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Dissipation-assisted operator evolution method for capturing hydrodynamic transport
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We introduce the dissipation-assisted operator evolution (DAOE) method for calculating transport properties
of strongly interacting lattice systems in the high temperature regime. DAOE is based on evolving observables
in the Heisenberg picture and applying an artificial dissipation acting on long operators. We represent the
observable as a matrix product operator and show that the dissipation leads to a decay of operator entanglement,
allowing us to follow the dynamics to long times. We test this scheme by calculating spin and energy diffusion
constants in a variety of physical models. By gradually weakening the dissipation, we are able to consistently
extrapolate our results to the case of zero dissipation, thus estimating the physical diffusion constant with high
precision.
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I. INTRODUCTION

Despite their complexity, thermalizing quantum many-
body systems often exhibit universal hydrodynamical features
in their low-frequency, long-wavelength limit [1–8]. Although
these features are routinely measured in transport exper-
iments, quantitatively connecting them to the underlying
microscopic dynamics, e.g., deriving the transport coeffi-
cients from first principles, is notoriously difficult in practice
[2,9–13]. Established methods face an exponentially increas-
ing cost, either with time or with system size, often leading
to unreliable results [4,14–17]. While methods have been pro-
posed to circumvent these issues in certain cases [18–28], it
remains unclear whether one can really overcome the expo-
nential barrier for generic systems.

The purpose of this paper is to introduce a numerical
method that tackles this problem and calculates transport
properties from first principles in a controlled manner, while
avoiding finite-size and time restrictions. We achieve this
by focusing on the Heisenberg picture dynamics of con-
served densities. Motivated by recent results on operator
spreading [29–32], we introduce an artificial dissipation that
removes operators based on their length, which we define
below. As a consequence, the time-evolved operator may be
stored more compactly using standard tensor network tech-
niques. The resulting dynamics depends on the specifics of
the dissipative procedure, but in the limit of weak dissipation,
the different methods all appear to converge. This allows us to
estimate the physical result (here, a spin or energy diffusion
constant) through extrapolation. Our results suggest that the
simulation of transport in ergodic systems has a qualitatively

*Present address: Department of Physics, Stanford University,
Stanford, California 94305, USA.

smaller computational cost than solving the full many-body
dynamical problem.

II. NUMERICAL METHOD

We work with one-dimensional lattice models, labeling
sites by j = 1, . . . , L. Consider the local density, qj , of some
conserved quantity Q = ∑

j q j (e.g., charge or energy). We
are interested in dynamical correlations of these densities,
〈qi(0)q j (t )〉eq, evaluated in some equilibrium state. We focus
on infinite temperature, so 〈. . .〉eq ≡ Tr[. . .]/N , with N the
Hilbert space dimension. Here qj (t ) is evolved unitarily in the
Heisenberg picture, with a Hamiltonian H that conserves Q,
[H, Q] = 0. Transport properties can be extracted from such
correlations, as we detail below.

In what follows, we shall find it useful to think of operators
as vectors in an enlarged Hilbert space of size N 2. In a matrix
product operator (MPO) representation, this is equivalent to
combining the two physical legs into a single leg, turning it
into a matrix product state (MPS), as illustrated by Fig. 1(b).
We use the notation |q j〉 for the vectorized operator and intro-
duce an inner product on this space as 〈A|B〉 ≡ 〈A†B〉eq. The
Heisenberg equation of motion can be rewritten as ∂t |q j〉 =
i[H, q j] ≡ iL|q j〉, which defines the Liouvillian superopera-
tor, L. This is solved by |q j (t )〉 = eiLt |q j〉. Importantly, we
are only interested in the matrix elements of eiLt in the slow
subspace, spanned by the conserved densities: 〈qi|eiLt |q j〉 =
〈qiq j (t )〉eq. This projected evolution is generically no longer
unitary.

