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Stroboscopic Hamiltonian engineering in the low-frequency regime
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We propose a scheme to perform stroboscopic Hamiltonian engineering in the low frequency regime using
a quantum system with one-dimensional nearest-neighbor coupling that are commonly available in the NISQ
era. Computational problems are encoded in the effective Hamiltonian of the quantum systems under the effect
of external driving. Our approach is nonperturbative and it does not rely on high-frequency expansions, which
are a common tool in Floquet engineering. In our paper, the effective Hamiltonian that we want to engineer is
fully tailored through designing the periodic driving. We illustrate how this quantum computation proceeds with
two examples, an instance from the 3-SAT problem and the LiH molecule quantum chemistry simulation. In the
case of the 3-SAT Hamiltonian, we show that by starting from the ground state of the trivial Hamiltonian, the
quantum systems go through an adiabatic process in the stroboscopic picture towards the target Hamiltonian of
the problem.
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I. INTRODUCTION

Quantum computers are rapidly extending their capability
through the enormous efforts around the world [1–4]. The first
step to use quantum computers is to encode a problem, which
could be a quantum chemistry simulation, in either the unitary
process or the Hamiltonian of the quantum computer [5,6].
The unitary processes are given by an appropriate algorithm
and then are decomposed into one- and two-qubit gates to be
implemented on the quantum computer [7–9]. The gate struc-
ture is the natural pathway to achieve scalable fault-tolerant
quantum computer [10]. However it is questionable if such
machine operation is optimal for quantum systems in the noisy
intermediate-scale quantum (NISQ) regime [1,11]. The other
approach is to encode the problem we want to solve in the
Hamiltonian, which is commonly used in adiabatic quantum
computation and its variants [12]. This has its benefits as the
control of quantum computer can be simplified [13], which
could reduce errors and contribute a longer coherence time
of the quantum system [14]. However, the aforementioned
approach suffers from the fundamental difficulty to real-
ize arbitrary Hamiltonians [13,15–17]. Currently there have
been huge efforts to implement a programmable two-body
interaction on a quantum computer or quantum simulator.
However, it is well known that hard problems involve more
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complex many-body interactions [12,18,19] whose practical
implementation may require a large resource cost [20,21]. The
implementation of those ideas to realize fully programmable
two-body interactions and to circumvent the necessity of
multi-body interaction with the geometrical constraints from
the experimental setup remains challenging.

To overcome the fundamental obstacles of quantum com-
puters in the NISQ regime, we propose a hybrid approach
to perform the encodings discussed above. We start with the
simplest quantum processors with the capability for individ-
ual qubit control; superconducting [22–24] and trapped ions
[8,25,26] as ideal platforms to implement our ideas. These
devices are highly programmable and can be controlled, en-
abling the tuning of on-site energies and couplings [4,24,27–
29]. We exploit this control capability to modulate in time
parameters of the system, which is a simpler task than apply-
ing quantum gates. This has already been achieved in diverse
platforms ranging from superconducting qubits to ion traps
and cold atoms [4,24,27–31].

Now, to combine the advantages from both encoding ap-
proaches, we use the system’s time-evolution, that is the
unitary process, to define the Hamiltonian where we encode
the problem to solve. By applying a periodic drive, the system
Hamiltonian has the property Ĥ (t ) = Ĥ (t + T ). This means
that in the stroboscopic picture, the time evolution over the
interval T , Û (T ; 0) = F̂ , defines an effective Hamiltonian via
F̂ = exp(−iĤeffT/h̄). Here F̂ is the Floquet operator for this
periodically driven system [32–36]. We illustrate in Fig. 1 the
basic concept of the physical system and the periodic drive
which is discretized for the numerical optimization described
later in this paper.
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FIG. 1. Schematic illustration of a one-dimensional qubit array driven individually by external pulses. The graph details how the parameter
control can be designed for the Floquet operator.

The form of the effective Hamiltonian Ĥeff is deter-
mined by the driving sequence, which can be exploited to
perform Floquet engineering based on perturbative high-
frequency expansions [33–37]. This is a powerful approach
that has proven to be useful to enable the implementa-
tion of quantum computation by applying local control to
spin chains [38,39]. In nuclear magnetic resonance (NMR),
the effect of periodic pulses has proven to be extremely
effective to suppress the noise due to coupling to an ex-
ternal environment [40]. In NMR the periodic pulses can
also be used to simulate effective Hamiltonians by us-
ing the average Hamiltonian theory (AHT) [40,41], which
in practice is the same as Floquet engineering. To ap-
ply AHT, however, one has to work in the high-frequency
regime [42].

In our paper, we focus on a different approach to tackle
the problem of Hamiltonian engineering. The conventional
wisdom is that the low-frequency regime is useless for
quantum simulation as the system heats up and reach an
infinite-temperature state in the long-time limit [29,32,43].
In contrast to the usual approach to Floquet engineer-
ing, we propose how to exploit the low-frequency regime
in a nonperturbative fashion to engineer our desired ef-
fective Hamiltonian at stroboscopic times. We consider a
situation where the couplings between the qubits and their
on-site energies can be modulated in time. For example,
we can keep the couplings on during the evolution thus re-
sembling analog simulators, while applying local rotations
to the qubits that are operations used in digital quantum
simulators. Alternatively, we can also modulate the cou-
plings and the on-site energies. Here is important to note
that in contrast to previous papers, the control sequences
are obtained through an optimization algorithm and not
by resorting to Suzuki-trotter decompositions of the target
Hamiltonian that we aim to generate. In fact, there has been

an enormous interest on digital-analog quantum comput-
ers [44–46] and digital-analog quantum simulators [47,48],
where one can exploit the best features of analog and digital
devices.

By using optimization tools, we find a nearly optimal
periodic control that allows us to generate an effective Hamil-
tonian arbitrarily close to the Hamiltonian of the problem that
we want to solve. Similar ideas have been proposed to engi-
neer couplings between superconducting qubits [49] and in
a recent experimental demonstration in cold atoms [50]. Our
approach is fundamentally different to previous approaches
to quantum control using GRAPE, where the goal is to find
an optimal control sequence to reach a target state, which is
relevant for nuclear magnetic resonance (NMR) [51–55]. A
recent experiment demonstrates that a 12-qubit system can be
employed as a quantum processor to optimize its own con-
trol sequence by using measurement-based feedback control
(MQFC), which can avoid the use of GRAPE to optimize
control sequences in order to achieve a target state [56].

