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Characterizing fractional topological phases of lattice bosons near the first Mott lobe
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The Bose-Hubbard model subjected to an effective magnetic field hosts a plethora of phases with different
topological orders when tuning the chemical potential. Using the density matrix renormalization group method,
we identify several gapped phases near the first Mott lobe at strong interactions. They are connected by a
particle-hole symmetry to a variety of quantum Hall states stabilized at low fillings. We characterize phases
of both particle and hole type and identify signatures compatible with Laughlin, Moore-Read, and bosonic
integer quantum Hall states by calculating the quantized Hall conductance and by extracting the topological
entanglement entropy. Furthermore, we analyze the entanglement spectrum of Laughlin states of bosonic
particles and holes for a range of interaction strengths, as well as the entanglement spectrum of a Moore-Read
state. These results further corroborate the existence of topological states at high fillings, close to the first Mott
lobe, as hole analogs of the respective low-filling states.
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I. INTRODUCTION

Exotic quantum phases have been discovered over the
past decades that defy the Landau classification of spon-
taneous symmetry breaking and instead exhibit topological
order [1,2]. These phases possess emergent quasiparticles
with anyonic exchange statistics and long-range quantum en-
tanglement, which renders their experimental characterization
challenging. The development of quantum simulators and
quantum computers offers new opportunities to realize and
characterize such novel topological phases. Topological en-
tanglement has been measured and anyon braiding has been
simulated with a superconducting qubit quantum processor
[3], and nonlocal order parameters have been observed in a
Rydberg atom quantum simulator [4]. Recent progress also
enabled the study of quantum Hall physics with ultracold
atoms in optical lattices, where Floquet driving creates ar-
tificial gauge fields [5–12]. Utilizing these techniques, the
interaction-induced chiral propagation of excitations has been
explored in the few-body limit of quantum Hall states [13,14].
Besides that, several numerical studies predict that lattice
bosons in strong effective magnetic fields realize a plethora
of fractional quantum Hall states; see, e.g., Refs. [15–28]. At
the same time, unconventional phases with sign-reversed Hall
conductivity have been proposed to be stable in the weak-field
limit near Mott phases with integer filling [29]. In light of the
recent experimental progress, further understanding of these
phases with anomalous Hall response is therefore a pertinent
challenge.

In this work, we numerically study fractionalized quantum
Hall phases stabilized by interacting bosons on a lattice in an
effective magnetic field. While most of the existing studies
focus on the limit of low filling, here, we also consider fillings
close to the first Mott state which has unit filling. Using the in-
finite density matrix renormalization group (DMRG) [30,31]

algorithm on cylinder geometries we obtain not only infor-
mation about the phase diagram arising from the interplay of
lattice effects and magnetic flux, Fig. 1, but also about key
signatures of the phases. The DMRG simulations allow us to
directly characterize the topological properties by calculating
the Hall response (by flux threading) [32], the topological
entanglement entropy [33,34], and the entanglement spectrum
[35]. Besides finding different topological phases of particles
near the vacuum state, we also find topological phases where
holes take the place of particles near the first Mott lobe. These
phases possess a sign-reversed Hall conductivity compared to
their particle counterparts, providing a direct explanation for
the mechanism proposed in Ref. [29].

This work is structured as follows: In Sec. II we introduce
the model and discuss the structure of the phase diagram. In
Sec. III, we characterize the fractional quantum Hall phases.
We close by providing a summary and an outlook in Sec. IV.