We wish to approximate this nonunitary evolution by grad-
ually taking into account the effect of the bath, meaning all
the remaining operators that we are not projecting onto. We
will do this in a more general way, where we include not
only conserved densities, but all sufficiently local operators in
the slow subspace. To be concrete, let us imagine a spin-1/2
chain. Then a basis of all 4L operators is given by Pauli strings,
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FIG. 1. Dissipation-assisted operator evolution (DAOE) method.
(a) Sketch of the nonunitary evolution Eq. (2) as a sum over paths
in operator space. For �t → 0, γ → ∞, paths that leave the � � �∗
subspace are discarded immediately. Making �t finite, we keep paths
that wander off from this subspace but return before the next integer
multiple of �t . Finally, when �t, γ are both finite, all paths are kept
but the weight of those that spend time outside the slow subspace is
gradually reduced. (b) The operator (MPO) qj can be reinterpreted
as a state (MPS) |qj〉 on a doubled Hilbert space. (c) One period
of the DAOE as a tensor network. |qj〉 is evolved with the TEBD
algorithm up to time �t . Then the dissipator D�∗,γ is applied as a
bond dimension �∗ + 1 MPO.

products of the four Pauli matrices 11, X,Y, Z . To each Pauli
string S , we can associate a length �S , which is simply the
number of nontrivial Pauli operators occurring in it. For ex-
ample, 11, Xj, ZiYj have lengths � = 0, 1, 2, respectively. We
can then define a dissipation superoperator that decreases the
weight of all strings longer than some cutoff length �∗ as

D�∗,γ [S] =
{
S if �S � �∗
e−γ (�S−�∗ )S otherwise.

(1)

The cutoff length �∗ is introduced to ensure that the physically
most relevant operators, such as conserved densities, are not
affected by the dissipator.

We are now in a position to describe our proposed method.
We define a modified time evolution by applying the dissipator
with period �t . That is, for time t ∈ [N, N + 1)�t (for N ∈
N), we consider the time evolved local density defined by

|q̃ j (t )〉 = eiL(t−N�t )
(
D�∗,γ eiL�t

)N |q j〉; (2)

we dub this dissipation-assisted operator evolution (DAOE).
Equation (2) is clearly very different from the true, unitar-
ily evolved operator |qj (t )〉. However, we propose that the
dissipative evolution can be made to correctly capture the
correlations with other slow operators, particularly conserved
densities, 〈qi|q̃ j (t )〉 ≈ 〈qi|q j (t )〉.

Intuitively, �t and 1/γ both play a similar role, limiting
the amount of time an operator is allowed to spend outside the
� � �∗ subspace. While at �t → 0, γ → ∞ the dynamics is
projected down to this subspace [33], making either �t or γ

finite allows the operators to go outside, but only for a limited
amount of time (in fact, when γ is small, results depend

on the ratio γ /�t only). One can think of this as summing
up certain contributions in a path-integral representation of
the propagator 〈qi|eiLt |q j〉, as illustrated in Fig. 1(a). Unitary
evolution is recovered by taking either γ → 0, �t → ∞ or
�∗ → ∞. In practice, we shall find it most useful to take
the first option, keeping �∗ and �t fixed while approaching
the unitary limit through decreasing γ . The spirit of this
approximation is closely related to the well-known memory
matrix formalism [2,9–12,34–37], with the short (� � �∗) and
ong (� > �∗) operators playing the role of the slow and fast
subspaces, and �t and γ providing a cutoff for the memory
time

The correlators considered are affected by the dissipation
through backflow processes [31], wherein a long Pauli string
in q j (t ′) at time t ′ < t develops a component on a short oper-
ator, such as qi, by time t . DAOE relies on the assumption
that such backflow is weak in generic systems, which we
expect to hold for two reasons. First, simple entropic argu-
ments show that operators are more likely to grow in size
than to shrink. Second, the many different backflow paths are
expected to come with effectively random phases, leading to
destructive interference. In the absence of conservation laws,
one can easily argue that these lead to backflow effects being
exponentially suppressed in �∗. With conservation laws, the
situation is more complicated [31,32]. The largest contribu-
tion is expected from cases when qi evolves into a product of
several densities, qi1 . . . qi� , and then back. Such products are
slow operators and have significant components that fail to
grow ballistically. Nevertheless, we posit that these processes
are still suppressed exponentially in �. A key insight is that
the decays of the densities multiply together, resulting in a
behavior ∼t−�/2, with � appearing in the exponent. A detailed
analysis of backflow processes, supporting this conclusion, is
provided in Ref. [38].