The essential element of Floquet engineering is not the
periodicity of the drive, but the interpretation of the dynamics
in terms of the effective Hamiltonian [57,58]. In this paper,
we advance this approach to propose a fully-programmable
technique in a one-dimensional qubit array to engineer arbi-
trary effective Hamiltonians using the low frequency regime.
We use the effective Hamiltonian to carry all the data of the
target Hamiltonian matrix in a chosen basis. Before going into
the details about how it can be done, let us first describe the
physical system of our NISQ computer.

II. MODEL

We have several choices of the physical system, and the
properties of the quantum computer are dependent on the
implementation model [1]. For instance, superconducting-
qubit-based NISQ devices in an L qubit one-dimensional
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array with nearest-neighbors coupling can be described by
[22,24,28,29]

Ĥ (t ) = h̄
L∑

l=1

[
gl (t )n̂l + U

2
n̂l (n̂l − 1)

]

+ h̄
L−1∑
l=1

Jl (t )
[
â†

l âl+1 + âl â
†
l+1

]
, (1)

where n̂l = â†
l âl is the number operator with âl and â†

l be-
ing the bosonic annihilation and creation operators at site
l , respectively. In superconducting qubit arrays, the bosonic
excitations are microwave photons. Now with current ex-
perimental feasibilities, Z and XY control lines of the
superconducting processor can be used to drive the angular
frequencies of the qubits gl (t ) and the coupling strengths Jl (t ),
whereas the anharmonicity U is kept fixed and determined
from fabrication. The model in (1) is not restricted to super-
conducting circuit and is equally valid for 1D arrays in cold
atoms [31].

Now in the regime U � gl , Jl (the hardcore boson regime
where the large anharmonicity prevents two excitations from
being at the same site [4,24]), Eq. (1) can be rewritten in a
qubit form where the system Hamiltonian is given in terms of
the usual Pauli operators σα

l with α ∈ {x, y, z} as

Ĥ (t ) = h̄

2

L∑
l=1

gl (t )σ z
l + h̄

2

L−1∑
l=1

Jl (t )
(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1

)
. (2)

This model is also suitable for implementations with quantum
dots [59] and lattice defects [60,61] for instance. When the
number of excitation M is one, both Hamiltonians (1) and
(2) are the same. The number of excitations are conserved in
both models, and the dimension of the Hilbert space is L for
M = 1, which is significantly smaller than 2L. The dimension
of the Hilbert space gives the upper limit for the computational
size, such that an L × L Hermitian matrix can be implemented
for M = 1. If the model allows us to implement arbitrary
unitaries up to this dimension, the system is a universal quan-
tum computer. This can be confirmed by algebraic properties
of Hamiltonian (2) written in terms of SU(L) operators. At
this stage we want to emphasis our approach while able to
engineer any effective Hamiltonian is not scalable. It can solve
any problem that fits within the size of the computational
space that can be realized.

Next when we move to multiple excitations (M > 1) these
models given in (1) and (2) behave differently. Consider
the model given by Hamiltonian (1), where the computa-
tional basis for this model differs from the basis used for
the qubit-based quantum computer. Here we have states with
two excitations in one site as well as others, although the
population of these states may be small when U is large.
Thus, the model described by Hamiltonian (1) has a Hilbert
space whose dimension now depends on the number of ex-
citations M > 1. In the absence of interactions (U = 0), we
have already observed the usefulness of the expansion of the
Hilbert space with increasing the number of excitations in
boson sampling [62,63]. Though unlike boson sampling, this
model is universal when we include interactions with strength
U [64]. We also would like to add that in the context of

analog devices, it has been shown that it is possible to use
a one-dimensional quantum system with 9 states per particle
to perform universal quantum computation [18].

In the case of the Hamiltonian (2) for hardcore bosons,
the dimension of the computational space is restricted to a
subspace of the 2L-dimensional Hilbert space. Further, the
system dimension is smaller than in the bosonic case with
finite U , where the dimension is L+M−1CM . Thus, by using the
same M, one can extend the computational space. We note that
in the hardcore boson limit with M > 1 quantum computation
is not universal, as the system dynamics is constrained by
symmetries. In contrast, in the case of Hamiltonian (1) for
finite U , the system’s dynamics is universal for SU(L+M−1CM )
and any M. After discussing the controllability of physical
system we are interested in, next let us briefly discuss the
numerical technique used to find the driving sequences used
to engineer the target Hamiltonian.

III. OPTIMIZATION OF DRIVING SEQUENCES
USING GRAPE

The first step in the optimization of the driving sequence
is to set the Hamiltonian Ĥtrial as the effective Hamiltonian
with a trial driving sequence, and then optimize the trial driv-
ing sequence to be the one that gives the target Hamiltonian
Ĥtarget. The trial Hamiltonian Ĥtrial can be evaluated by the
fidelity between Ĥtrial and Ĥtarget as F = |tr(F̂ †

targetF̂trial )|/D,
where D is the dimension of the Hilbert space and F can
take values between 0 and 1 being reached when the F̂trial is
equal to F̂target. The trial Hamiltonian Ĥtrial can be optimized
via GRAPE [65–67]. As we mentioned before, the driving
sequences are discretized for the numerical optimization as
F̂ = Û (T ; 0) = ÛNÛN−1 · · · Û2Û1 at different time steps t j =
jτ with τ = T/N . The propagator of the jth time step t j = jτ
is given as Ûj = e−iĤu (t j )τ/h̄ with the total Hamiltonian for time
step t j as Ĥu(t j ) = Ĥd + ∑R

k=1 uk (t j )V̂k where Ĥd is a constant
drift Hamiltonian term Ĥd. Next the R hermitian control oper-
ators V̂j depend on the scalar control function u j (t ) and are
initially chosen at random, and are to be optimized to achieve
the desired target unitary F̂target.