II. MODEL AND PHASE DIAGRAM

We consider the Bose-Hubbard model on a square lattice
subjected to an effective magnetic field, resulting in a mag-
netic flux through each of the plaquettes of the lattice. Our
Hamiltonian is given by

H = −t
∑

〈i, j〉
(eiAi j a†

i a j + H.c.) + U

2

∑

i

ni(ni − 1) − μ
∑

i

ni,

(1)
where a(†)

i annihilates (creates) a boson at site i and ni = a†
i ai

is the boson number operator at site i. The first term describes
nearest-neighbor hopping with an amplitude t and a back-
ground flux of

∑
Ai j = φ = 2πnφ on each plaquette. Unless

otherwise stated, we focus on the case φ = π/3 (nφ = 1/6);
other flux values give qualitatively similar results (the number
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FIG. 1. Fractional quantum Hall phases of particles and holes.
The average boson density nb of the ground state as a function of
the chemical potential μ/U for strong interactions U/t = 50 and
flux φ = π/3, obtained on an infinite cylinder with circumference
Ly = 6 (inset, top left). We find gapped incompressible phases at
various relevant filling factors. The plateaus labeled here correspond
to the lowest states in the Jain sequence p

p+1 and the Read-Rezayi
sequence p

2 with integers p. The pronounced symmetry around half
filling suggests an approximate particle-hole symmetry emerging at
strong interactions, with holes taking the place of particles in the
wave function. We mark the hole filling factor with a star. Inset,
bottom right: A sketch of the phase diagram indicating the μ cut
of the main panel (red dashed line).

of stable gapped phases we describe in the following increases
with lower nφ). The second and third terms describe the re-
pulsive on-site interactions with strength U and the chemical
potential μ fixing the total particle number, respectively. In
our numerical implementation, we assume periodic bound-
ary conditions in the finite y direction and open boundary
conditions otherwise, thus realizing a cylindrical geometry;
see inset of Fig. 1 for an illustration. For high interaction
strength U/t = 50, we cut off our local Hilbert space (which
is formally infinite-dimensional) at a maximum of two bosons
per site, as higher occupation numbers do not change the
numerical results. For interactions weaker than U/t = 50, we
include states with three bosons per site.

For certain filling factors ν = nb
nφ

, where nb is the number
of bosons per site, we may expect bosonic fractional quan-
tum Hall phases. Building on the well-established Laughlin
state at ν = 1/2 [36], one can derive certain sequences of
quantum Hall states which are predicted at other filling fac-
tors. One of these is the Jain sequence, in which flux quanta
create so-called composite fermions by binding to the lattice
particles [18,37]. These new particles themselves form an
integer quantum Hall state filling p Landau levels. For the
attachment of a single vortex per boson, one obtains ν = p

p+1 ,
p = 1,±2,±3, . . . for the original particles. Of particular in-
terest is the state with p = −2 at ν = 2, the so-called bosonic
integer quantum Hall (BIQH) state [20–22,38,39]. This is an
example of a symmetry-protected topological (SPT) phase,
which contrasts with other fractional quantum Hall states that
have intrinsic topological order. Another family of quantum

Hall states is predicted by the Read-Rezayi sequence, which
are candidates for the ground states at fillings ν = p

2 , p =
1, 2, 3, . . . . Except for the Abelian Laughlin state at p = 1,
these are non-Abelian topological states with more complex
behavior; among them is the Moore-Read state with p = 2
at ν = 1 which hosts an Ising set of anyons [40]. In the
continuum limit, these trial states can be seen as the densest
ground states of a repulsive p + 1-body interaction [41–43].
Several studies have found promising signs that a number of
these phases are actually realized in different lattice models;
in particular, the Laughlin, Jain, and Moore-Read states have
been suggested as ground states for their respective filling
factors in the system we consider here. Nevertheless, reliably
predicting the actual state at a given configuration in the ther-
modynamic limit remains a challenging task, since different
quantum Hall states may compete with other states such as
charge density waves and many ground states thus elude a
simple characterization.