To reap the benefits of the dissipation, we represent |q̃ j (t )〉
as an MPS. The unitary part of the evolution can then be
done with standard MPS techniques; for the nearest-neighbor
Hamiltonians studied below, the time-evolving block deci-
mation (TEBD) algorithm [15,16,39,40] provides an efficient
solution. In this language, the superoperator D�∗,γ becomes
am MPO [15,40,41]. One can then straightforwardly evaluate
Eq. (2), as illustrated in Fig. 1(c). As we will show, this can
be done accurately with a relatively low bond dimension, even
for large systems and long times, provided that the dissipation
is sufficiently strong.

D�∗,γ in fact has an exact MPO representation with
bond dimension �∗ + 1. We label the local basis states
by n = 11, X,Y, Z (generalization to higher spin is straight-
forward). We then write the local MPO tensor, W nn′

ab , as
a matrix acting on the virtual indices a, b = 0, 1, . . . , �∗.
They read W 1111

ab = δa=b and W XX
ab = W YY

ab = W ZZ
ab = δa=b−1 +

e−γ δa=b=�∗ , all others being zero. The MPO is contracted
with the vector vL = (1, 0, . . . , 0) on the left, and vR =
(1, . . . , 1, 1) on the right. It is easy to check that this repro-
duces the desired result.

The main limitation in the MPS representation of |q̃ j〉
is the operator entanglement [42–47], SvN[q̃ j (t )], defined as
the half-chain von Neumann entropy of the normalized state
|q̃ j (t )〉/√〈q̃ j (t )|q̃ j (t )〉. For generic unitary dynamics, it tends
to increase linearly [48,49], SvN[q j (t )] ∝ t . In this case, the
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FIG. 2. Testing DAOE on the Ising model Eq. (4). (a) shows
how the dissipation (for �∗ = 2, �t = 0.25) suppresses operator
entanglement (measured in units of ln 2). (b) shows that the MSD
Eq. (3) is correctly captured to long times by the DAOE (same �∗, �t ;
γ = 0.03, using bond dimensions χ = 512), by comparing to exact
results on small chains (L = 9, 13, 17, 21).

bond dimension χ needed for a faithful MPO/MPS repre-
sentation grows exponentially with t , cutting short the times
one can simulate [15,16]. We find that applying the dissipator
decreases the operator entanglement, and this effect always
becomes dominant at long times [see Fig. 2(a)]; a similar
effect was noted very recently in another context in Ref. [50].
This key observation means that we can calculate |q̃ j (t )〉 with
high precision, up to very long times, with a finite χ .

III. RESULTS

We use our method to calculate the dynamical correlations
between the central site i = L+1

2 (we take L odd) and all other
positions, Cj (t ) ≡ Tr[q jq̃ L+1

2
(t )]/N . We normalize these such

that
∑

j Cj (0) = 1. One can characterize the spreading of
correlations by the mean-square displacement (MSD):

d2(t ) ≡
∑

j

Cj (t ) j2 −
(∑

j

Cj (t ) j

)2

. (3)

In the strongly interacting, nonintegrable systems we study,
high-temperature transport of conserved quantities is ex-
pected to be diffusive [2,3,51,52], which manifests in a linear
growth of the MSD at long times, d2(t ) ∝ t . This sug-
gests defining a time-dependent diffusion constant [4,53–56]
as 2D(t ) ≡ ∂t d2(t ). The physical diffusion constant is then
D ≡ limt→∞ D(t ) (assuming L → ∞ first). Further informa-
tion about the frequency and wave-vector dependence of the
conductivity can be obtained by looking at the space-time
dependence of Cj (t ) [4,6,57].

Our approach is as follows. We calculate D(t ) for the
dissipative evolution and then approach the unitary dynamics
by decreasing γ , while keeping �t and �∗ fixed. We decrease
γ until we observe signs of convergence, allowing us to ex-
trapolate the results for D back to γ → 0. We can estimate the
accuracy of this extrapolation by comparing different values
of �∗. As stated above, the value of �t is in principle irrele-
vant, as one finds a scaling collapse as a function of γ /�t for
small γ . However, in practice, �t should be small enough so
one can follow the full dynamics up to �t with the given bond
dimension. It is also numerically more efficient not to make
�t too small to reduce the number of MPO-to-MPS multi-
plications we need to perform. We find that �t ≈ 1 (in units
of microscopic couplings) works well. We investigate two

Hamiltonians which we expect to be generic; further results
on discrete circuit models are presented in the Appendices.