The method of choice here is gradient descent using
L-BFGS-B (bounded, limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm) within the Qutip implementation
[66], where we optimize the fidelity by taking small steps in
the control parameters by following the gradient of the fidelity.
The gradients ∂F (Ûj )/∂uk (t j ) can be calculated by invoking
the spectral theorem [65], and then all the control parameters
are updated at the same time. This procedure is repeated until
convergence. As gradient descent is known to become stuck
in local minima [68], we ran the algorithm 5 times, starting
from random initial driving protocols. For each run, fidelity
is optimized for maximally 10 000 runs or the magnitude of
the gradient for the optimization becomes smaller than 10−10,
whichever is satisfied first. Then, we choose the maximum
fidelity of all 5 runs. Normally, we find that at least 3 of the 5
runs converge to the same maximal value of fidelity. We have
made our numerical code available in Github [69].

A next step after discussing the optimization algorithm is
to analyze the type of Hamiltonians that can be simulated in
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(a) (b)

(c) (d) (e) (f)
(g)

FIG. 2. Hamiltonian engineering for a 3-SAT problem with three-body interactions and adiabatic deformation between effective Hamiltoni-
ans. (a) Shows the adiabatic process from the initial Hamiltonian to the final Hamiltonian. (b) Represents the Hamiltonian of the 3-SAT problem
in the matrix form. (c) Shows the quasienergies as a function of λ. (d) Illustrates the fidelity between the state of system and instantaneous
eigenstates of effective Hamiltonian. The adiabatic evolution occurs over a total time of Ttotal = 200T = 1276/J , where T = 6.38/J is the
period of the drive. In (e) we depict the expectation value of the cost function Ĉ = 1

4 (μx
1 − μx

2 + μx
3 − 2μx

1μ
x
2 − 2μx

1μ
x
3 + μx

1μ
x
2μ

x
3) in the

instantaneous ground state of the effective Hamiltonian. [(f),(g)] Are the required driving sequences.

certain parameter regimes of the device. We will now illus-
trate how the quantum computational process take place with
two examples that show the versatility of our approach in
diverse areas such as combinatorial optimization and quantum
chemistry.

IV. HAMILTONIAN ENGINEERING AND ADIABATIC
DEFORMATION: A MINIMAL EXAMPLE

OF 3-SAT SOLVER

The first example is an instance of 3-SAT solver for
combinatorial optimization. The term SAT itself refers to sat-
isfiability of equations involving boolean variables and some
variants of SAT problems are hard [70]. 3-SAT problems are
of utmost importance because any k-SAT problem can be
decomposed into a sequence of 3-SAT instances. Our instance
is a 3-SAT problem to solve the clauses

a2 + a3 + a1a3 = 1,

a1 + a3 + a1a2 = 1,

a1 + a2 + a2a3 = 0,

where a1, a2, and a3 are boolean variables. It is straight-
forward to map [71] this combinatorial problem to a spin
Hamiltonian of the form

ĤSAT = h̄ω
(
μx

1 − μx
2 + μx

3 − 2μx
1μ

x
2 − 2μx

1μ
x
3 + μx

1μ
x
2μ

x
3

)
,

(3)

where μα
l are Pauli matrices with ω a scaling parameter see

Appendix C. The simplest 3-SAT problems involve 3-body
interactions [70], which is usually problematic to implement,
however with our approach, we only need to map the matrix
data [see Fig. 2(b)] to the effective Hamiltonian which is not
an obstacle.

The goal of this quantum computation is to find its ground
state, corresponding to the triplet (a1, a2, a3) satisfying the

3 clauses discussed above. In the eigenbasis of μz
l , the ma-

trix representation of the target Hamiltonian (C10) is a 8 ×
8 matrix [depicted in Fig. 2(b)]. Now to map this target
Hamiltonian to the effective Hamiltonian we can use a single-
excitation and Hamiltonians (1) or (2). Once we have found
the driving sequences shown in Figs. 2(f) and 2(g) for the on-
site energy gl and the coupling parameter Jl respectively, we
set the effective Hamiltonian to be the final Hamiltonian in the
adiabatic passage in the stroboscopic picture [72]. We begin
with an initialized state, which is the ground state of a trivial
Hamiltonian, then the system goes through an adiabatic trans-
formation at the times nT by gradually changing the control
sequence, forming an adiabatic passage in the stroboscopic
picture [72]. Figure 2(a) illustrates the stroboscopic adiabatic
process for this instance. The initial state is the ground state
of the local Hamiltonian and then the driving sequences for
gl and Jl are gradually changed to the sequences shown in
(f) and (g) as the stroboscopic time λ → 1. At λ = 1 the
adiabatic transformation is completed, and the system is at
the ground state of the final Hamiltonian [the right plot in
(a)] with a high probability. We note that the intermediate
Hamiltonian Ĥeff(λ) is not restricted to the sum of the initial
and final Hamiltonians [73]. To speed up the computational
time, methods used in quantum annealing such as avoiding
phase transitions could be applied [74], and such freedom
of the pathway could be exploited, however we leave this
for future.

To illustrate the behavior of our approach we show
the quasi-eigenenergies exhibiting multiple anticrossings in
Fig. 2(c) and fidelity for our system remaining in the ground
state in Fig. 2(d). Our results indicate that the system
remains the lowest quasi-eigenenergy state with the high
fidelity implying the high success probability of the compu-
tation. Reading out this output state, we obtain the solution
(a1, a2, a3) = (0, 0, 1) satisfying the three clauses discussed
above. It is useful to give the details of how the driving
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(b)Ĥ(t) Ĥtarget Ĥsim gl(t)/J

FIG. 3. Simulation of LiH with Floquet engineering where the molecule is mapped to a 16 dimensional Hilbert space. (a) Depicts the
instantaneous nearest-neighbor Hamiltonian of a linear chain with L = 16 sites and one excitation (M = 1). (b) Shows the target Hamiltonian,
while (c) depicts the effective Hamiltonian generated by driving local potential of linear chain. d) Illustrates the driving sequence −5J < gl <

5J applied to generate the effective Hamiltonian.

sequences for the on-site energy gl and the coupling parameter
Jl in Figs. 2(f) and 2(g) can be obtained.