A first step to obtain some information about the differ-
ent phases is to calculate the filling factor as a function of
the chemical potential μ. This is shown in Fig. 1 for the
strongly repulsive case U/t = 50. The average particle num-
ber is obtained by infinite DMRG on an Ly = 6 cylinder in
the grand canonical ensemble using the TeNPy package [31].
This algorithm provides us with an approximate ground state
of the infinite system expressed as a matrix-product state
with a bond dimension of χ . From this representation we can
directly calculate the average particle number as a function of
the chemical potential. We find an ample number of plateaus
which suggest gapped, incompressible phases at the filling
factors predicted by the Jain and Read-Rezayi sequences.
Interestingly, we also observe a family of plateaus at higher
filling factors nb > 1/2. Introducing a complementary hole
filling factor ν∗ = 1−nb

nφ
(marked with ∗ throughout) we ob-

serve an approximate symmetry between plateaus at the same
particle filling ν and hole filling ν∗.

Starting from a semiclassical picture of vortices in bosonic
systems, Huber and Lindner postulated the existence of re-
gions below the Mott lobes characterized by sign-reversed
Hall conductivity for sufficiently strong interactions [29]. One
can define a proportionality factor α between the Berry phase
resulting from the movement of a vortex in a closed loop
and the area enclosed by this loop. The Hall conductivity σxy

is proportional to this factor, σxy ∝ α. In systems exhibiting
Galilean invariance, this factor can be identified with the
number of superfluid bosons [44,45]. In lattice systems, which
break Galilean symmetry, the commutation relations of vortex
translation operators define the Berry phase when moving
around a single plaquette only up to an integer, so σxy ∝
α = (nb + k), k ∈ Z. By deriving effective theories from the
Bose-Hubbard model in a weak magnetic field, one can show
that this integer jumps on lines which emanate from particle-
hole symmetric points, including ones which lie between two
Mott lobes in the hard-core limit U/t → ∞, thus allowing
for negative Hall conductivity below the Mott lobes. This
directly connects the two types of filling factors ν ↔ ν∗ for
U/t → ∞. In a similar vein, some numerical studies suggest
the emergence of a Laughlin state of holes on the background
of the nb = 1 Mott insulator [46–49]. Combining these ideas,
we argue that, for strong interactions, the plateaus above
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FIG. 2. Selected incompressible phases. Phase diagram of the
Bose-Hubbard model with a magnetic flux φ = π/3 through each
plaquette on an infinite cylinder with circumference Ly = 6, focused
on the area between the vacuum and the first Mott lobe. Specific
gapped states at hole filling factors ν (∗) = 1/2, 1, 2 are tracked as
a function of the hopping strength t/U . We expect further gapped
states (indicated by the hatched areas) corresponding, e.g., to the Jain
and Read-Rezayi sequence states and their hole analogs. To obtain
the phase diagram, we perform infinite-size DMRG calculations,
which overestimate the size of the trivial Mott state as well as the
nontrivial gapped states due to the finite size in the y direction
(see main text for details). The dotted line at U/t = 50 and around
μ/U = 0 indicates the cut considered in Fig. 1.

nb = 1/2 can be seen as particle-hole analogs of the respective
gapped phases at low filling factors. Replacing particles with
holes directly explains a reversed Hall conductivity in this
region.

In Fig. 2, we show a phase diagram of our model obtained
for an infinite cylinder with circumference Ly = 6, with the
same method as for Fig 1. We focus on the area between
the vacuum and the first Mott lobe, where we expect quan-
tum Hall phases of particles and holes and track states with
three specific filling factors ν (∗) = 1/2, 1, 2 which may host
states in the Jain and Read-Rezayi sequences (orange and
blue shaded regions). Around these phases additional incom-
pressible phases exist, which we have not extracted in full
detail (indicated by the hatched areas). While the simulations
so far allow us to make some general predictions about the
system, they also suffer from strong finite-size effects because
the considered cylinder circumference is comparatively small,
compared to the magnetic unit cell. This leads to an over-
estimation of the stability of the gapped phases. The phase
boundaries should therefore be regarded only as guides.