A. Energy transport in the Ising chain

We first consider the Ising model in a tilted field:

H =
∑

j

h j ≡
∑

j

(
gxXj + gzZ j + Zj−1Zj + ZjZ j+1

2

)
. (4)

We fix gx = 1.4 and gz = 0.9045. At these values, we expect
the model to be strongly chaotic [58,59], and hard to simu-
late exactly, due to fast entanglement growth. Here, h j is the
energy associated to site j. This is the only local conserved
density in the model, and its correlations capture energy (or
heat) transport [59]. We therefore take q j ≡ h j in this case and
evolve h L+1

2
, as an MPO, according to Eq. (2). We perform the

unitary part of the dynamics with TEBD, using a small Trotter
time step 0.01. We take large enough systems (L = 51) such
that finite-size effects are negligible at the times we study.

Figure 2(a) confirms that the dissipation limits the operator
entanglement growth, so the entropy SvN[h̃ j (t )] peaks and
then decreases. The time and height of the peak increase as
γ gets smaller, but for any nonzero γ , dissipation dominates
at long times. Moreover, we find that after the peak, SvN

approaches 1 in units of ln 2, indicating that the operator
is increasingly dominated by the local densities, h̃ L+1

2
(t ) ≈∑

j Cj (t )h j .
We benchmark our method by comparing it to exact results

on small systems, calculated using the canonical typicality
approach [14,60,61], for up to L = 21 sites. In this case,
finite-size effects limit the times one can reach to t ≈ 10.
We compare these to the dissipative method for a particular
set of parameters, �∗ = 2,�t = 0.25, γ = 0.03, which we
expect to be close to being converged to the physical diffusion
constant (see below). The results for the MSD are presented
in Fig. 2(b). The curve from the dissipative evolution follows
the exact results and then continues to grow linearly to much
longer times, well beyond the reach of exact numerics. This is
despite the fact that at these times, the dissipation already had
a large effect (as measured, for example, by the decay of SvN)
and h̃ L+1

2
(t ) is far from the true time-evolved operator. Note

that the dissipation is essential in allowing us to reach long
times; for the same bond dimension (χ = 512), TEBD with-
out dissipation starts deviating from the exact results around
times t ≈ 7 − 8 due to truncation errors.

Having established the potential of the DAOE method, we
now embark on the strategy outlined above, approaching the
unitary limit by decreasing γ gradually from γ = ∞. For each
set of parameters, we calculate a time-dependent diffusion
constant D�∗,�t (t ; γ ). In the limit γ → 0, one would recover
the physical result, limγ→0 D�∗,�t (t ; γ ) = D(t ), for any �∗
and �t . In practice, we are limited to some minimal γ we
can simulate with a certain bond dimension, while avoiding
truncation errors. However, as we show, one can extrapolate
from the data to get an estimate for the diffusion constant at
γ = 0. Estimates for different �∗ then allow us to check the
accuracy of this extrapolation.

The results are shown in Figs. 3(a) and 3(c) for �t = 1
and �∗ = 2, 3, 4. D(t ) saturates to a γ -dependent constant.
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FIG. 3. Estimating the diffusion constant. (a), (c) show data for
the Ising chain Eq. (4) and (b), (d) for the XX ladder Eq. (5). We fix
�t = 1 and use bond dimensions up to χ = 768. In (c), (d), we show
results for the time-dependent diffusion constant at a fixed �∗ = 3
for varying γ , showing clear signs of convergence. In (a), (b), we
show the estimate for D (taken as the average of D(t ) in the interval
t ∈ [15, 20]). Data for the weakest dissipations is well fit by a linear
extrapolation, and results for different �∗ give consistent estimates
for the physical diffusion constant. In (b), (d), the � and dotted line
represent the estimate D = 0.95 from Ref. [62].

When γ is made sufficiently small, we find that the results
converge. The last few data points are well fitted by a straight
line, which allows us to extrapolate D back to γ = 0. The ex-
trapolated results for different choices of �∗ all agree to within
≈1% error, supporting our conclusions that we indeed reached
the physical diffusion constant (in this case, D ≈ 1.40). This
constitutes strong evidence that our method can successfully
capture transport coefficients to a high precision.