V. HAMILTONIAN ENGINEERING IN QUANTUM
CHEMISTRY: STROBOSCOPIC SIMULATION

OF THE LiH MOLECULE

Our approach can of course be used for different problems
and so let us now apply it to one in quantum chemistry.
Understanding biological processes and designing new phar-
maceutical products is of utmost importance in today’s age. To
accomplish task, we have to understand the inner workings
of atoms, molecules and proteins better by calculating their
properties such as their quantum mechanical configuration
and dynamics from first principles. Quantum computers of-
fer the promise to be able to calculate these properties for
large molecules. As benchmark, small molecules can be cal-
culated already with state-of-the-art quantum computers [3].
The Hamiltonian that describes the molecule involves many
controlled interactions that involve several qubits. Most quan-
tum computers support only two-body interactions and thus
require multiple operations just to fulfill a single operation that
involves multiple qubits. With Floquet engineering, all those
interactions including the complex k-body (with k > 1) terms
can directly encoded into the effective Hamiltonian.

We simulate a LiH molecule at the bond distance, where
nontrivial many-body terms can be directly encoded into
the effective Hamiltonian. The corresponding parameters of
the Hamiltonian can be found in [3], where they have been
obtained by the STO-3G basis. It approximates the atomic
orbitals with three Gaussians to obtain the one and two-
electron integrals for the electron interactions [Slater-type
orbital (STO)]. For the LiH molecule, the 1s orbital of H and
the 1s, 2s and 2px and 2pz were assumed to be occupied, all
other orbitals are assumed to be empty. By including the parity
symmetries, the LiH molecule can be described effectively by
4 qubits or a Hilbert space of dimension 16. It consists of
99 coupling terms expressed as a product of different Pauli
operators, as we show in Appendix E. Figure 3(b) illustrates
the effective Hamiltonian optimized to the target Hamiltonian,
whereas (a) shows the instantaneous Hamiltonian of the de-
vice. We use a one-dimensional chain with a single excitation
M = 1 in L = 16 sites. In Fig. 3 we can observe the effec-
tive Hamiltonian [Fig. 3(b)] has a high fidelity to the target

Hamiltonian [Fig. 3(c)]. The driving sequence for the on-site
energies gl is depicted in Fig. 3(d). We perform the simulation
following the same method used for the 3-SAT Hamiltonian
and the fidelity reached was F = 0.99954.

VI. SIMULATING QUANTUM GRAPHS

Finally, we give an estimation for the cost to obtain the
effective Hamiltonian in terms of the fidelity and the scaling
of the minimal driving period Tmin to engineer a desired con-
nectivity. First we need to acknowledge that multiple periods
will be needed and so these approach could be slow in nature
to perform. For this evaluation, we employ star and all-to-all
graphs as the target Hamiltonian and begin by evaluating
the number of steps N for the discretized Floquet operator.
Although a larger N guarantees a high fidelity, the optimiza-
tion with a larger N costs us a longer time to compute. To
estimate the fidelity of the effective Hamiltonian in the single
excitation case M = 1, in Fig. 4 we plot the fidelity against
the driving time T for several different Ns for a star graph
with L = 9 sites in and all-to-all connected graph with L = 8
sites. Figure 4(a) shows the fidelity change as T increasing
for driving of the local on-site energy for the star graph and of
both the local on-site energy and the coupling parameter for
the all-to-all connected graph. We can see the fidelity saturates
with relatively small Ns and a comparable time scale to the
coupling parameter J .

Lastly, we test the scaling of the optimization as a func-
tion of the system size L for different Ms, which is shown
in Fig. 4(b) for star and all-to-all connected graphs. In this
estimation we use the Hamiltonian (2) in the hardcore boson
regime to first calculate the near optimal driving parameters
for M = 1. The same driving sequence can be then used
for the cases M > 1. Notably, as depicted Fig. 4(b) one can
see that for both connectivities, the scaling of the minimum
driving time Tmin is linear with the number of sites L for
different number of particles and driving amplitudes of the
on-site energies. Keeping this in mind we decided to inves-
tigate the performance of our approach to simulate a device
with all-to-all connectivity for different number of excitations
M = 1, 2, 3, 4 in L = 8 sites as depicted in Fig. 5. In this plot,
we consider a driving of the on-site energies −5J < gl < 5J
with period T = 10/J , and N = 10 time steps with a step size

075140-5



V. M. BASTIDAS et al. PHYSICAL REVIEW B 105, 075140 (2022)

N

N

N

N

N
N

10 150 5

JT

N

N

N

N

N
N

0.8

0.9

1.0

F
id

e
li

ty
 F

 

10 150 5

JT

(a) Star graph All-to-all  graph

(b)

FIG. 4. Dependence of the driving sequence as a function of the
parameters. (a) Shows the fidelity as a function of the period T and
time steps N for a single excitation M = 1 used to generate a star
graph with L = 9 (by driving local potential −5J < gl < 5J) and an
all-to-all connected lattice with L = 8 (by driving the local potential
gl and the couplings −J < Jl < J). (b) By fixing the step to be τ =
1/J , we calculate the minimal driving period Tmin needed to generate
an effective Hamiltonian with fidelity F > 0.999 for varying system
size L and for different driving amplitudes G of the on-site energies
−G � gl � G in the case of different number of excitations M =
1, 2, 3. The left and right panels illustrate the results for star and all-
to-all connected graphs, respectively.

τ = 1/J . In Appendix D we explore the stability of the driving
protocol under time dependent noise.

VII. COMPUTATIONAL COST OF OUR APPROACH

In the previous section, we discussed about the scaling of
minimal driving period Tmin as a function of the number of
sites L and its dependence on other parameters of the system.
This minimum period is related to the time we need to let
the quantum system evolve and it is important for practical
applications as the existing devices are affected by errors that
accumulate over time. The focus of our paper is to show how
to simulate modest-scale interesting systems and the compu-
tational cost of the classical algorithm used to find the driving
section also plays an important role. Thanks to the conser-
vation of the number of excitations, the Hamiltonian (2) can
be decomposed into different subspaces with a fixed number
M = 1, 2... of excitations. The size of the Hamiltonian matrix
within each subspace increases as we increase M, which in
principle, makes the optimization harder. However, we found
that if we find a solution for M = 1 excitation, we can use this
solution to treat problems with higher number of excitations.
For this reason, we focus on the computational cost of opti-
mizing the driving sequence in the single-excitation subspace.
Figure 6 shows the computational cost to simulate all-to-all

connectivity of a device using a single excitation in L sites
when the system is in the hardcore boson regime. There one
can see that the iterations scale as ∝ L2 and the computational
time as Tcomp ∝ L4.2 for a driving amplitude G/J = 5. This
is precisely the driving amplitude used to obtain the results
depicted in Fig. 5 for a lattice with L = 8 sites.