III. CHARACTERIZATION OF QUANTUM HALL PHASES

The calculated observables so far give insight into the
emergence of new phases due to magnetic flux in the Bose-
Hubbard model. However, they do not offer more specific

information about which states are actually realized. In the
following, we will discuss several properties which allow us to
classify the ground states. We focus on the ν∗ = 1/2, 2 states
and the corresponding particle states ν = 1/2, 2 to study the
supposedly symmetric behavior. For these states, as well as
for the trivial Mott insulator with nb = 1, we consider strong
but finite interactions U/t = 50. At ν = 1, a gapped state has
been found which has been predicted to be a Moore-Read
state in Ref. [28]. In the continuum, the Moore-Read state
is a zero-energy state of a repulsive three-body interaction
[42]. Therefore, for this state we consider comparatively weak
interactions U/t = 2, for which we expect two particles occu-
pying the same site not to be disfavored too strongly, whereas
three-particle occupations are still rather strongly suppressed.
This regime favors a Moore-Read state as a possible ground
state and renders its topological properties more tractable. In
general, finding a direct particle-hole conjugate of a state with
two holes occupying the same site cannot occur below the
first Mott lobe (but can arise between higher Mott lobes),
yet, different lattice regulated variants of the Moore-Read
state of holes are conceivable. In the case of moderate in-
teractions U/t = 20, we have indeed found well-converged
results yielding a quantized Hall conductance as predicted by
the Moore-Read theory. However, further studies of the ro-
bustness of this state in the thermodynamic limit are required
to fully clarify the situation. For reference, we summarize in
Table I the most important characteristics of the candidate
states at these filling factors [50].

A. Hall conductivity

One of the most direct signatures of quantum Hall states
with particle number conservation is their quantized Hall con-
ductance σxy. To compute the Hall response, we can follow
Laughlin’s argument and adiabatically thread a flux quantum
�y = 2π though the cylinder while monitoring how much
charge is transferred across a cut through the cylinder. To
this end, we make use of the Schmidt decomposition of the
ground state |	〉 = ∑χ

i=1 
i |iL〉 ⊗ |iR〉. As the Hamiltonian
conserves the U (1) particle number, we associate a charge
value QL

i ∈ Z with every Schmidt state |iL〉. The average
charge across the cut is obtained from the Schmidt repre-
sentation as 〈QL(�y)〉 = ∑

i 

2
i (�y)QL

i (�y). Measuring this
charge while threading a flux quantum �y = 2π through the
cylinder gives the Hall conductance [51,52]

σxy = e2

h
[〈QL(�y = 2π )〉 − 〈QL(�y = 0)〉]. (2)

The pumped charge is quantized to an integer or a fractional
value depending on the specific quantum Hall state and filling
factor, as given in Table I.

In Fig. 3, we show 〈QL(�y)〉 for various gapped states. The
cylinder considered has a circumference of Ly = 6, and we
fix the bond dimension to χ = 900. We repeatedly calculate
the ground state of the system at a certain �y before slightly
increasing the gauge flux, thereby simulating an adiabatic
tuning of an electromotive force alongside the y axis. This
induces charge pumping along the x direction.

For the ν (∗) = 1/2 states shown in Fig. 3(a), we increase
our flux value up to �y = 4π . For a Laughlin-type state at this
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TABLE I. Properties of selected quantum Hall states. The theoretically predicted absolute values of the Hall conductance and the filling
factor are proportional. The Laughlin state hosts two Abelian anyons with semionic statistics, leading to a value of the topological entanglement
entropy (TEE) γ = ln

√
2. The BIQH state is a symmetry-protected topological phase and therefore lacks fractional statistics and TEE. The

Moore-Read state is connected to the Ising conformal field theory, so its anyonic content consists of the identity, a fermion and an Ising anyon,
yielding a TEE γ = ln 2.

