelike pockets
are cylinder-shaped. It should be also noted that we do not take
into account the anisotropy of the electronlike Fermi pocket.

E. Magnetostriction

In our work, we analyzed so far the SdH quantum oscil-
lations of MoSi2 and WSi2. In the literature, only dHvA os-
cillations in these compounds have been reported [13,14,21].
These two quantum oscillations phenomena are most often
described in literature but they belong to two different sub-
classes of quantum oscillations. The dHvA effect relates to
thermodynamic properties, whereas SdH oscillations relates
to nonequilibrium properties [49]. As the dHvA effect has
been reported for both materials, we decided to look for rela-
tively rarely reported oscillations of magnetostriction, another
thermodynamic property.

Magnetostriction in diamagnetic semimetals originates
from the magnetic field induced changes of charge carrier
concentration [80]. We found that magnetic field induced
length change, �L/L0, of MoSi2 attains moderate values of
the order 10−6 at T = 2 K and in magnetic field of 10 T, which
means that at these conditions carrier densities are not strongly
affected by the magnetic field (see Ref. [46]). This value is
similar to that observed for YAgSb2 in Ref. [81], but is smaller
than those found for TaAs in Ref. [82] or LuAs in Ref. [83].
However, the most important feature is that at B > 4 T and
at T = 2 K, the oscillating behavior of �L/L0(B) is clearly
observed. Figure 8(a) demonstrates the extracted quantum
oscillations of magnetostriction of MoSi2 at several temper-
atures for the range 2–14 K. Their FFT analysis and plots of
effective mass are presented in the main panel of Fig. 8(b)
and its inset, respectively. The FFT spectra exhibit two fun-
damental frequencies F FFT

β1
= 736 T and F FFT

β2
= 831 T. Both

of them are very close to those obtained from the SdH effect
analysis. The small differences can be attributed mostly to
tiny misalignments of the sample with respect to the magnetic
field direction. At T = 2 K, we obtained rich spectrum of
harmonic frequencies and even the fifth harmonics are clearly
discernible. Unfortunately, we are not able to confirm that the
combination frequency Fβ2−β1 is also noticeable in our FFT
spectra of magnetostriction oscillations due to some artifacts
in the low-frequency range of our spectra. The calculated
effective masses m∗

β1
= 0.285m0 and m∗

β2
= 0.3m0 are almost

identical to those obtained from the SdH oscillations analysis
(see Table I). As in the case of SdH oscillation, we also used
the third harmonic ratio method to estimate the lower limit
of the g-factor of MoSi2, based on the results of quantum
oscillations of magnetostriction [49]. For both cross-sections,
they are almost identical, g0,β1 ∼g0,β2 ∼3. All these values are
slightly larger than those determined from the SdH oscilla-
tions analysis.

IV. CONCLUSIONS

The present study was designed to investigate possible
topologically nontrivial properties of electronic structure of
two disilicides, WSi2 and MoSi2. First-principles quantum
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FIG. 8. (a) Oscillating part of the magnetostriction of MoSi2 as a function of inverted magnetic filed. (b) FFT spectra obtained from the
analysis of data presented in (a). (Inset) Temperature dependence of the relative FFT amplitudes for both cross-sections, β1 and β2. Red solid
lines correspond to the fit of temperature damping factor RT of L.-K. equation (1) to the experimental data.

mechanical calculations are in favor of the existence of tilted
Dirac cones, located close to the Fermi level in both studied
materials. This is the first report on the appearance of type-II
Dirac states in these materials. Importantly, we found the
substitution of tungsten by molybdenum leads to a shift in the
Fermi level by around 200 meV closer to the Dirac point com-
pared to the pure WSi2 compound. This finding suggests that
in further research greater focus should be given to the chem-
ical doping of both materials, because alloying could shift the
Fermi level much closer to the Dirac point. The second major
finding was that the presented results of analysis of angle-
dependent Shubnikov-de Haas quantum oscillations are in a
full agreement with the theoretically predicted electronic band
structure. The research has also shown that concentrations
of electron-type carriers and hole-type carriers are almost
perfectly balanced, indicating that charge compensation is
responsible for the observed magnetotransport properties.

Analysis of the SdH oscillations of both compounds dis-
closes the Shoenberg effect, surviving to relatively high
temperatures of at least 25 and 12 K for MoSi2 and WSi2,
respectively. Additionally, for MoSi2 the rare spin-zero effect
is observed. In addition to SdH oscillations, we found the
oscillating behavior of the magnetostriction of MoSi2. The

precise analysis of these quantum oscillations gave almost
identical results to those obtained from the interpretation of
SdH oscillations. Finally, we discovered that extremely large
anisotropic magnetoresistance recorded in both materials can
be understood in the scope of the anisotropic Fermi surface.
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