VIII. CONCLUSIONS

In this paper we have demonstrated how a one-dimensional
quantum system with nearest-neighbors couplings can be used
to engineer arbitrary Hamiltonians on a NISQ computer. We
illustrated how the computation works through two examples
from NP complete problems and quantum chemistry simula-
tion. The encoding of the problem to the effective Hamiltonian
is done via the operator matrix representation, and hence
the approach does not detect any differences to implement
many-body interaction for hard problems. We also estimate
the encoding cost for various parameters, and our works in-
dicates the validity of this approach for hard problems in the
NISQ regime. The computational space of this approach can
be easily extended by adding more excitations to the system,
without the need to change the device. However as with all
NISQ processors there will be a limit which will affect its
scalability.
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APPENDIX A: FLOQUET THEORY AND STROBOSCOPIC
DYNAMICS

In our paper we focus on time periodic Hamiltonians
Ĥ (t + T ) = Ĥ (t ) where T is the drive period. Due to the
periodicity of the Hamiltonian, the most relevant informa-
tion is contained in the Floquet operator F̂ = Û (T ; 0) =
T̂ exp [−i/h̄

∫ T
0 Ĥ (s)ds], which is the evolution operator

within one period of the drive. In the previous equation, we
need to use the time-ordering operator T̂ . By solving the
eigenvalue problem F̂ |�α〉 = e−iεαT/h̄�α〉, one can obtain the
most relevant information for the dynamics. The eigenvectors
|�α〉 are known as the Floquet states and −h̄π/T � εα �
h̄π/T are the quasienergies. As the Floquet operator is uni-
tary, it is possible to define an effective Hamiltonian Ĥtarget

such that F̂ = exp(−iĤtargetT/h̄). At stroboscopic times tn =
nT the effective Hamiltonian is the generator of the dynamics.
To be more concrete, given an initial state |ψ (0)〉, its time evo-
lution at times tn = nT is given by |ψ (nT )〉 = F̂ n|ψ (0)〉 =
exp(−iĤtargetnT/h̄)|ψ (0)〉, which looks exactly as the evolu-
tion under a time independent Hamiltonian.
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FIG. 5. Matrix representation of the effective Hamiltonian for a device with all-to-all connectivity. In this figure we depict the matrix
representation for (a) M = 1, (b) M = 2, (c) M = 3, and (d) M = 4 excitations in the hardcore boson regime with driving period T = 10/J
and N = 10.

APPENDIX B: HARDCORE BOSONS AND THE
JORDAN-WIGNER TRANSFORMATION

In this section, we discuss in detail the family of target
Hamiltonians that can be simulated using the Hamiltonian

Ĥ (t ) = h̄

2

L∑
l=1

gl (t )σ z
l + h̄

2

L−1∑
l=1

Jl (t )
(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1

)

(B1)

by describing microwave photons in the hardcore boson
regime U � gl , Jl . In this case, one can use the Jordan-
Wigner transformation [75]

σ x
l = f †

l ei�̂l + fl e
−i�̂l ,

σ
y
l = −i f †

l ei�̂l + i fl e
−i�̂l , σ z

l = 2 f †
l fl − 1, (B2)

with �̂l = ∑
j<l f †

j f j to map the spin Hamiltonian to the
fermionic representation

Ĥ (t ) = h̄
L∑

l=1

[gl (t ) f †
l fl + Jl (t )( f †

l fl+1 + H.c.)], (B3)

where f †
j ( f j) are fermionic creation (annihilation) operators.

The fermionic representation is versatile, because it gives us a
canonical form of the target Hamiltonians that can be achieved

(b)(a)

FIG. 6. Computational cost to simulate all-to-all connectivity
with a single excitation. (a) Shows the scaling of the number of iter-
ations to achieve convergence of the optimization algorithm without
prior knowledge and (b) depicts scaling of the computation time.
In both graphs we fix the time step to be τ = 1/J and show the
scaling as a function of the number of sites L for two different
driving amplitudes G of the on-site energies −G � gl � G. Here,
the computational cost is for reaching a fidelity of F > 0.999, where
the number of bins is chosen such that this fidelity can be reached.

by applying a periodic drive

Ĥtarget = h̄
L∑

l=1

[Gl f †
l fl + Kl,m( f †

l fm + H.c.)]. (B4)

Crucially, the effective Hamiltonian allows for long-range
hopping of Jordan-Wigner fermions. Due to the nonlocal char-
acter of the Jordan Wigner transformation, these long-range
hopping become highly nonlocal terms in the spin representa-
tion, as follows:

Ĥtarget = h̄

2

L∑
l=1

Glσ
z
l + h̄

2

L∑
l,m=1

Kl,m
(
σ x

l Ôl,mσ x
m + σ

y
l Ôl,mσ y

m

)
,

(B5)

where Ôl,m = σ z
l+1σ

z
l+2 · · · σ z

m−2σ
z
m−1. To simulate a ring, as

we discussed in the main text, we require effective couplings
between nearest neighbors Kl,l+1 and to have a coupling K1,L .
In terms of the spin representation, this leads to an effective
Hamiltonian

Ĥtarget = h̄

2

L∑
l=1

Glσ
z
l + h̄

2

L−1∑
l=1

Kl,l+1
(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1

)

+ K1,L
(
σ x

1 Ô1,Lσ x
L + σ

y
1 Ô1,Lσ

y
L

)
. (B6)

APPENDIX C: A MINIMAL EXAMPLE OF A 3SAT
PROBLEM AND ITS ADIABATIC DEFORMATION

In this section, we explain the basic elements on 3SAT
problems and its algebraic origin. Let us begin by considering
the system of equations given in the main text

1 = a2 + a3 + a1a3, (C1)

1 = a1 + a3 + a1a2, (C2)

0 = a1 + a2 + a2a3. (C3)