State Filling factor ν (∗) Hall conductance |σxy| Anyonic statistics TEE γ

Laughlin 1/2 1
2

e2

h 2 Abelian anyons ln
√

2

Bosonic integer (BIQH) 2 2 e2

h No fractional statistics 0

Moore-Read (MR) 1 e2

h Ising anyons ln 2

filling with a doubly degenerate ground state, this procedure
will let the ground state at �y = 0 flow back to itself at �y =
4π . Accordingly, we obtain an almost perfect quantized value
of a single charge being transferred in two pumping periods,
leading to half-a-charge per flux quantum and a Hall con-
ductance of |σxy| = 1

2
e2

h as expected for a ν = 1/2 Laughlin
state. We also find that between the two states at particle-hole
symmetric filling the sign of the Hall conductance is reversed,
as our argument predicted; cf. Ref. [29].

We find a similar reversal of the Hall conductance for
the ν (∗) = 2 states [see Fig. 3(b)]. The Hall conductance of
|σxy| = 2 e2

h suggests a BIQH state. At ν = 1 for interaction

(a) (b)

(c) (d)

FIG. 3. Charge pumping. (a) Charge pumping for the ν (∗) = 1/2
states for two periods. A single charge is transferred from one half
to the other, as expected for the Laughlin state. The sign reversal
between both states suggests an approximate particle-hole symmetry
of the phases. The other states are analyzed over one pumping period:
In (b), two charges are transferred per flux period for the ν (∗) = 2
states, again with different sign between the states. In (c), a single
charge pumped is indicative of the Moore-Read state at ν (∗) = 1 at
different interaction strengths. By contrast, the trivial Mott insula-
tor in (d) does not allow any pumping, highlighting the difference
between a trivial insulator and the more intricate topological states.

strength U/t = 2 and at ν∗ = 1 for U/t = 20 [Fig. 3(c)] we
find a conductance quantized to unity |σxy| = e2

h after one
period, which is a characteristic property of the Moore-Read
state not yet addressed in the existing literature. Here too, the
characteristic sign reversal is present.

In contrast to the previously discussed states, the trivial
Mott insulator shown in Fig. 3(d) does not exhibit any charge
pumping. These results establish their topological nature, as
well as the sign change in the Hall conductivity when going
from particles to holes.

B. Topological entanglement entropy

Entanglement measures carry relevant information about
the topological properties of the state and can be directly
obtained from the Schmidt values. A particularly important
measure is the von Neumann entanglement entropy SvN =
−∑

i 

2
i ln 
2

i , which is a special limiting case of the more
general Rényi entropies defined by Sα = 1

1−α
ln (

∑
i 


2α
i ). For

α → ∞, we obtain the infinite Rényi (max) entropy S∞ =
− ln (max [
2

i ]). For cylinder geometries of circumference
Ly, all Rényi entropies for minimally entangled ground states
[53,54] corresponding to Abelian anyons obey a modified area
law of the form

Sα = cαLy − γ + O(1/Ly), (3)

where the constants cα are nonuniversal. However, the correc-
tion γ to the area law is a universal quantity characterizing
the topology of the state and is identical for every entropy. In
finite-size systems, we can thus compute the scaling of differ-
ent entropies with respect to system size to extract information
about the topological order of the state. The universal contri-
bution γ is referred to as topological entanglement entropy
(TEE) [33,34] and provides insight in the anyonic quasiparti-
cle excitations. For a given ground state manifold, it is given
by γ = ln (

√∑
i d2

i ), where di is the quantum dimension of
the anyon associated with the topological sector i.