B. Spin transport in the XX ladder

Next, we study a spin-1/2 model on a two-leg ladder.
We denote by j = 1, . . . , L the rungs of the ladder, and use
a = 1, 2 for the two legs. Pauli operators on a given site are
specified as Xj,a, etc. The Hamiltonian then reads

H =
L∑

j=1

∑
a=1,2

(Xj,aXj+1,a + Yj,aYj+1,a)

+
L∑

j=1

(Xj,1Xj,2 + Yj,1Yj,2). (5)

Besides energy, this model also conserves the spin z compo-
nent,

∑
j,a Z j,a. We examine the transport of the correspond-

ing local conserved density q j = Zj ≡ (Zj,1 + Zj,2)/2 along
the chain. We take a system of L = 41 rungs, which is large
enough to avoid finite-size effects, up to the times (t ≈ 20)
that we simulate.

Spin transport in this model has been studied in a number
of previous works, finding clear evidence of diffusive behav-
ior with a diffusion constant D ≈ 0.95 [23,62,63]. Here we

show that our method reproduces this result on much larger
systems. We perform the same analysis as in the Ising model,
comparing D for different γ and extrapolating back to γ = 0;
the results are shown in Figs. 3(b) and 3(d). We find that the
extrapolated results are all within the range D ≈ 0.96 − 0.98
(even for �∗ = 1, where energy conservation is violated). The
fact that these values are all very close to one another, and
to the previous result, strongly supports the validity of our
method.

IV. CONCLUSIONS

We introduced a controlled numerical method for com-
puting transport properties in strongly interacting quantum
systems at high temperatures. Our method is based on ne-
glecting backflow from complicated to simple operators. We
provided a simple implementation of this method, using
MPSs, which allowed us to calculate dynamical correlations
without finite-size or finite-time limitations. We demonstrated
the utility of this approach on two spin models, showing
that it can be used to estimate diffusion constants with
high precision. An interesting open question is whether the
method could be further improved by using ideas from
Refs. [24,27,64].

There are a variety of physical problems that would be
interesting to explore with this method, such as transport in
1D quantum magnets [65–68], disordered models [69–73], or
long-range interacting [74] systems, where existing methods
are even more limited. There might also be applications in
quantum chemistry, where tensor network methods are be-
coming increasingly important [75–79]. A natural extension
of our method is to finite temperatures. We expect it to work
well at high temperatures, where the thermal density matrix
is dominated by short operators [80–85], while it presum-
ably breaks down as the low-temperature limit is approached.
Precisely when and how this happens is itself an interesting
question.
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FIG. 4. Convergence of results with bond dimension χ in the Ising chain Eq. (4) for dissipation parameters �∗ = 4, �t = 1, γ = 0.2.
(a) Truncation error per TEBD step, summed over all bonds in the chain (L = 51 sites). (b) Convergence of results for D(t ) (see main text for
definition). (c) Errors in the energy conservation, as measured by the sum of the coefficients of local energy density terms Cj (t ).

APPENDIX A: ADDITIONAL DATA FOR THE ISING
CHAIN AND XX LADDER MODELS

1. Convergence with bond dimension

In the main text, we showed that the dissipation leads to a
decay of the operator entanglement at long times. Crucially,
this makes the maximal operator entanglement encountered
during the evolution independent of system size, depending
only on the parameters of the dissipation. As we argued, we
can therefore capture the diffusive spreading of correlations
up to arbitrarily long times, without significant finite-size or
truncation effects. Here we show explicitly how the curves for
D(t ) converge as we increase the bond dimension χ .

The results are shown in Fig. 4 for the tilted field Ising
model. We fix parameters �∗ = 4, �t = 1, γ = 0.2 [same
as in Fig. 2(b)] and compare results for different bond
dimensions χ = 32, 64, 128, 256, 512. As the operator entan-
glement peaks and decreases [see Fig. 2(a)], the truncation
error of the unitary TEBD time step also starts decreasing.
While for small χ , the truncation errors encountered around
the peak time are already significant, they decrease (roughly
linearly) with χ . This also shows up in the results for the
time-dependent diffusion constant, D(t ). While at small χ

the truncation effects are clearly visible, the curves quickly
converge as χ is increased.