For each Eq. (C1), (C2), and (C3) there is an objective func-
tion that indicates if an assignment of (a1, a2, a3) satisfies
the corresponding equation. We sum up the three objective
functions into one that counts the number of solutions for the
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entire system. To find an objective function (not necessarily
unique), a simple recipe is to use the inclusion-and-exclusion

principle. Let C1, C2, and C3 denote respectively objective
functions for Eqs. (C1), (C2), and (C3). Then we have

C1 = 1 − (a2 + a3 + a3a1 − 2(a2a3 + a1a3 + a1a2a3) + 4a1a2a3), (C4)

C2 = 1 − (a1 + a3 + a1a2 − 2(a1a3 + a1a2 + a1a2a3) + 4a1a2a3), (C5)

C3 = a1 + a2 + a2a3 − 2(a1a2 + a2a3 + a1a2a3) + 4a1a2a3. (C6)

We sum the former relations and then obtain the following
objective function for the entire system:

C = 2 − 2a3 + 3a1a3 + a2a3 − a1a2 − 2a1a2a3. (C7)

Let us check that our objective function is right. To do this we
construct the table

a1 a2 a3 C
0 0 0 2
0 0 1 0
0 1 0 2
0 1 1 1
1 0 0 2
1 0 1 3
1 1 0 1
1 1 1 1

As the original system represents a permutation, the val-
ues of C must follow those of the binomial coefficients

(3
i

)
for 0 � i � 3. This is not a coincidence and can be easily
seen from the inclusion-and-exclusion principle. In a similar
way than in adiabatic computation, the initial Hamiltonian is
usually tailored such that the algebraic multiplicities of its
eigenvalues follow those of the binomial coefficient. We want
to point out that Eqs. (C1), (C2), and (C3) are over Z2 which
involve addition and multiplication modulo 2. Some readers
might be acquainted with SAT problems involving true or
false together with logical operations of conjunction (and),
disjunction (or) and negation (not). There is a one-to-one
correspondence between expressions over Z2 and expressions
over {true, false} involving operations and, or and not. For
instance the two simplest nontrivial irreducible expressions
that lead to 3-SAT problems containing 3 variables are given
by

x + yz and x + y + z.

We observe that

x + yz ⇔ (x ∧ ¬(y ∧ z)) ∨ (¬x ∧ (y ∧ z))

⇔ (x ∧ (¬y)) ∨ (x ∧ (¬z)) ∨ ((¬x) ∧ y ∧ z).

Similarly, we can find a logical 3SAT expression for the alge-
braic 3SAT expression x + y + z.

In our example involving Eqs. (C1), (C2), and (C3), there
is no point to rewrite the expression into their logical flavor.
This is because it is straightforward to obtain the objective
function directly from the algebraic 3SAT as we show. Also
since there are efficient classical algorithms to solve linear
systems of equations over any algebraic field (and even ex-
tremely efficient ones over Z2), there is no point to solve such
system with quantum devices. Therefore this explains why we

look upon 3-variable systems that are quadratic such as the
one obtained from a Toffoli permutation or such as the more
cryptographic one given by Eqs. (C1), (C2), and (C3).

The example given by Eqs. (C1), (C2), and (C3) (below in
this Appendix Sec. 3) is a typical (toy) example of a system
of equations that arises when performing cryptanalysis of
block ciphers or hash functions. The algebraic degree of every
equation is 2 m, which is high with respect to the maximum
possible degree that is 3. The number of terms per equation is
high with respect to the maximal number of possible terms
which is 8 in our case. Expressed differently and in an equiva-
lent way, the density for the number of terms is relatively high.
For more information on properties that matter to system of
equations from cryptography, see [76] and [71]. There are 8
possible assignments to the system of equations. The solution
space of the system of equations is mapped to the minimal
value of the objective function.

1. Obtaining Hamiltonians from cost functions to solve
3SAT instances

Let us recall the objective function from (C7), which is

C = 2 − 2a3 + 3a1a3 + a2a3 − a1a2 − 2a1a2a3.

In what follows, μx
j denotes the 2 × 2 x-Pauli matrix, and 1̂

denotes the 2 × 2 identity matrix. We use a transformation to
map the variables that appears in a term from (C7) into a 2 × 2
diagonal matrix:

a1 
→ 1

2

(
1̂ + μx

1

)
, a2 
→ 1

2

(
1̂ + μx

2

)
, a3 
→ 1

2

(
1̂ − μx

3

)
.

(C8)

A product of variables is mapped to the Kronecker product of
the diagonal matrices. It is understood that a variable which
does not appear in a product is mapped to the identity. Our
choice of ordering the indices of the subsystems is (3,2,1).
More precisely for our cost function, we have the operator

Ĉ = 1

4

(
μx

1 − μx
2 + μx

3 − 2μx
1μ

x
2 − 2μx

1μ
x
3 + μx

1μ
x
2μ

x
3

)
(C9)

associated to the cost function C(a1, a2, a3). In our paper, we
scale this operator and define the Hamiltonian

ĤSAT = h̄ω
(
μx

1 − μx
2 + μx

3 − 2μx
1μ

x
2 − 2μx

1μ
x
3 + μx

1μ
x
2μ

x
3

)
,

(C10)

where ω has units of angular frequency. Once we have the
Hamiltonian, the solution of the 3SAT problem is encoded
in the ground state |G〉. In order to obtain to the triplet
(a1, a2, a3) satisfying the 3 clauses discussed above, we just
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FIG. 7. (a) Fidelity F = |tr(F̂ †
targetF̂trial )|/D (D is the dimension of the Hilbert space) of effective dynamics for hard-core bosons in a driven

chain and minimal time Tmin to generate effective Hamiltonian with fidelity F > 0.999. All parameters are scaled in units of the nearest-
neighbor coupling strength J . (a) Fidelity for star graph (L = 9 sites), all-to-all coupling (L = 8 sites), and ring (L = 8) sites. Driving with
N = 10 timesteps and time T = 10/J , with driving of local potential in range −5J < gl < 5J . (b) Fidelity of effective dynamics for driving
time and timesteps of a linear chain with a Np = 2 excitation and U = 4J . All parameters are scaled in units of the nearest-neighbor coupling
strength J . Target Hamiltonian is all-to-all coupling with L = 8 sites with driving of both potential (−5J < gl < 5J) and nearest-neighbor
coupling −J < Jl < J . (c) Minimal time needed Tmin to generate effective Hamiltonian with fidelity F > 0.999, for varying system size of
chain L and a single excitation M = 1. The result is fitted with a linear equation Tmin = aL + b (dashed lines). The found slope is astar = 0.47/J ,
aall = 0.46/J and aring = 0.64/J . All parameters are scaled in units of the nearest-neighbor coupling strength J . Driving of potential is bounded
between −5J < gl < 5J and a single timestep of the driving protocol is fixed to τ = 1/J .