Laughlin states at ν = 1/m have a particularly simple
topological entanglement entropy because they host only m
different Abelian anyons (i.e., their exchange statistics can
be described with a complex phase factor eiπ/m) for which
di = 1. A Laughlin state at half filling with m = 2 thus has
γ = ln

√
2 ≈ 0.347. The Moore-Read state has a richer anyon

content and includes in addition to the identity two nontriv-
ial anyons: A fermion and an Ising anyon. The former is
an Abelian anyon with di = 1 and the latter is non-Abelian
with di = √

2. Therefore, the ground state manifold of the
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Finite-size flow of Rényi entropies. (a) and (b) Extrapolation of Rényi entropies for ν (∗) = 1/2 gives strong indications of Laughlin-
type states at these filling factors. (c) and (d) States with ν (∗) = 2 are more difficult to interpret due to stronger deviations between the different
entropy measures. However, the extrapolations of the low-order entropies are consistent with zero as expected for the bosonic integer quantum
Hall state. The values for the Ising sector of the Moore-Read state in (e) suffer from the same problem; high-order entropies however are
relatively close to the expected value. (f) Comparison for a Mott insulator, which yields zero topological entanglement entropy. Different flux
densities nφ = 1/6, 1/7, 1/8 are analyzed, so the cylinder circumference Ly is expressed in terms of the respective magnetic length �B.

Moore-Read state has γ = ln 2 ≈ 0.693 [55]. For this state, a
further correction of the topological entanglement entropy is
present in the cylinder geometry considered here arising from
its non-Abelian statistics. In particular, for the ground state
in the topological sector i, the constant γ in Eq. (3) is given
by γi = γ − ln di [53,54,56,57]. While this does not affect the
vacuum or fermion sectors where di = 1, the Ising sector with
di = √

2 should extrapolate to γi = ln
√

2. The BIQH state
does not have topological ground state degeneracy; rather,
it is a symmetry-protected topological phase and satisfies
γ = 0.

Here, we use this expected scaling behavior to obtain
information about the (non)topological order for the ground
states of the relevant filling factors. We calculate four differ-
ent orders of Rényi entropies (including the von Neumann
entropy and the maximum entropy) for the circumfer-
ences values Ly = 6, 7, 8, 9, 10 and the flux densities nφ =
1/6, 1/7, 1/8, keeping the filling fraction fixed, and extrap-
olate to Ly = 0 to estimate the topological entanglement
entropy γ . Varying the flux density allows us to access many
more data points than for a fixed flux density. When per-
forming the extrapolation, we express the circumference Ly

in units of the magnetic length �B = (2πnφ )−1/2 [25,58,59].
We use maximal bond dimensions of χ = 2500 for all
states.

Our results for the entanglement entropies are shown in
Fig. 4. For the Laughlin states at ν (∗) = 1/2 the extrapolation
of the finite-size entropies are well converged to the expected
value, Figs. 4(a) and 4(b). This agreement further confirms
our hypothesis of a Laughlin state for this hole filling factor.
The values for the ν (∗) = 2 state in Figs. 4(c) and 4(d) are
more difficult to interpret, as we find the extrapolated value for
γ varies more strongly with the Rényi entropy order. While
the extrapolation of the von Neumann entropies give values
which are close to zero as predicted by the BIQH theory, other
orders yield higher values. Further investigation into the actual
structure of these states is thus necessary, particularly because
other studies have demonstrated properties at ν = 2 which are
sometimes inconsistent with the BIQH state [25,60]. How-
ever, the similarities between these two states suggest that they
are indeed particle-hole conjugates.

In Fig. 4(e), the results for the supposed Moore-Read state
at ν = 1 are shown. Here, we have chosen only those values
whose entanglement spectra suggest that the ground state in
the Ising sector is realized, which should lead to a TEE of
γi = ln

√
2. (We show the differences in the entanglement

spectra in the next section.) We are therefore left with fewer
data points than in the other cases. Here too, we note signif-
icant differences between the numerical values, which could
arise due to finite-size effects, or an insufficient number of
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 5. Entanglement spectra of the Laughlin states. The entanglement spectrum εi as a function of the momentum in the y direction ki for
the ν (∗) = 1/2 Laughlin states at different interaction strengths U/t on an Ly = 12 cylinder. In the upper row, we show the spectrum for the
ν∗ = 1/2 hole state. While the hard-core limit clearly obtains the counting sequence {1, 1, 2, 3, 5, . . . } predicted by the conformal field theory
of the Laughlin state (indicated by circles in the images), smaller values for U/t lead to a background of low-lying Schmidt states that obscure
this sequence. By contrast, the spectra for the particle state at ν = 1/2 are almost unaffected by weaker interactions due to the lower filling of
bosons. Note that the entanglement spectra direction differs between particles and holes, which is consistent with the sign reversal of the Hall
conductivity. For reasons of clarity, only the QL

i = 0 charge sector is shown. Other charge sectors exhibit the same counting.