Another way of testing the effects of truncation is by look-
ing at whether the conservation law (in this case, of energy)
is satisfied. We consider the correlations Cj (t ) and normalize
them such that

∑
j Cj (0) = 1. The exact dissipative dynamics

would maintain this normalization at all subsequent times
due to energy conservation (assuming �∗ is larger than the
support of the terms in the Hamiltonian, in this case �∗ � 2).
This is crucial for correctly capturing transport properties.
We find that the errors in the conservation law, as measured
by |1 − ∑

j Cj (t )| quickly decrease as χ becomes larger. We
conclude that it is possible to simulate the dissipative dynam-
ics Eq. (2) up to long times, with a bond dimension that is
independent of total system size.

2. Scaling collapse as a function of γ/�t

Here, we justify our claim in the main text that when γ

is sufficiently small, the results (in particular, estimates of
D) are functions of the ratio γ /�t only. This can be seen

by utilizing the Baker-Campbell-Hausdorff formula to rewrite
the evolution operator Eq. (2) as(

D�∗,γ eiL�t
)N ≡ (

e−K�∗ γ eiL�t
)N

= (
e−K�∗ γ+iL�t+O(γ�t )

)N

= e−K�∗ Nγ+iLN�t+O(γ N�t )

= et
(

iL−K�∗
γ

�t

)
+O(γ t )

, (A1)

where t = N�t and we have introduced the logarithm of the
dissipator, acting on a Pauli string as

K�∗ [S] =
{

0 if �S � �∗
(�S − �∗)S otherwise. (A2)

In the second equality of Eq. (A1), we assumed γ 
 1 to drop
higher order terms that scale as γ 2�t . We also assume that �t
is at most an O(1) quantity, so terms that scale as γ�t2 are of
the same order as γ�t .

Equation (A1) shows that the dynamics only depends on
the ratio γ /�t , and not on the individual value of γ and �t ,
up to times t ≈ 1/γ . As such, it does not directly constrain
the diffusion constant, which is extracted from the long-time
limit. However, in practice we find that D(t ) saturates to a con-
stant at a finite time tsat. While tsat itself depends on γ and �t
(as well as on the Hamiltonian), we find that this dependence
is relatively weak; in particular, tsat should converge to a finite,
O(1) value as γ → 0. Therefore, estimates of D should also
depend only on the ratio γ /�t , provided that we are in the
regime where γ tsat � 1.

Testing this expectation on the Ising chain Eq. (4), we
find that it works remarkably well, even for γ ≈ 1 (we also
find that it works increasingly well as �∗ gets larger). This is
shown in Fig. 5. Figures 5(a) and 5(b) show that curves with
identical ratio γ /�t are the same at early times and, moreover,
their late time saturation values are also close to one another,
provided that we are in a regime with sufficiently small γ .
Consequently, the estimates for D show a scaling collapse
when data for the same �∗ but different �t are plotted as a
function of γ /�t , see Fig. 5(c).

3. Operator weights

In the main text, we noted that the operator von Neumann
entropy of the dissipatively evolving local density approaches
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FIG. 5. Scaling collapse as a function of γ /�t . (a), (b) Comparison of time-dependent diffusion constants for two curves with different
�t but the same ratio γ /�t . When γ is sufficiently small, the results remain close to each other even at long times. (c) Estimates of D ≡
limt→∞ D(t ), comparing �t = 1 and �t = 1/4. In the small γ regime, relevant for extrapolation, the curves with the same �∗ collapse when
plotted as function of γ /�t .

1 (in units of ln 2) at long times. This suggests a long-time be-
havior where the evolving operator is increasingly dominated
by its diffusive, conserved part, q̃0(t ) ≈ ∑

j Cj (t )q j . We now
further support this interpretation by calculating the weight
of various operators in q̃0 (in this section, we use a differ-
ent notation from the main text, with 0 denoting the center
site).

To define what we mean by the weight of an operator, let
us expand q̃0 in the basis of Pauli strings, q̃0 = ∑

S cS (t )S;
the weight of the Pauli string is then the squared coeffi-
cient, |cS |2. The total weight on operators with length � is
given by

W�(t ) ≡
∑
S

�S=�

|cS (t )|2. (A3)

For unitary evolution, one would have a conserved total
weight,

∑
S |cS (t )|2 = ∑

� W�(t ) = 1. During evolution, the
weight gets redistributed from short operators to an essentially
random superposition of long ones, such that at time t the
operator is dominated by strings of length � ∼ vBt , with vB the
butterfly velocity. This leads to the linear growth of operator
entanglement with time.