need to calculate the following expectation values

a1 = 1

2
〈G|

[
1 + 1

2

(
σ x

1 σ x
5 + σ

y
1 σ

y
5 + σ x

2 σ x
6 + σ

y
2 σ

y
6 + σ x

3 σ x
7 + σ

y
3 σ

y
7 + σ x

4 σ x
8 + σ

y
4 σ

y
8

)]|G〉

a2 = 1

2
〈G|

[
1 + 1

2

(
σ x

1 σ x
3 + σ

y
1 σ

y
3 + σ x

2 σ x
4 + σ

y
2 σ

y
4 + σ x

5 σ x
7 + σ

y
5 σ

y
7 + σ x

6 σ x
8 + σ

y
6 σ

y
8

)]|G〉 (C11)

a3 = 1

2
〈G|

[
1 − 1

2

(
σ x

1 σ x
2 + σ

y
1 σ

y
2 + σ x

3 σ x
4 + σ

y
3 σ

y
4 + σ x

5 σ x
6 + σ

y
5 σ

y
6 + σ x

7 σ x
8 + σ

y
7 σ

y
8

)]|G〉,

which correspond to two-point correlations in the original
basis of qubits [see Eq. (B1)].

2. Instantaneous Hamiltonian and driving protocols for
the adiabatic deformation of the 3SAT Hamiltonian

In this section we provide additional information on
the adiabatic deformation of the 3SAT Hamiltonian equa-
tion (C10). With this aim, we consider a single excitation M =
1 in an array of L = 8 sites and the dimension of the Hilbert
space is D1,9 = 9. As we discussed above, we consider the
basis |1l〉 = |0, 0, . . . , 1l , 0, . . . , 0〉 with l = 1, . . . , L, where
|1l〉 denotes an excitation at the lth site. In this case, we are not
only able to simulate the target Hamiltonian, but we also per-
form an adiabatic modulation of the parameters to interpolate
two effective Hamiltonians. The adiabatic evolution happens
over 200 cycles, makes a total time of Ttotal = 1276/J .

APPENDIX D: PERFORMANCE OF OUR METHOD AND
ITS DEPENDENCE ON DIFFERENT PARAMETERS

In our paper, we present minimal examples of the appli-
cability of our method. We were able to simulate such as
star, all-to-all and ring connectivities and consider the case of
interacting and Hardcore bosons as well. However, one might

ask what is the scalability of method and what is its depen-
dence on other parameters such as the number of steps in
the driving protocol. This is precisely the goal of this section.
First we discuss the scaling of the effective Hamiltonian with
the number M of excitations in the hardcore boson regime.
After that, we investigate scaling of the effective Hamiltonian
in the case of two excitation with a finite interaction strength
U = 4J as a function of the period T and the number of steps
N . Finally, we concentrate on the dependence of the effective
Hamiltonian on the driving parameters.

1. Scaling of the method with respect to different
parameters of the system

We discuss the case of many particles for the hard-core
bosonic chain. Driving a hard-core chain generates arbitrary
noninteracting fermionic many-body Hamiltonian. By using
GRAPE, we calculate the best driving parameters for the
single particle case first. Then, the same driving is used for
the same system, but now with multiple excitations M > 1.
The resulting effective Hamiltonian is then the corresponding
fermionic many-body Hamiltonian. The scaling of the fidelity
for star, all-to-all and ring connectivities is shown in Fig. 7(a).

As we discussed above, in the hardcore boson regime,
one can solve the many-body problem just by obtaining the
solution for a single particle, because effectively the system
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FIG. 8. Fidelity of effective dynamics for driving time and timesteps of a linear chain with a single excitation. All parameters are scaled
in units of the nearest-neighbor coupling strength J . [(a),(d)] Target effective Hamiltonian is the star graph with L = 9 sites. [(b),(e)] Target
is all-to-all coupling with L = 8 sites. [(c),(f)] Target is the simulation of boolean equations with L = 8 sites. [(a),(b),(c)] Driving of local
potential only in range −5J < gl < 5J . [(d),(e),(f)] Driving of both potential (−5J < gl < 5J) and nearest-neighbor coupling −J < Jl < J .

is noninteracting and one can map it to a system of free
fermions. However, for a finite value of the interaction U =
4J , the excitations are far from the hardcore boson regime, and
we cannot reconstruct the solution to the two body problem by
investigating the single particle case. For the Bose-Hubbard
model with M = 2 particles, we note that more time steps N
are needed to generate the effective Hamiltonian compared to
the single particle case. To investigate this issue in detail, here
we consider the case of a all-to-all connectivity and calculate
the fidelity of the numerically obtained unitary operator with
respect to target unitary. We explore the dependence of this
fidelity as a function of the period T of the driving and the
number of time steps, as we depict in Fig. 7(b).

We investigate the scaling of the effective Hamiltonian
generation for varying system size. The result is shown in
Fig. 7(c). We show the star-graph, all-to-all coupling and
ring for single excitation and potential driving. We vary the
system size L of the chain and calculate the minimal time
needed Tmin to generate the effective Hamiltonian for the given
configuration with a fidelity F > 0.999. We fix the length of
a time step of the driving protocol to τ = 1/J , where J is the
coupling strength of the chain. We observe an approximately
linear scaling between protocol time Tmin and system size L.

2. Effective Hamiltonian dependence on driving parameters

The fidelity of the effective Hamiltonian that can be gen-
erated depends on several parameters. We investigate here
how the fidelity of the effective dynamics is affected by the
driving time T as well as the number N of discrete steps
of the driving protocol. The results for a driven linear chain
are presented in Fig. 8. We generate a star graph [Figs. 8(a)

and 8(d)], all-to-all coupling [Figs. 8(b) and 8(e)] and the
boolean equations [Figs. 8(c) and 8(f)]. We use either driving
of local potential only [Figs. 8(a), 8(b), and 8(c)] or drive both
potential and nearest-neighbor couplings [Figs. 8(d), 8(e), and
8(f)]. We observe that when only the local potential is driven,
at least N = 8 steps are needed to achieve sufficient fidelity.
For driving both potential and nearest-neighbor coupling, 4
timesteps are sufficient. There is also a minimal time needed
before maximal fidelity is reached, which is nearly the same
for all three problems and on the order of Tmin = 4/J .