data points. However, the infinite Rényi entropy S∞ curve
leads to a value which is rather close to γi = ln

√
2. Preparing

the different topological sectors could further help us to fully
characterize this state.

For reference, we show in Fig. 4(f) the entanglement scal-
ing for the Mott insulator. All data points are close to zero, as
expected for a state which is close to a product state.

C. Entanglement spectra

In this section, we focus on the Laughlin states at ν (∗) =
1/2 and the Moore-Read state at ν = 1. We wish to charac-
terize these further by computing their entanglement spectra
[35]. In the cylinder geometry, translational symmetry in the y
direction (for the right choice of magnetic unit cell) ensures
that the Schmidt states are momentum eigenstates in the y
direction. Therefore, we can label each Schmidt value and
each entanglement energy εi = −2 ln 
i with a ki value. For
quantum Hall states, the lowest lying levels of these rela-
tionship give insight into the edge conformal field theory
governing the state. For the Laughlin state, one excepts a
typical counting {1, 1, 2, 3, 5, . . . } of a U (1) chiral boson for
each charge sector QL [52,56]. For the Moore-Read state, the
low-energy behavior is more complicated, as its conformal
field theory also hosts a Majorana fermion besides the chiral
boson. Therefore, the entanglement spectrum depends on the
topological sector. In the identity sector, the counting depends
on the charge sector QL

i : Alternating with QL
i , it is either

{1, 1, 3, 5, 10, . . . } or {1, 2, 4, 7, . . . }. For the fermion, the
low-lying energy levels follow the same structure shifted by
�QL

i = 1. The Ising sector follows a universal {1, 2, 4, 8, . . . }
counting in every charge sector; thus it is easily distinguish-
able from the other two sectors [55,61].

We compute the entanglement spectra for the two Laughlin
states with ν (∗) = 1/2 as a function of the interaction strength
U/t (Fig. 5). The entanglement spectra are shown only for
the QL

i = 0 charge sector, for reasons of clarity; other charge
sectors exhibit the same structure shifted in ki, as expected
from the theoretical prediction. We calculate the ground state
with a bond dimension of at least χ = 1800 for the four differ-
ent interaction strengths U/t = ∞, 150, 50, 20 on a Ly = 12
cylinder. Accordingly, we obtain twelve possible values for
the quantum number ki. As indicated by the dots in Fig. 5, the
characteristic counting for the conformal field theory corre-
sponding to the Laughlin state is clearly visible, particularly at
strong interactions. We also observe that the sequence reverses
for the two cases, which indicates the particle-hole correspon-
dence. Moreover, we note that the particle-hole symmetry
reflected in the entanglement spectra plots is broken by weak
interactions away from the hard-core limit. In Fig. 5, the se-
quence counts in the bottom row (corresponding to the particle
states) are virtually unchanged as U/t decreases; in contrast,
the hole states develop a background at higher entanglement
energies which affects the sequences at weak interactions.
We see that for U/t = 20, only the lowest three levels of
the counting are still distinguishable. This is because lower
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(a) (b) (c)

(d) (e) (f)