The dissipator fundamentally changes this picture, as it
removes operator weight from long strings. This reverses the
effect of the unitary dynamics, making the contribution of
short operators dominant at long times, which leads to the ob-
served decay in the entanglement. While short operators, with
� � �∗, are not affected directly by the dissipator, their weight
also decreases as they get converted into longer strings which
are subsequently dissipated. However, due to the hydrody-
namic nature of transport, we find that the weight associated to
local densities, |Cj |2 ≡ |cqj |2, decreases parametrically more
slowly than those of nonconserved operators, so they domi-
nate at long times.

To show this, we consider the XX ladder Eq. (5) and
consider the evolution of the spin density, Z̃0(t ). Calculating
operator weights for this object, we find that the weight on
local densities decays as W�=1 ∼ t−1/2, as expected from the
diffusive nature of spin transport [31,32]. Considering larger

�, we find two things. First, for � > �∗, the weight decreases
exponentially with �, as expected from the form of the dissi-
pator. More importantly, for the present discussion, we also
find that the weights for � > 1 decay parametrically faster in
time, W�>1 ∼ t−3/2 (even when 1 < � � �∗); this is shown in
Fig. 6.

This behavior is consistent with the operator spreading
picture developed in Refs. [31,32]. In this picture, one rewrites
the time evolved density q0(t ) as

q0(t ) = qD
0 (t ) + qB

0 (t ), (A4)

where qD
0 (t ) ≡ ∑

x C(x, t )qx is the diffusive part of the
operator and we assume that C(x, t ) ≡ 〈qx|q0(t )〉 is well ap-
proximated by an unbiased diffusion kernel. qB

0 (t ) contains the
contributions from all remaining Pauli strings, and is dom-
inated by those with length � = 2vBt , with vB the operator
butterfly velocity [29,30]. The unitary dynamics leads to a
conversion of weight from the diffusive to the ballistic part,
whose local rate is given by current squared, |∂xC(x, t )|2. In
this way, at each time step, qD

0 sources new ballistically grow-
ing operators which thereafter form part of qB

0 . This picture
can be used to deduce the behavior of W� as a function of
time. According to the above picture, operators of support �

would correspond to terms in qB which have been ballistically
growing for a time interval t − τ = �/(2vB). The weight of

FIG. 6. Total weight on strings of size � as a function of time. The
majority of the remaining (not yet dissipated) weight is on one-site
strings,which decays as t−1/2. The weight of longer strings decays
as t−3/2. Data shown for �t = 1, �∗ = 5 with γ = 0.05 (left) and
γ = 0.25 (right).
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FIG. 7. Diffusion constants in Floquet circuits. (a) The circuits have a brick-wall structure, updating even/odd bonds in turn. Every gate
is given by the same Sz-conserving two-site unitary u. (b), (c) Estimates of the spin diffusion constant for the circuit defined by Eq. (B1) for
spin-1/2 and spin-1 chains.

such terms is therefore expected to be∫
dx(∂xC(x, τ ))2 ∼

[
D

(
t − �

2vB

)]−3/2

.

This shows that the weight on length � operators at time t �
�

2vB
goes as (Dt )−3/2.

APPENDIX B: SPIN DIFFUSION IN FLOQUET CIRCUITS

We now complement the results shown for energy-
conserving, Hamiltonian dynamics in the main text, with data
on time-periodic models. We construct these as circuits of
local unitary gates, with a brick-wall structure and, conse-
quently, a strict light cone. This structure is illustrated in
Fig. 7(a). We use the same two-site unitary u in each gate,
such that the system has translation invariance in space (with
unit cells composed of two sites) and in time (by two layers of
the circuit).