3. Robustness of the effective Hamiltonian against noise
in the driving protocol

We investigate how noise in the driving parameters affects
the fidelity of the effective dynamics. For that, we take the
optimal driving protocol found without noise, and then per-
turb the driving parameters. We add to the optimal driving
parameters an offset that is randomly sampled from the uni-
form distribution δgl ∼ [−δ/2, δ/2] for every parameter and
timestep independently. The result for the dataset of Fig. 2
in the main text are shown here in Fig. 9. We observe a de-
crease in the fidelity with increasing noise. Multi-excitations
systems are affected more by noise (star 1 excitation, all-to-all
2 excitations and ring 3 excitations). We note that for all three
systems, fidelity decreases by at most by 1% if random pertur-
bation δg < 0.1J or about 10% of the intra-chain couplings.

4. Scaling of computational effort

Our goal is to find the driving protocols that approximates
the unitary that encodes the effective Hamiltonian. To do so,
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FIG. 9. Robustness of effective Hamiltonian to noise: Mean and
standard deviation of fidelity of the effective dynamics for vary-
ing noise δgl (t ) in the driving parameters g(t ). The driven on-site
energies are perturbed by g′

l (tn) = gl (tn) + uniform (−δg/2, δg/2),
which is sampled independently for all sites l and time step tn, where
uniform() is the uniform distribution. Fidelity is sampled over 100
random instances. Star, all-to-all and ring correspond to the same
results in Fig. 2 of the main text. For all-to-all coupling, the time-
dependent couplings are perturbed in a similar manner with a factor
5 less perturbation.

we need to do two things: Simulate the quantum system and
find the parameters of the driving protocol. We simulate the
dynamics of the quantum system on a classical computer. The
simulation effort scales polynomially with the Hilbert space

size, and quickly becomes not feasible for larger quantum
systems. To find the driving protocol, we employ numeri-
cal methods such as GRAPE, as well as deep learning. The
optimization problem can be difficult in general, as the opti-
mization routine may become stuck in a local minima instead
of the global minima. However, if the number of driving
parameters is larger than the Hilbert space, the optimization
problem is often characterized by many global minima and it
is straightforward to solve it numerically [77,78].

APPENDIX E: FLOQUET SIMULATION OF LiH

In our paper we demonstrate the capability of our approach
by simulating a LiH molecule at bond distance. The results
of our simulation are shown in the in the main text. The
corresponding parameters of the Hamiltonian can be found
in [3]. They have been obtained by the STO-3G basis, where
the atomic orbitals are approximated with three Gaussians
to obtain one- and two-electron integrals for the electronic
interactions [Slater-type orbital (STO)]. For the LiH molecule,
the 1s orbital of H and the 1s, 2s and 2px and 2pz were
assumed to be occupied. Furthermore, all other orbitals are
assumed to be empty. By including the parity symmetries, the
LiH molecule can be described effectively by 4 qubits with a
Hilberts pace of dimension 16. The Hamiltonian contains 99
coupling terms expressed as a product of different Pauli op-
erators. For convenience, below we include the explicit form
of the corresponding Hamiltonian matrix for LiH molecule, as
follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.00846 −.33392 .03370 −.21996 .33392 −.08335 .10560 −.08001 −.03370 .10560 −.18833 .09292 −.21996 .08001 −.09292 .10347
−.33392 −.02541 −.21713 .07039 −.08335 .37960 −.04784 .09209 .10560 −.17922 −.00038 −.13611 .08001 −.26748 .05141 −.09746

.03370 −.21713 −.00029 −.34549 .10560 −.04784 .35689 −.09255 −.18833 −.00038 −.10054 .13207 −.09292 .05141 −.25612 .09590
−.21996 .07039 −.34549 −.03981 −.08001 .09209 −.09255 .33823 .09292 −.13611 .13207 −.05945 .10347 −.09746 .09590 −.19952

.33392 −.08335 .10560 −.08001 −.02541 −.37960 .17922 −.26748 −.21713 .04784 .00038 .05141 −.07039 .09209 −.13611 .09746
−.08335 .37960 −.04784 .09209 −.37960 .15372 −.11896 .14861 .04784 −.11896 .11505 −.03415 .09209 −.14861 .03415 −.12120

.10560 −.04784 .35689 −.09255 .17922 −.11896 .07367 −.42903 .00038 .11505 −.17038 .03095 −.13611 .03415 −.11232 .11348
−.08001 .09209 −.09255 .33823 −.26748 .14861 −.42903 −.04424 .05141 −.03415 .03095 −.19948 .09746 −.12120 .11348 −.06392
−.03370 .10560 −.18833 .09292 −.21713 .04784 .00038 .05141 −.00029 −.35689 .10054 −.25612 .34549 −.09255 .13207 −.09590

.10560 −.17922 −.00038 −.13611 .04784 −.11896 .11505 −.03415 −.35689 .07367 −.17038 .11232 −.09255 .42903 −.03095 .11348
−.18833 −.00038 −.10054 .13207 .00038 .11505 −.17038 .03095 .10054 −.17038 .05177 −.39058 .13207 −.03095 .39058 −.11241

.09292 −.13611 .13207 −.05945 .05141 −.03415 .03095 −.19948 −.25612 .11232 −.39058 −.04576 −.09590 .11348 −.11241 .34422
−.21996 .08001 −.09292 .10347 −.07039 .09209 −.13611 .09746 .34549 −.09255 .13207 −.09590 −.03981 −.33823 .05945 −.19952

.08001 −.26748 .05141 −.09746 .09209 −.14861 .03415 −.12120 −.09255 .42903 −.03095 .11348 −.33823 −.04424 −.19948 .06392
−.09292 .05141 −.25612 .09590 −.13611 .03415 −.11232 .11348 .13207 −.03095 .39058 −.11241 .05945 −.19948 −.04576 −.34422
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