FIG. 6. Entanglement spectra of the Moore-Read state. The entanglement spectrum εi as a function of the momentum in the y direction
ki for the ν = 1 Moore-Read state at different flux densities nφ on an Ly = 10 cylinder with interaction strength U/t = 2, resolved by their
charge value. In the upper row, we show the spectrum for the state at nφ = 1/6, as obtained by infinite DMRG. It clearly follows the counting
{1, 2, 4, . . . } in every charge sector, which is characteristic of the Ising topological sector as given by the Moore-Read conformal field theory.
In the lower row, we show the entanglement spectra obtained for nφ = 1/7. Here, the {1, 2, 4, . . . } counting is present only in the even charge
sectors, while the odd sectors follow the sequence {1, 1, 3, . . . } in the low-energy space. This alternating behavior is characteristic of the other
two sectors, the identity sector and the fermion sector.

interactions lead to a stronger contribution from states which
have multiple bosons occupying the same site. This contrasts
with the Laughlin wave function which in the continuum is
the ground state of a Hamiltonian exactly suppressing these
states [42]. Hence the Laughlin state of holes is less robust at
reducing the interaction than its particle analog.

In Fig. 6, we show entanglement spectra for the ν = 1
Moore-Read state at U/t = 2 on a Ly = 10 cylinder with
different flux densities nφ . As discussed in the preceding sec-
tion, most of our simulations for the Moore-Read state have
resulted in an Ising state; some however have yielded ground
states from the other topological sectors, which can be distin-
guished by their low-energy counting. In the upper row, we
show the entanglement spectrum for flux density nφ = 1/6,
which realizes the first three values of the {1, 2, 4, 8, . . . }
counting in all three charge sectors QL

i = −1, 0, 1. The
ground state found by DMRG in this particular configuration

can therefore be identified as lying in the Ising sector. The
lower row shows the spectrum for flux density nφ = 1/7,
which realizes a different topological sector, as the counting
for the even charge sector QL

i = 0 can be identified with
the {1, 2, 4, 7, . . . } counting, whereas the odd charge sectors
QL

i = ±1 follow the counting {1, 1, 3, 5, 10, . . . }. In general,
the entanglement gap is significantly smaller than for the
Laughlin state at ν = 1/2, as expected for the Moore-Read
state which has both higher particle number and necessitates
lower interaction strengths. Therefore, only a few low-energy
levels are separated. Nevertheless, the typical chiral counting
can still be deduced, further confirming the existence of a
non-Abelian topological phase in this system.

In general, our results demonstrate that the entanglement
spectra are rather fragile and that the low-energy counting
sequence may not be as clearly visible as expected, despite
the state being topologically nontrivial.
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IV. CONCLUSIONS AND OUTLOOK

We have characterized gapped phases with topological
order in the Bose-Hubbard model subjected to an effective
magnetic field with particular focus on fillings nearby the
first Mott lobe. A detailed characterization of charge pump-
ing, topological entanglement, and the entanglement spectrum
obtained numerically from matrix-product state simulations
provided us with information about their topological order.
We have obtained convincing data for a Laughlin state near
unit filling which can be seen as the hole analog of the ν =
1/2 fractional quantum Hall state for bosons, as evidenced
by the reversed sign of the Hall current. However, for other
gapped states, more involved investigations are necessary to
unambiguously identify their topological order.

While we were able to identify topological properties of
certain plateaus, much larger computational resources are
required to obtain a complete understanding of all gapped
phases that can occur. In particular, a clear understanding of
the gapped states emerging at low filling factors is necessary
before understanding the more unstable conjugates at higher
boson density. In this regard, we have also provided addi-
tional information supporting a Moore-Read state at ν = 1.
For these more complex non-Abelian states, protocols which

distinguish the different topological ground state sectors may
be able to provide deeper understanding of these phases. Fur-
ther insights could also be obtained by realizing these phases
experimentally with synthetic quantum systems. In particular,
protocols have been developed theoretically to characterize
nontrivial topological properties of such systems, includ-
ing the analysis of currents [62–65], flux insertion [66–68],
randomized measurements [69–71], interferometry [72–75],
circular dichroism [76,77], and the depletion of quasiholes
[78,79].
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