We want our circuit to conserve the total spin-z component.
For a spin-1/2 chain, such a circuit is fully parametrized by
three numbers and it corresponds to a Trotterized version of
an XXZ chain with a staggered magnetic field,

u = e−i(Jxy (Sx
1Sx

2+Sy
1Sy

2 )+JzzSz
1Sz

2+g(Sz
1−Sz

2 )), (B1)

where we have now used spin operator Sα instead of Pauli
matrices (the two differ by a factor of 2), and the subscripts
refer to the two sites on which the gate acts. We choose ir-
rational values of the three couplings, Jxy = 2

√
7, Jzz = 2

√
5,

g = 2
√

3.
We apply our dissipative evolution method for this circuit

model, applying the dissipator after every second layer of the
circuit (i.e., one Floquet period). We extract the spin diffusion

constant in the same way as in the main text. The results for
the spin-1/2 circuit are plotted in Fig. 7(b). We find that the
convergence to γ = 0 is less clear than in the Hamiltonian
models we studied in the main text. In particular, for �∗ =
1, 2 we observe a strong nonmonotonicity with γ , while �∗ =
3, 4 do appear to converge linearly to compatible values of D.
Nevertheless, we note that the variations in D are all relatively
small.

Our interpretation is that the apparent lack of convergence
in Fig. 7(b) is not related to the Floquet circuit nature of our
model; rather, it has to do with the fact that it is close to an
integrable point. It was recently shown [89] that for g = 0,
the model in Eq. (B1) is integrable; this is closely related to
the integrability of the XXZ Hamiltonian. In the latter case, a
staggered field is known to break integrability [61,90,91], so
we expect that for generic g our circuit is also nonintegrable.
However, we believe that the nearby integrable point is re-
sponsible for the nontrivial behavior we observe (for example,
some almost-conserved operator of length � = 3 could explain
why the �∗ � 2 curves have a qualitatively different behavior
from �∗ � 3).

To test this intuition, we also consider the spin-1 version
of the same model. That is, we use the same definition of the
two-site gate as in Eq. (B1) but with Sα

1,2 standing for spin-1
operators. The results for this case are shown in Fig. 7(c).
While we find that getting to smaller γ becomes quite difficult
in this case, due to a quick initial growth of operator entan-
glement, so our results are not as precisely converged as for
the models presented in the main text, we find no evidence of
strong nonmonotonicities in the regime we can simulate. This
reinforces our belief that the peculiar behavior exhibited by
the spin-1/2 model is tied to the presence of nearby integrable
points.
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Steinigeweg, and M. Znidarič, Finite-temperature transport in
one-dimensional quantum lattice models, Rev. Mod. Phys. 93,
025003 (2021).

075131-7

https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1103/RevModPhys.93.025003


RAKOVSZKY, VON KEYSERLINGK, AND POLLMANN PHYSICAL REVIEW B 105, 075131 (2022)

[5] H. Liu and P. Glorioso, Lectures on non-equilibrium effective
field theories and fluctuating hydrodynamics, in Proceedings
of Theoretical Advanced Study Institute Summer School 2017
“Physics at the Fundamental Frontier”—PoS(TASI2017) (Sissa
Medialab, Boulder, Colorado, 2018).

[6] X. Chen-Lin, L. V. Delacrétaz, and S. A. Hartnoll, Theory of
Diffusive Fluctuations, Phys. Rev. Lett. 122, 091602 (2019).

[7] B. Doyon, Lecture notes on generalised hydrodynamics,
SciPost Phys. Lect. Notes 18 (2020).

[8] J. Lux, J. Müller, A. Mitra, and A. Rosch, Hydrodynamic long-
time tails after a quantum quench, Phys. Rev. A 89, 053608
(2014).

[9] Y. Pomeau and P. Résibois, Time dependent correlation func-
tions and mode-mode coupling theories, Phys. Rep. 19, 63
(1975).

[10] J. Rau and B. Müller, From reversible quantum microdynamics
to irreversible quantum transport, Phys. Rep. 272, 1 (1996).

[11] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, Oxford, UK, 2001).

[12] H. Grabert, Projection Operator Techniques in Nonequilibrium
Statistical Mechanics (Springer, Berlin, 1982).

[13] T. Banks and A. Lucas, Emergent entropy production and hy-
drodynamics in quantum many-body systems, Phys. Rev. E 99,
022105 (2019).

[14] T. Heitmann, J. Richter, D. Schubert, and R. Steinigeweg,
Selected applications of typicality to real-time dynamics of
quantum many-body systems, Z. Naturforsch. A 75, 421 (2020).

[15] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011),
January 2011 Special Issue.

[16] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U.
Schollwöck, and C. Hubig, Time-evolution methods for matrix-
product states, Ann. Phys. 411, 167998 (2019).

[17] V. S. Viswanath and G. Müller, The Recursion Method
(Springer, Berlin, 1994).
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